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Abstract—We define the notion of convex-monotone
system and prove that for such systems the state
trajectory x(⋅) is a convex function of the initial state
x(0) and the input trajectory u(⋅). This observation
gives a useful class of nonlinear dynamical systems
for which control design can be performed by convex
optimization. Applications to evolutionary dynamics
of diseases and voltage stability in power networks
are presented.

I. INTRODUCTION

Control of monotone systems [1] has attracted in-
creasing attention over the past decade. One reason is
the variety of applications, such as chemical reaction
networks, power systems, network flow models and
populations models [13], [18]. Another reason is that
monotone systems, and positive systems as a special
case, lend themselves to analysis and synthesis meth-
ods with very good scalability properties [15], [16], [17].
This paper introduces yet another interesting fea-

ture of monotone systems: By exploiting monotonicity,
we show that optimal control problems for certain
nonlinear dynamical systems, with right-hand sides
described by convex functions, can be stated in terms
of convex optimization. The main result, Theorem 2, is
introduced in Section II. After this, two different appli-
cations are described: optimal design of drug therapies
using the convex-monotone properties of evolutionary
dynamics of diseases in Section III and voltage stabi-
lization for electrical networks in Section IV. Finally,
some proofs are included in an appendix.

II. MAIN RESULT

This paper is concerned with systems of the form

ẋ(t) = f (x(t),u(t)), x(0) = a, (1)

with x(t) ∈ X ⊂ R
n, u(t) ∈ U ⊂ R

m, where X and
U are convex and (1) has a unique solution x(t) =
φ t(a,u). The system is said to be monotone, see [1], if
the solution is a monotone function of the initial state
a and the input trajectory u, i.e. if

(a0,u0) ≤ (a1,u1) =[ φ t(a0,u0) ≤ φ t(a1,u1),

where inequalities are interpreted element-wise.
Before we state the main observation we remind

the reader about the following fact which follows from
more general results in [1].
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Proposition 1: If f ∈ C1 (i.e. continuously differen-
tiable), the following statements are equivalent

(i) The system (1) is monotone.
(ii) The inequalities � fi

�x j
≥ 0, � fi�uk

≥ 0 hold for all
i, j, k with i ,= j.

(iii) The solution to ẋ(t) = f (x(t),u(t))+v, x(0) =
a is a monotone function of a, u, v.

A proof of Proposition 1 is included in the appendix to
make the presentation self-contained.
If (1) is a monotone system and every row of f is also

convex, the system will be said to be convex-monotone.
The main observation in this paper is the following:

Theorem 2: If f ∈ C1 and (1) is a convex-monotone
system having the unique solution x(t) = φ t(a,u), then
each component of φ t(a,u) is a convex function of (a,u).

Proof. Let x0(t) = φ t(a0,u0) and x1(t) = φ t(a1,u1). For
λ ∈ [0, 1] introduce xλ = (1− λ)x0 + λx1 and

aλ = (1− λ)a0 + λa1

uλ = (1− λ)u0 + λu1

vλ = (1− λ) f (x0,u0) + λ f (x1,u1) − f (xλ ,uλ)

Then vλ ≥ 0 due to convexity of f . If we let yλ(t) be
the solution to

ẏ(t) = f (y(t),uλ(t)) + vλ(t), y(0) = aλ (2)

then from Proposition 1 (iii) we get

φ t(aλ ,uλ) ≤ yλ(t).

However, xλ solves (2), so yλ " xλ and therefore

φ t(aλ ,uλ) ≤ yλ(t) = xλ(t) = (1− λ)φ t(a0,u0) + λφ t(a1,u1).

This completes the proof. ✷

The observation in Theorem 2 is believed to be new.
Using Theorem 2 convex-monotone dynamical systems
can be combined with convex constraints and convex
objective functions into convex optimization problems,
which can be solved efficiently, even if the dynamics
are nonlinear. We will illustrate this with two applica-
tions. Even though we only describe small examples in
this paper, the methods are well suited for large-scale
systems.



III. EVOLUTIONARY DYNAMICS OF DISEASES

Design of combination therapies for diseases such
as HIV and cancer has recently been studied using
control theory [7], [8], [9], [10], [14]. The basis is a
model of the form

ẋ(t) =

(
A+

∑

i

uiD
i

)
x(t)

where each state xk is the concentration of a mutant
and each input ui is a drug doses. Here A is a
Metzler matrix1 that describes the mutation dynamics
without drugs, while D1, . . . ,Dm are diagonal matrices
modelling the effects of drugs. A basic problem is to
determine u1, . . . ,um ≥ 0, possibly subject to additional
constraints, such that the state vector x decays as fast
as possible.
We will now show that the system is actually convex-

monotone after a transformation to logarithmic vari-
ables. This means that the choice of optimal time-
varying drug doses u1(t), . . . ,um(t) can be done by
convex optimization using an application of Theorem 2:
Corollary 3: Given a Metzler matrix A, let x(t) be

the solution of

ẋ(t) =

(
A+

m∑

i=1

ui(t)D
i

)
x(t) x(0) = a > 0

where D1, . . . ,Dm are diagonal matrices. Then
log xk(t) is a convex function of (a,u).

Proof. Let akj be the entries of A and let Dik be the
kth diagonal element of Di. Define zk = log xk. Then

żk(t) =
ẋk(t)

xk(t)
=
∑

kj

akj
x j(t)

xk(t)
+
∑

i

ui(t)D
i
k

żk(t) =
∑

kj

akj exp(zj − zk) +
∑

i

ui(t)D
i
k

which is a convex monotone system since akj ≥ 0 when
k ,= j and A is Metzler. Hence the claim follows from
Theorem 2. ✷

Remark 1. Restrictions enforcing a piecewise constant
control signal can be added without destroying convex-
ity.

With constant uk and if the initial state is not
taken into account, an alternative problem focusing on
asymptotic growth rate, can be formulated as selection
of ui that minimize the Perron-Frobenius eigenvalue
λPF of the matrix A +

∑
i uiD

i. This can be done by
convex optimization in the following way:
Proposition 4: Consider a Metzler matrix A and di-

agonal matrices Di = diag{Di1, . . . ,D
i
n}, i = 1, . . . ,m.

1A matrix is Metzler iff it has nonnegative elements outside its
main diagonal

Given u ∈ R
m, let λPF(A +

∑
i uiD

i) be the Perron-
Frobenius eigenvalue of A+

∑
i uiD

i . Then

min
u∈U

λPF(A+
∑

i

uiD
i)

= min
u∈U ,z1,...,zn

max
k




n∑

j=1

akj exp(zj − zk) +
m∑

i=1

uiD
i
k




Remark 2. The expression on the right hand side is
a convex function of u1, . . . ,um, z1, . . . , zn and hence
describes a convex optimization problem if U is convex.
There is no sign-restriction on the elements of D.

Remark 3. The fact in Proposition 4 that the spectral
radius of a non-negative matrix depends convexly on
the diagonal elements has been known since [4]. Even
closer to our result is [5]. Minimization of the Perron-
Frobenius eigenvalue was treated for slightly different
parameter dependence in [3, pp. 165-167].

Proof. A Metzler matrix M has all eigenvalues in the
left half plane if and only if there exists a vector x > 0
with Mx < 0. Hence λPF(A+

∑
i uiD

i) < γ if and only
if there exists x > 0 with

(A+
∑

i

uiD
i − γ I)x < 0

With zk = log xk for k = 1, . . . ,n this can be written
n∑

j=1

akjx j +
∑

i

uiD
i
kxk − γ xk < 0

n∑

j=1

akj
x j

xk
+
∑

i

uiD
i
k − γ < 0

n∑

j=1

akj exp(zj − zk) +
∑

i

uiD
i
k − γ < 0

Minimization of γ gives the desired result. ✷

For a numeric example, we study a small toy model
inspired by [7], [8], with n = 4 viral genotypes with
viral populations xi, i = 1 . . .n, and m = 3 different
possible drug therapies that can be combined with the
weight ui, i = 1, . . .m.
The behaviour is given by

ẋ =

(
A+

m∑

i=1

uiD
i

)
x, with A = δ I + µM (3)

with the clearance rate δ = −0.24, viral mutation rate
µ = 10−4, and mutation matrix

M =




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 .

Replication rates for viral variants and therapies used
in the analysis are described by Table 1. These rates do
not correspond to efficiency of existing treatments but



Virus variant Therapy 1 Therapy 2 Therapy 3
Type 1 (x1) D11 = 0.05 D21 = 0.10 D31 = 0.30
Type 2 (x2) D12 = 0.25 D22 = 0.05 D32 = 0.30
Type 3 (x3) D13 = 0.10 D23 = 0.30 D33 = 0.30
Type 4 (x4) D14 = 0.30 D24 = 0.30 D34 = 0.15

Fig. 1. Replication rates for viral variants and therapies.

were chosen to present an illustrative small version of
a therapy scheduling problem. To describe a treatment
scenario the weights must lie in the unit simplex

ui(t) ≥ 0 with
∑

i

ui(t) = 1. (4)

Remark 4. The use of a treatment u(t) which is not
a vertex of the simplex corresponds to fast switching
between existing therapies. One should also note that
u = 0 does in these parameters not correspond to the
dynamics without virus treatment and is not a viable
alternative.

We solve the two different optimization problems
and start by finding the treatment combination (con-
stant ui) that minimizes the Perron-Frobenius eigen-
value of A+

∑
i uiD

i. In CVX, a package for specifying
and solving convex optimization problems [6], this can
be formulated as

variables z(n,1) u(nrd,1) lambda

minimize lambda

subject to

u >= 0

sum(u) == 1

for k=1:n

A(k,:)*exp(z-z(k)) + D(k,:)*u <= lambda

end

where D ∈ R
n$m contains the elements of Di in its ith

column. The result for the parameters in Table 1 is

λPF = −0.008,

which means that all virus variants are decaying.
Without having treatment 3 available, u3 = 0, the
result is

λPF = 0.06

i.e. positive growth rate.
We now study the benefit of allowing time varying

functions ui(t) satisfying (4). Assuming the initial
value x(0) = [1000, 0.1, 0.1, 0.001] known we solve the
convex optimization problem of minimizing total virus
population at time T = 200 days, i.e.

min
u

∑

k

xk(T)

subject to (3) and (4). The result is given in fig-
ures 2-4. The final value on total virus population is
improved from 0.08 to 0.03 compared to solving the
same optimization problem with constant ui. The final
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Fig. 2. Optimal time varying virus treatment u1,u2,u3 (solid) vs
optimal constant virus treatment (dashed).
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Fig. 3. Virus population x1, x2, x3, x4 for time varying treatment
(solid) vs constant treatment (dashed). The final value on total virus
population is improved from 0.08 to 0.03.

value on total virus population achieved with constant
treatment for 200 days, is obtained already after 100
days with time-varying treatment.

IV. VOLTAGE STABILITY IN A DC NETWORK

Our next example is from the study of power sys-
tems. The fundamental role of nonnegative matrices
in this context has recently been exploited in the
stationary context of power flow optimization [11], [12].
Equipped with the results of section II, we are now also
ready to treat voltage stability and power flow under
non-stationary conditions.
Let us first explain the issue of voltage stability in

the simplest possible case; a single resistive transmis-
sion line from generator to load, see Figure 5. Given
generator voltage u1 and line current i the load voltage
u2 can be computed by Ohm’s law u2 = u1−Ri where R
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Fig. 4. Total virus population
∑
xk(t) for time varying treatment

(solid) vs constant treatment (dashed). Note that the final value
on total virus population (0.08) achieved with constant treatment
for 200 days, is obtained already after 100 days with time-varying
treatment.

u2u1

i

Fig. 5. A single transmission line from generator to load

is the line resistance. In particular, the power p = iu2
delivered to the load is upper bounded by

p = i(u1 − Ri) ≤
u21
4R
.

When the voltage drops in a power network, an active
load could try to counteract the power loss by extract-
ing more current. Such a behaviour is described by the
following load model:

di

dt
=

p̂

u1 − Ri
− i.

where p̂ is the power needed by the load. Notice that
if u1 is constant and the initial current is bigger than
u1/(2R), then current will increase further and the
load voltage u1 − Ri will eventually go down to zero.
This is called a voltage collapse.
Now consider an arbitrary network of generators

and loads connected by transmission lines. The volt-
ages at the generators and loads are given by vectors
uG ∈ R

m and uL ∈ R
n respectively. The voltages are

mapped into vectors of external currents iG ∈ R
m and

iL ∈ R
n according to the equation

[
−iG(t)
iL(t)

]
=

[
YGG YGL

YLG YLL

]

︸ ︷︷ ︸
Y

[
uG(t)
uL(t)

]
(5)

Voltages are always assumed to be positive. The sign
convention for currents is that when power is produced
by a generator, the corresponding entry of iG(t) is

positive and when power is extracted by a load, the
corresponding entry of iL(t) is positive. The matrix
Y is a symmetric Metzler matrix. Each off-diagonal
element is given by the admittance (inverse of re-
sistance) of the corresponding transmission line. The
diagonal elements are negative and such that the all
row sums of Y are equal to zero. The vanishing row
sums of Y correspond to the fact that no currents
will flow through the network when all voltages are
equal, regardless of their value. In particular, Y is
not invertible and the voltages cannot be uniquely
determined from the currents.
To study voltage stability, we need a model for the

load dynamics. Resistive loads are modelled by the
equation

uLk = Rki
L
k

Such “feedback loops” can be closed without changing
the structure of Y, so resistive loads can be ignored
without loss of generality. Instead, we will focus on
loads that adjust their current to compensate for volt-
age deviations:

diLk
dt
(t) =

p̂k

uLk (t)
− iLk (t)

In particular, the load current iLk increases if the
delivered power uLk i

L
k is too small and decreases if it is

too large. Writing this load model on vector form with
the expression for load voltage from (5) gives

diL

dt
(t) = p̂./[(YLL)−1(iL − YLGuG)] − iL(t)

where the notation “./” denotes entry-wise division.
The fact that YLL is Metzler and Hurwitz implies that
(YLL)−1 ≤ 0 [2, page 137]. Hence, the system is convex-
monotone with state iL and input −uG .
From (5) we get that the generator currents can be

expressed in terms of the inputs and states states

iG =
[
YGL(YLL)−1YLG − YGG

]
uG − YGL(YLL)−1iL

The first term on the right hand side depends linearly
on uG and the second is a convex function multiplied
by a non-negative matrix, so iG is a convex function
of uG , just like −uL, iL and diL/dt. Similarly, the
differentiated relationship

diG

dt
=

[

YGL(YLL)−1YLG − YGG
] duG

dt
− YGL(YLL)−1

diL

dt

shows that the same is true for diG/dt. In particular,
it is possible to use convex optimization to stabilize
the system dynamics in spite of bounds on voltages,
currents and their derivatives. It follows that the set of
initial states that can be saved from a voltage collapse
is convex.
Finally, consider the network in Figure 6. The two

transmission lines have admittances y1, y2 ≥ 0. Writ-
ing Kirchhoff’s current law for the nodes in Figure 6
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Fig. 6. A transmission network with two generators and one load.

gives


−i1
−i2
i3


 =



−y1 0 y1
0 −y2 y2
y1 y2 −y1 − y2





u1
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Node 3 is an active load with

di3

dt
=

p̂(y1 + y2)

y1u1 + y2u2 − i3
− i3

For constant generator voltages u1 and u2, the load
voltage u3 = y1u1 + y2u2 − i3 could shrink to zero
in finite time, which means voltage collapse. To avoid
this, it is clear from monotonicity that the voltages u1
and u2 should be raised as quickly as possible. How-
ever, the rate of increase is limited by the flexibility of
the generators to increase power production. Limited
flexibility in generator 2 can be modelled as a bound
on the rate of change in the generator current

i2 =
y2

y1 + y2
(i3 + y1u2 − y1u1).

Such an upper bound becomes another convex con-
straint on the voltage trajectories u1,u2.
Altogether, our analysis shows that the problem to

bring an electrical network into equilibrium, subject to
active loads and constraints on rates and amplitudes,
can be addressed using trajectory optimization in a
convex monotone system.

V. APPENDIX: PROOF OF PROPOSITION 1

Lemma 5 (Variational Formula): Let x(t,α ) be the
solution to

ẋ = f (x,u(t) +αv(t)), x(0,α ) = x0 +α z0

where f ∈ C1, then ∆α (t) :=
�x(t,α )
�α satisfies

d

dt
∆α (t) = A(t)∆α (t) + B(t)v(t), ∆α (0) = z0,

where A(t) = � f
�x (x

∗,u∗) and B(t) = � f
�u (x

∗,u∗) are
evaluated at x∗ = x(t,α ),u∗ = u(t) + αv(t). The
solution is given by

∆α (t) = ΦA(t, 0)z0 +
∫ t

0
ΦA(t, s)B(s)v(s)ds,

where ΦA(t, s) is the solution to

d

dt
ΦA(t, s) = A(t)ΦA(t, s)

ΦA(s, s) = I.

Proof. Classical. ✷

Lemma 6 (Positivity of Fundamental Matrix): Let
ΦA(t, s) be the fundamental matrix to the system

ẋ(t) = A(t)x(t),

where A(t) is locally bounded and Metzler, i.e. Ai j ≥ 0
for i ,= j, then

ΦA(t, s) ≥ 0, t ≥ s.

Proof. For any compact interval I one can find a
constant c such that B(t) := A(t) + cI ≥ 0 for t ∈ I.
We have ΦA(t, s) = e−c(t−s)ΦB(t, s) where

d

dt
ΦB(t, s) = B(t)ΦB(t, s)

ΦB(s, s) = I

from which follows that ΦB(t, s) ≥ 0 if t ≥ s and t and
s belong to I. This proves the result. ✷

Proof of Proposition 1.

(i) [(ii) : Let x(t, ε ) denote the solution to (1) with
x(0) = a + ε ej where ej denotes the j:th unit vector.
For the ith component we have xi(0) = xi(0, ε ) if i ,= j
and

ẋi(0, ε ) − ẋi(0) = fi(x(0) + ε ej ,u(0)) − fi(x(0),u(0))

= ε
� fi
�x j

+ o(ε )

so by monotonicity � fi
�x j
≥ 0. Similarly, using perturba-

tions of the form u(t, ε ) = u(t)+εwj(t) with wj(t) being
a step function in coordinate j, we get � fi�u j

≥ 0,∀i, j.
(ii) [(i) : For α ∈ [0, 1] let x(t,α ) be the solution

to

ẋ(t,α ) = f (x(t,α ),u(t) +α ∆u(t)), x(0,α ) = a+α ∆a.

We need to prove that

∆u(t) ≥ 0,∆a ≥ 0 [ x(t, 1) ≥ x(t, 0).

From the fundamental theorem of calculus and the
variational formula

x(t, 1) − x(t, 0) =
∫ 1

0

�x(t,α )
�α

dα

=

∫ 1

0

(
ΦA(t, 0)∆a +

∫ t

s=0
ΦA(t, s)B(s,α )∆u(s) ds

)
dα

where ΦA(t, s) is the fundamental matrix to ż(t) =
A(t,α )z(t) with A(t,α ) = � f

�x (x(t,α ),u(t,α )), and
where B(t,α ) = � f

�u (x(t,α ),u(t,α )). From Lemma 6
it follows that ΦA(t, s) and B(t,α ) are nonnegative.
Hence the integral is nonnegative and the result fol-
lows.



(ii) [(iii): The Jacobian of the right-hand side with
respect to the pair (u,v) is given by the nonnegative
matrix

[
� f
�u I

]
≥ 0. The result hence follows from

the implication (ii) [(i) , just proved, applied to the
system with extended input u := (u,v)
(iii) [(i) : Trivial. ✷
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