
1

On feasibility, stability and performance in

distributed model predictive control

Pontus Giselsson and Anders Rantzer

Department of Automatic Control

Lund University

Box 118, SE-221 00 Lund, Sweden

{pontusg,rantzer}@control.lth.se

Abstract—In distributed model predictive control (DMPC),
where a centralized optimization problem is solved in distributed
fashion using dual decomposition, it is important to keep the
number of iterations in the solution algorithm, i.e. the amount
of communication between subsystems, as small as possible.
At the same time, the number of iterations must be enough
to give a feasible solution to the optimization problem and to
guarantee stability of the closed loop system. In this paper,
a stopping condition to the distributed optimization algorithm
that guarantees these properties, is presented. The stopping
condition is based on two theoretical contributions. First, since
the optimization problem is solved using dual decomposition,
standard techniques to prove stability in model predictive control
(MPC), i.e. with a terminal cost and a terminal constraint set
that involve all state variables, do not apply. For the case without
a terminal cost or a terminal constraint set, we present a new
method to quantify the control horizon needed to ensure stability
and a prespecified performance. Second, the stopping condition
is based on a novel adaptive constraint tightening approach.
Using this adaptive constraint tightening approach, we guarantee
that a primal feasible solution to the optimization problem is
found and that closed loop stability and performance is obtained.
Numerical examples show that the number of iterations needed
to guarantee feasibility of the optimization problem, stability
and a prespecified performance of the closed-loop system can
be reduced significantly using the proposed stopping condition.

Index Terms—Distributed model predictive control, perfor-
mance guarantee, stability, feasibility

I. INTRODUCTION

Distributed model predictive control (DMPC) can be divided

into two main categories. In the first category, local opti-

mization problems that are solved sequentially and that take

neighboring interaction and solutions into account, are solved

in each subsystem. This is done in [1] for linear systems and in

[2] for nonlinear systems. In [3] a DMPC scheme is presented

in which stability is proven by adding a constraint to the

optimization problem that requires a reduction of an explicit

control Lyapunov function. In [4], [5] stability is guaranteed

for systems satisfying a certain matching condition and if the

coupling interaction is small enough. In the second category,

to which the current paper belong, a centralized optimization

problem with a sparse structure is solved using a distributed

optimization algorithm. This approach is taken in [6] where

stability is guaranteed in every algorithm iteration. A drawback

to this method is that full model knowledge is assumed in

each node. Other approaches in the DMPC literature rely on

dual decomposition to solve the centralized MPC problem in

distributed fashion. This approach is taken in, e.g. [7], [8],

[9], where a (sub)gradient algorithm is used to solve the dual

problem and in [10] where the algorithm is based on the

smoothing technique presented in [11]. Among these, the only

stability proof is given in [12], [9], where a terminal point

constraint is set to the origin, which is very restrictive.

One reason for the lack of stability results in DMPC based

on dual decomposition, is that the standard techniques to prove

stability in MPC do not apply. In MPC, terminal costs and

terminal constraint sets that involve all state variables are used

to show stability of the closed loop system, see [13], [14].

This is not compatible with dual decomposition. However,

results for stability in MPC without a terminal constraint

set or a terminal set, which fits also the DMPC framework

used here, are available [15], [16]. In [16], a method to

quantify the minimal control horizon that guarantees stability

and a prespecified performance is presented. This is based on

relaxed dynamic programming [17], [18] and a controllability

assumption on the stage costs. In the current paper, we take

a similar approach to quantify the control horizon needed

to guarantee stability and a prespecified performance. The

advantages of our approach over the one in [16] are twofold;

we can, by solving a mixed integer linear program (MILP),

verify our controllability assumption, further we get an explicit

expression that relates the parameter in the controllability

assumption with the obtained closed loop performance.

Besides the stability result, the main contribution of this

paper is a stopping condition for DMPC controllers that use

a distributed optimization algorithm based on dual decompo-

sition. We use the distributed algorithm presented in [19], but

any duality-based distributed algorithm, such as the standard

dual ascent or ADMM [20], can be used. These duality

based algorithms suffer from that primal feasibility is only

guaranteed in the limit of iterations. Constraint tightening,

which was originally proposed for robust MPC in [21], can

also be used to generate feasible solutions within finite number

of iterations, see [22]. However, the introduction of constraint

tightening complicates stability analysis since the optimal

value function without constraint tightening is used to show

stability, while the optimization is performed with tightened

constraints. This problem is addressed in [22] by assuming

that the difference between the optimal value functions with

and without constraint tightening is bounded by a constant.

However, to actually compute such a constant is very difficult.

The stopping condition in this paper is based on a novel adap-

2

tive constraint tightening approach that ensures feasibility w.r.t.

the original constraint set with a finite number of algorithm

iterations. In addition, the amount of constraint tightening

is adapted until the difference between the optimal value

functions with and without constraint tightening is bounded

by a certain amount. This adaptation makes it possible to

guarantee, besides feasibility of the optimization problem, also

stability of the closed-loop system, without stating additional,

unquantifiable assumptions.

The paper is organized as follows. In Section II we introduce

the problem and present the distributed optimization algorithm

in [19]. In Section III the stopping condition is presented and

feasibility, stability, and performance is analyzed. Section IV

is devoted to computation of a controllability parameter in the

controllability assumption. A numerical example that shows

the efficiency of the proposed stopping condition, is presented

in Section V. Finally, in Section VI we conclude the paper.

II. PROBLEM SETUP AND PRELIMINARIES

We consider linear dynamical systems of the form

xt+1 = Axt +But, x0 = x̄ (1)

where xt ∈ R
n and ut ∈ R

m denote the state and control

vectors at time t and the pair (A,B) is assumed controllable.

We introduce the following state and control variable partitions

xt = [(x1
t)

T , (x2
t)

T , . . . , (xM
t)T]T , (2)

ut = [(u1
t)

T , (u2
t)

T , . . . , (uM
t)T]T (3)

where the local variables xi
t ∈ Rni and ui

t ∈ Rmi . The A and

B matrices are partitioned accordingly

A =







A11 · · · A1M

...
. . .

...

AM1 · · · AMM






, B =







B11 · · · B1M

...
. . .

...

BM1 · · · BMM






.

These matrices are assumed to have a sparse structure, i.e.,

some Aij = 0 and Bij = 0 and the neighboring interaction is

defined by the following sets

Ni = {j ∈ {1, . . . ,M} | if Aij 6= 0 or Bij 6= 0}
for i = 1, . . . ,M . This gives the following local dynamics

xi
t+1 =

∑

j∈Ni

(

Aijx
j
t +Biju

j
t

)

, xi
0 = x̄i

for i = 1, . . . ,M . The local control and state variables are

constrained, i.e., ui ∈ Ui and xi ∈ Xi. The constraint sets, Xi,

Ui are assumed to be bounded polytopes containing zero in

their respective interiors and can hence be represented as

Xi = {xi ∈ R
ni | Ci

xx
i ≤ dix},

Ui = {ui ∈ R
mi | Ci

uu
i ≤ diu}

where Ci
x ∈ R

nc
xi

×ni , Ci
u ∈ R

nc
ui

×mi , dix ∈ R
nc

xi

>0 and diu ∈
R

nc
ui

>0 . We also denote the total number of linear inequalities

describing all constraint sets by nc :=
∑M

i=1

(

nc
xi

+ nc
ui

)

.

The global constraint sets are defined from the local ones

through

X = X1 × . . .×XM , U = U1 × . . .× UM .

We use a separable quadratic stage cost

ℓ(x, u) =
M
∑

i=1

ℓi(x
i, ui) =

1

2

(

M
∑

i=1

(xi)TQix
i + (ui)TRiu

i

)

where Qi ∈ S
ni

++ and Ri ∈ S
mi

++ for i = 1, . . . ,M and

Sn++ denotes the set of symmetric positive definite matrices

in Rn×n. The optimal infinite horizon cost from initial state

x̄ ∈ X is defined by

V∞(x̄) := min
x,u

∞
∑

t=0

ℓ(xt, ut)

s.t. xt ∈ X , ut ∈ U
xt+1 = Axt +But

x0 = x̄.

(4)

Such infinite horizon optimization problems are in general

intractable to solve exactly. A common approach is to solve

the problem approximately in receding horizon fashion. To this

end, we introduce the predicted state and control sequences

{zτ}N−1
τ=0 and {vτ}N−1

τ=0 and the corresponding stacked vectors

z = [zT0 , . . . , z
T
N−1]

T , v = [vT0 , . . . , v
T
N−1]

T

where zτ and vτ are predicted states and controls τ time steps

ahead. The predicted state and control variables zτ , vτ are

partitioned into local variables as in (2) and (3) respectively.

We also introduce the following stacked local vectors

zi = [(zi0)
T , . . . , (ziN−1)

T]T , vi = [(vi0)
T , . . . , (viN−1)

T]T .

Further, we introduce the tightened state and control constraint

sets

(1 − δ)Xi = {xi ∈ R
ni | Ci

xx
i ≤ (1− δ)dix},

(1− δ)Ui = {ui ∈ R
mi | Ci

uu
i ≤ (1− δ)diu}

where δ ∈ (0, 1) decides the amount of relative constraint

tightening. The following optimization problem, which has

neither a terminal cost nor a terminal constraint set, is solved

in the DMPC controller for the current state x̄ ∈ Rn

V δ
N (x̄) := min

zt,vt

N−1
∑

τ=0

ℓ(zτ , vτ)

s.t. zτ ∈ (1− δ)X , τ = 0, . . . , N − 1
vτ ∈ (1− δ)U , τ = 0, . . . , N − 1
zτ+1 = Azτ +Bvτ , τ = 0, . . . , N − 2
z0 = x̄.

(5)

By stacking all decision variables into one vector

y = [zT0 , . . . , z
T
N−1, v

T
0 , . . . , v

T
N−1]

T ∈ R
(n+m)N (6)

the optimization problem (5) can more compactly be written

as

V δ
N (x̄) := min

y

1
2y

THy

s.t. Ay = bx̄
Cy ≤ (1− δ)d

(7)

where H ∈ S
(n+m)N
++ ,A ∈ Rn(N−1)×(n+m)N ,b ∈

R
n(N−1)×n,C ∈ R

ncN×(n+m)N and d ∈ R
Nnc

>0 are built

accordingly. Such sparse optimization problems can be solved

3

in distributed fashion using, e.g., the classical dual ascent, the

alternating direction of multipliers method (ADMM) [20], or

the recently developed algorithm in [19]. The algorithm in

[19] is a dual accelerated gradient algorithm and is used in

the current paper for simplicity. Distribution of these methods

are enabled by solving the dual problem to (5).

The dual problem to (7) is created by introducing dual

variables λ ∈ Rn(N−1) for the equality constraints and dual

variables µ ∈ R
Nnc

≥0 for the inequality constraints. As shown

in [19], the dual problem can explicitly be written as

max
λ,µ≥0

−1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd(1− δ) (8)

and we define the minimand in (8) as the dual function for

initial condition x̄ ∈ Rn, i.e.,

Dδ
N (x̄,λ,µ) := −1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd(1− δ). (9)

The distributed algorithm presented in [19] that solves (7), is

a dual accelerated gradient method described by the following

global iterations

yk = −H−1(ATλk +CTµk) (10)

ȳk = yk +
k − 1

k + 2
(yk − yk−1) (11)

λk+1 = λk +
k − 1

k + 2
(λk − λk−1) +

1

L
(Aȳk − bx̄) (12)

µk+1 = max

(

0,µk +
k − 1

k + 2
(µk − µk−1)+

+
1

L
(Cȳk − d (1− δ))

)

(13)

where k is the iteration number and L =
‖[AT ,CT]TH−1[AT ,CT]‖, which is the Lipschitz constant

to the gradient of the dual function (9). The reader is referred

to [19] for details on how to distribute the algorithm (10)-(13).

A. Notation

We define N≥T the set of natural numbers t ≥ T . The norm

‖ · ‖ refers to the Euclidean norm or the induced Euclidean

norm unless otherwise is specified and 〈·, ·〉 refers to the inner

product in Euclidean space. The norm ‖x‖M =
√
xTMx.

The optimal state and control sequences to (5) for initial

value x and constraint tightening δ are denoted {z∗τ (x, δ)}N−1
τ=0

and {v∗τ (x, δ)}N−1
τ=0 respectively and the optimal solution

to the equivalent problem (7) by y∗(x, δ). The state and

control sequences for iteration k in (10)-(13) are denoted

{zkτ (x, δ)}N−1
τ=0 and {vkτ (x, δ)}N−1

τ=0 respectively. The initial

state and constraint tightening arguments (x, δ) are dropped

when no ambiguities can arise.

B. Definitions and assumptions

We adopt the convention that V δ
N (x̄) =∞ for states x̄ ∈ R

n

that result in (7) being infeasible. We define by X∞ the set

for which (4) is feasible and we define the minimum of the

stage-cost ℓ for fixed x as

ℓ∗(x) := min
u∈U

ℓ(x, u) =
1

2
xTQx.

Further, κ is the smallest scalar such that κQ − ATQA � 0.

The state sequence resulting from applying {vτ}N−1
τ=0 to (1) is

denoted by {ξτ}N−1
τ=0 , i.e.,

ξτ+1 = Aξτ +Bvτ , ξ0 = x̄. (14)

We introduce ξ = [(ξ0)
T , . . . , (ξN−1)

T]T and define the

primal cost

PN (x̄,v) :=



















N−1
∑

τ=0

ℓ(ξτ , vτ) if ξ ∈ XN and v ∈ UN

and (14) holds

∞ else

(15)

where XN and UN are the state and control constraints for the

full horizon. We also introduce the shifted control sequence

vs = [(v1)
T , . . . , (vN−1)

T , 0T]T . We have PN (x̄,vk) ≥
VN (x̄) and PN (Ax̄+Bvk0 ,v

k
s) ≥ VN (Ax̄+Bvk0) for every al-

gorithm iteration k. We denote by {ξkτ }N−1
τ=0 the state sequence

that satisfies (14) using controls {vkτ}N−1
τ=0 . The definition of

the cost (15) implies

PN (x̄,vk) = PN (Ax̄+Bvk0 ,v
k
s) + ℓ(x̄, vk0)− ℓ∗(AξkN−1)

(16)

if vk0 ∈ U , x̄ ∈ X and AξkN−1 ∈ X .

III. STOPPING CONDITION

Rather than finding the optimal solution in each time step

in the MPC controller, the most important task is to find

a control action that gives desirable closed loop properties

such as stability, feasibility, and a desired performance. Such

properties can sometimes be ensured well before convergence

to the optimal solution. To benefit from this observation, a

stopping condition is developed that allows the iterations to

stop when the desired performance, stability, and feasibility

can be guaranteed. Before the stopping condition is introduced,

we briefly go through the main ideas below.

A. Main ideas

The distributed nature of the optimization algorithm makes

it unsuitable for centralized terminal costs and terminal con-

straints. Thus, stability and performance need to be ensured

without these constructions. We define the following infinite

horizon performance for feedback control law ν

V∞,ν(x̄) =

∞
∑

t=0

ℓ(xt, ν(xt)) (17)

where xt+1 = Axt + Bν(xt) and x0 = x̄. For a given

performance parameter α ∈ (0, 1] and control law ν, it is

known (cf. [17], [18], [16]) that the following decrease in the

optimal value function

V 0
N (xt) ≥ V 0

N (Axt +Bν(xt)) + αℓ(xt, ν(xt)) (18)

4

for every t ∈ N≥0 gives stability and closed loop performance

according to

αV∞,ν(x̄) ≤ V∞(x̄). (19)

Analysis of the control horizon N needed for an MPC con-

trol law without terminal cost and terminal constraints such

that (18) holds, is performed in [18], [16] and also in this

paper. Once a control horizon N is known such that (18) is

guaranteed, the performance result (19) relies on computation

of the optimal solution to the MPC optimization problem

in every time step. An exact optimal solution cannot be

computed and the idea behind this paper is to develop stopping

conditions that enable early termination of the optimization

algorithm with maintained feasibility, stability, and perfor-

mance guarantees. The idea behind our stopping condition

is to compute a lower bound to V 0
N (x) through the dual

function D0
N (x,λk,µk) and an upper bound to the next step

value function V 0
N (Ax + Bvk0) through a feasible solution

PN (Ax + Bvk0 ,v
k
s). If at iteration k the following test is

satisfied

D0
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s) + αℓ(x̄, vk0) (20)

the performance condition (18) holds since

V 0
N (x̄) ≥ D0

N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v
k
s) + αℓ(x̄, vk0)

≥ V 0
N (Ax̄+Bvk0) + αℓ(x̄, vk0).

This implies that stability and the performance result (19)

can be guaranteed with finite algorithm iterations k by using

control action vk0 .

The test (20) includes computation of PN (Ax̄ + Bvk0 ,v
k
s)

which is a feasible solution to the optimization problem in the

following step. A feasible solution cannot be expected with

finite number of iterations k for duality-based methods since

primal feasibility is only guaranteed in the limit of iterations.

Therefore we introduce tightened state and control constraint

sets (1 − δ)X , (1 − δ)U with δ ∈ (0, 1) and use these in

the optimization problem. By generating a state trajectory

{ξkτ }N−1
τ=0 from the control trajectory {vkτ }N−1

τ=0 that satisfies the

equality constraints (14), we will see that {ξkτ }N−1
τ=0 satisfies the

original inequality constraints with finite number of iterations.

Thus, a primal feasible solution PN (Ax̄ + Bvk0 ,v
k
s) can be

generated after a finite number of algorithm iterations k.

However, since the optimization now is performed over a

tightened constraint set, the dual function value Dδ
N (x̄,λ,µ)

is not a lower bound to V 0
N (x̄) and cannot be used directly in

the test (20) to ensure stability and the performance specified

by (19). In the following lemma we show a relation between

the dual function value when using the tightened constraint

sets and the optimal value function when using the original

constraint sets.

Lemma 1: For every x̄ ∈ R
n, λ ∈ R

n(N−1) and µ ∈ R
Nnc

≥0

we have that

V 0
N (x̄) ≥ Dδ

N (x̄,λ,µ)− δµTd.

Proof. From the definition of the dual function (9) we get that

Dδ
N (x̄,λ,µ) = D0

N (x̄,λ,µ) + δdTµ.

By weak duality we get

V 0
N (x̄) ≥ D0

N (x̄,λ,µ) = Dδ
N (x̄,λ,µ)− δdTµ.

This completes the proof. �

The presented lemma enables computation of a lower bound

to V 0
N (x̄) at algorithm iteration k that depends on δµTd. By

adapting the amount of constraint tightening δ to satisfy

δ(µk)Td ≤ ǫℓ∗(x̄) (21)

for some ǫ > 0 and use this together with the following test

Dδ
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s) + αℓ(x̄, vk0) (22)

we get from Lemma 1 and if (21) and (22) holds that

V 0
N (x̄) ≥ Dδ

N (x̄,λk,µk)− δ(µk)Td

≥ PN (Ax̄+Bvk0 ,v
k
s) + αℓ(x̄, vk0)− ǫℓ∗(x̄)

≥ V 0
N (Ax̄+Bvk0) + (α− ǫ)ℓ(x̄, vk0).

This is condition (18), which guarantees stability and perfor-

mance specified by (19) if α > ǫ.

B. The stopping condition

Below we state the stopping condition, whereafter parameter

settings are discussed.

Algorithm 1: Stopping condition

Input: x̄
Set: k = 0, l = 0, δ = δinit
Initialize algorithm (10)-(13) with:

λ0 = λ−1 = 0,µ0 = µ−1 = 0 and y0 = y−1 = 0.

Do

If Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫ

l+1 ℓ
∗(x̄)

or δdTµk > ǫℓ∗(x̄)
Set δ ← δ/2 // reduce constraint tightening

Set l← l+ 1
Set k = 0 // reset step size and iteration counter

End

Run ∆k iterations of (10)-(13)

Set k ← k +∆k
Until Dδ

N(x̄,λk,µk) ≥ PN (Ax̄ +Bvk0 ,v
k
s) + αℓ(x̄, vk0) and

δdTµk ≤ ǫℓ∗(x̄)
Output: vk0

In Algorithm 1, four parameters need to be set. The first is

the performance parameter α ∈ (0, 1] which guarantees closed

loop performance as specified by (19). The larger α, the better

performance is guaranteed but a longer control horizon N
will be needed to guarantee the specified performance. The

second parameter is an initial constraint tightening parameter,

which we denote by δinit ∈ (0, 1], from which the constraint

tightening parameter δ will be adapted (reduced), to satisfy

(21). A generic value that always works is δinit = 0.2, i.e.,

20% initial constraint tightening. The third parameter is the

relative optimality tolerance ǫ > 0 where ǫ < α. The ǫ must

be chosen to satisfy (25). Finally, ∆k, which is the number

of algorithm iterations between every stopping condition test,

5

should be set to a positive integer, typically in the range 5 to

20.

Except for the initial condition x̄, Algorithm 1 is always

identically initialized and follows a deterministic scheme.

Thus, for fixed initial condition the same control action is

always computed. This implies that Algorithm 1 defines a

static feedback control law, which we denote by νN . We get

the following closed loop dynamics

xt+1 = Axt +BνN (xt), x0 = x̄.

The objective of this section is to present a theorem stating

that the feedback control law function νN satisfies dom(νN) ⊇
int(X0

N), where

X
δ
N := {x̄ ∈ R

n | V δ
N (x̄) <∞ and Az∗N−1(x̄, 0) ∈ int(X)}

(23)

which satisfies Xδ1
N ⊆ X

δ2
N for δ1 > δ2. First, however we state

the following definition.

Definition 1: The constant ΦN is the smallest constant such

that the optimal solution {z∗τ (x̄, 0)}N−1
τ=0 , {v∗τ (x̄, 0)}N−1

τ=0 to (5)

for every x̄ ∈ X0
N satisfies

ℓ∗(z∗N−1(x̄, 0)) ≤ ΦN ℓ(x̄, v∗0(x̄, 0))

for the chosen control horizon N .

The parameter ΦN is a measure that compares the first and

last stage costs in the horizon. In Section IV a method to

compute ΦN is presented.

Remark 1: In [15], [16] an exponential controllability on

the stage costs is assumed, i.e., that for C ≥ 1 and σ ∈ (0, 1)
the following holds for τ = 0, . . . , N − 1

ℓ∗(z∗τ (x̄, 0), v
∗
τ (x̄, 0)) ≤ Cστ ℓ(x̄, v∗0(x̄, 0)).

This implies ΦN ≤ CσN−1.

We also need the following lemmas, that are proven in

Appendix-A, Appendix-B and Appendix-C respectively, to

prove the upcoming theorem.

Lemma 2: Suppose that ǫ > 0 and δ ∈ (0, 1]. For every

x̄ ∈ Xδ
N we have for some finite k that

Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫℓ∗(x̄). (24)

Lemma 3: Suppose that ǫ > 0 and δ ∈ (0, 1]. For every

x̄ ∈ Xδ
N and algorithm iteration k such that (24) holds we

have for τ = 0, . . . , N − 1 that

1

2

∥

∥

∥

∥

[

ξkτ (x̄, δ)
vkτ (x̄, δ)

]

−
[

z∗τ (x̄, 0)
v∗τ (x̄, 0)

]∥

∥

∥

∥

2

H

≤ ǫℓ∗(x̄) + δ(µk)Td

where H = blkdiag(Q,R).
Lemma 4: Suppose that ǫ > 0 and δ ∈ (0, 1]. For x̄ ∈ X0

N

but x̄ /∈ Xδ
N we have that δ(µk)Td > ǫℓ∗(x̄) with finite k.

We are now ready to state the following theorem, which is

proven in Appendix-D.

Theorem 1: Assume that ǫ > 0, δinit ∈ (0, 1] and

α ≤ 1− ǫ− κ(
√
2ǫ+

√

ΦN)2(
√
2ǫ+ 1)2. (25)

Then the feedback control law νN , defined by Algorithm 1,

satisfies dom(νN) ⊇ int(X0
N). Further

V 0
N (x̄) ≥ V 0

N (Ax̄ +BνN (x̄)) + (α− ǫ)ℓ(x̄, νN (x̄)) (26)

holds for every x̄ ∈ dom(νN).
Corollary 1: Suppose that α ≤ 1−κΦN and that ν∗N (x̄) =

v∗0(x̄, 0). Then

V 0
N (x̄) ≥ V 0

N (Ax̄ +Bν∗N (x̄)) + αℓ(x̄, ν∗N(x̄)).

holds for every x̄ ∈ X0
N .

Proof. For every x̄ ∈ X0
N we have

V 0
N (x̄) =

N−1
∑

τ=0

ℓ(z∗τ , u
∗
τ) + ℓ(Az∗N−1, 0)− ℓ(Az∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + ℓ(x̄, v∗0)− ℓ(Az∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + ℓ(x̄, v∗0)− κℓ(z∗N−1, 0)

≥ V 0
N (Ax̄+ Bν∗N (x̄)) + (1 − κΦN)ℓ(x̄, v∗0)

where the first inequality holds since Az∗N−1 ∈ X by con-

struction of X0
N , the second due to the definition of κ and the

third due to the definition of ΦN . �

Remark 2: By setting ǫ = 0 in Theorem 1 we get α ≤
1− κΦN as in Corollary 1.

C. Feasibility, stability and performance

The following proposition shows one-step feasibility when

using the feedback control law νN .

Proposition 1: Suppose that α satisfies (25). For every xt ∈
int(X0

N) we have that xt+1 = Axt +BνN (xt) ∈ X .

Proof. From Theorem 1 we have that xt ∈ dom(νN) and

from Algorithm 1 we have that PN (xt+1,v
k
s) <∞ which, by

definition, implies that xt+1 ∈ X . �

The proposition shows that xt+1 is feasible if xt ∈ dom(νN).
We define the recursively feasible set as the maximal set such

that

Xrf = {x ∈ X | Ax+BνN (x) ∈ Xrf}
In the following theorem we show that Xrf is the region of

attraction and that the control law νN achieves a prespecified

performance as specified by (17).

Theorem 2: Suppose that α > ǫ satisfies (25). Then for

every initial condition x̄ ∈ Xrf we have that ‖xt‖ → 0 as

t→∞ and that the closed loop performance satisfies

(α − ǫ)V∞,νN (x̄) ≤ V∞(x̄). (27)

Further, Xrf is the region of attraction.

Proof. From the definition of Xrf we know that x̄ = x0 ∈ Xrf

implies xt ∈ Xrf for all t ∈ N≥0. Since, by construction,

Xrf ⊆ int(X0
N) ⊆ dom(νN) we have from Theorem 1 that

(26) holds for all xt, t ∈ N≥0. In [18, Proposition 2.2] it

was shown, using telescope summation, that (26) implies (27).

Further, since the stage cost ℓ satisfies [16, Assumption 5.1]

we get from [16, Theorem 5.2] that ‖xt‖ → 0 as t→∞.

What is left to show is that Xrf is the region of attraction.

Denote by Xroa the region of attraction using νN . We have

above shown that Xrf ⊆ Xroa. We next show that Xroa ⊆ Xrf

by a contradiction argument to conclude that Xrf = Xroa.

Assume that there exist x̄ ∈ Xroa such that x̄ /∈ Xrf . If

x̄ ∈ Xroa the closed loop state sequence {xt}∞t=0 is feasible

in every step (and converges to the origin) and consequently

6

{Axt+BνN (xt)}∞t=0 is feasible in every step. This is exactly

the requirement to have x̄ ∈ Xrf , which is a contradiction.

Thus Xrf ⊆ Xroa ⊆ Xrf which implies that Xrf = Xroa.

This completes the proof. �

To guarantee a priori that the control law νN achieves

the performance (27) specified by α, we need to find a

control horizon N such that the corresponding controllability

parameter ΦN satisfies (25). This requires the computation of

controllability parameter ΦN which is the topic of the next

section.

IV. OFFLINE CONTROLLABILITY VERIFICATION

The stability and performance results in Theorem 2 rely

on Definition 1. For the results to be practically meaningful

it must be possible to compute ΦN in Definition 1. In this

section we will show that this can be done by solving a

mixed integer linear program (MILP). For desired performance

specified by α, we get a requirement on the controllability

parameter through (25) for Theorem 1 and Theorem 2 to hold.

We denote by Φα the largest controllability parameter such

that Theorem 1 and Theorem 2 holds for the specified α. This

parameter is the one that gives equality in (25), i.e., satisfies

α = 1− ǫ− κ(
√
2ǫ+

√

Φα)
2(
√
2ǫ+ 1)2 (28)

for the desired performance α and optimality tolerance ǫ. The

parameters α and ǫ must be chosen such that Φα > 0. The

objective is to find a control horizon N such that the cor-

responding controllability parameter ΦN satisfies ΦN ≤ Φα.

First we show that for long enough control horizon N there

exist a ΦN ≤ Φα.

Lemma 5: Assume that α and ǫ are chosen such that Φα >
0 where Φα is implicitly defined in (28). Then there exists

control horizon N and corresponding controllability parameter

ΦN ≤ Φα.

Proof. Since Xrf is the region of attraction we have Xrf ⊆
X∞. This in turn implies that (7) is feasible for every control

horizon N ∈ N≥1 due to the absence of terminal constraints.

We have

VN (x̄) =

N−2
∑

τ=0

ℓ(z∗τ , v
∗
τ) + ℓ(z∗N−1, v

∗
N−1)

≥ VN−1(x̄) + ℓ(z∗N−1, v
∗
N−1).

Since the pair (A,B) is assumed controllable and since (7)

has neither terminal constraints nor terminal cost we have for

some finite M that M ≥ V∞(x̄) ≥ VN (x̄) ≥ VN−1(x̄). Thus

the sequence {VN (x̄)}∞N=0 is a bounded monotonic increasing

sequence which is well known to be convergent. Thus, for

N ≥ N̄ where N̄ is large enough the difference VN (x̄) −
VN−1(x̄) is arbitrarily small. Especially ℓ(z∗N−1, v

∗
N−1) =

ℓ∗(z∗N−1) ≤ VN (x̄) − VN−1(x̄) ≤ Φαℓ(x̄, v
∗
0) since Φα > 0.

That is, for long enough control horizon N ≥ N̄ , ΦN ≤ Φα.

This completes the proof. �

The preceding Lemma shows that there exists a control

horizon N such that ΦN ≤ Φα if Φα > 0 for the chosen

performance α and tolerance ǫ. The choice of performance

parameter α gives requirements on how ǫ can be chosen to

give Φα > 0. Larger ǫ requires smaller Φα to satisfy (28)

which in turn requires longer control horizons N since ΦN

must satisfy ΦN ≤ Φα. In the following section we address

the problem of how to compute the control horizon N and

corresponding ΦN such that the desired performance specified

by α can be guaranteed.

A. Exact verification of controllability parameter

In the following proposition we introduce an optimization

problem that tests if the controllability parameter ΦN cor-

responding to control horizon N satisfies ΦN ≤ Φα for

the desired performance specified by α. Before we state the

proposition, the following matrices are introduced

T = blkdiag(0, . . . , 0,−Q,ΦαR, 0, . . . , 0,−R)

S = blkdiag(0, . . . , 0, I, 0, . . . , 0)

where Q and R are the cost matrices for states and inputs and

Φα is the required controllability parameter for the chosen α.

Recalling the partitioning (6) of y implies that

yTTy = Φαv
T
0 Rv0 − zTN−1QzN−1 − vTN−1RvN−1

Sy = zN−1

Proposition 2: Assume that Φα > 0 satisfies (28) for the

chosen performance parameter α and optimality tolerance ǫ.
Further assume that the control horizon N is such that

0 = min
x̄

1

2

(

Φαx̄
TQx̄+ yTTy

)

(29)

s.t. x̄ ∈ X
0
N

y = argminV 0
N (x̄)

then ΦN ≤ Φα.

Proof. First we note that x̄ = 0 gives y = 0 and Φαx̄
TQx̄+

yTTy = 0, i.e., we have that 0 is always a feasible solution.

Further, (29) implies for every x̄ ∈ X
0
N that

0 ≤ Φαx̄
TQx̄+ yTTy = Φαℓ(x̄, v

∗
0)− ℓ(z∗N−1, v

∗
N−1)

= Φαℓ(x̄, v
∗
0)− ℓ∗(z∗N−1)

since v∗N−1 = 0. This is exactly the condition in Definition 1.

Since ΦN is the smallest such constant, we have ΦN ≤ Φα

for the chosen control horizon N and desired performance α
and optimality tolerance ǫ. �

The optimization problem (29) is a bilevel optimization

problem with indefinite quadratic cost (see [23] for a survey

on bilevel optimization). Such problems are in general NP-

hard to solve. The problem can, however, be rewritten as an

equivalent MILP as shown in the following proposition which

is a straightforward application of [24, Theorem 2].

Proposition 3: Assume that Φα satisfies (28) for the chosen

performance parameter α and optimality tolerance ǫ. If the

7

control horizon N is such that the following holds

0 = min − 1

2

(

dTx µ
U1 + dTxµ

U2 + dTµUL1
)

(30)

s.t. βL
i ∈ {0, 1} , βU1

i ∈ {0, 1} , βU2
i ∈ {0, 1}

Upper level
























































Primal and dual feasibility












Cxx̄− dx − sx = 0
sx ≤ 0 , µU1 ≥ 0
CxASy − dx − sz = 0
sz ≤ 0 , µU2 ≥ 0

Stationarity
















ΦαQx̄+ (Cx)
TµU1 − bTλUL2 = 0

Ty+HTλUL1 +ATλUL2 +CTµUL1

+(CxAS)
TµU2 = 0

AλUL1 = 0
CλUL1 − µUL2 = 0

Complementarity








βL
i = 1⇒ µUL2

i = 0 , βL
i = 0⇒ µUL1

i = 0
βU1
i = 1⇒ sxi = 0 , βU1

i = 0⇒ µU1
i = 0

βU2
i = 1⇒ szi = 0 , βU2

i = 0⇒ µU2
i = 0

Lower level




























Primal and dual feasibility








Ay − bx̄ = 0
Cy − d− s = 0
s ≤ 0 , µL ≥ 0

Stationarity
⌊

Hy +ATλL +CTµL = 0
Complementarity
⌊

βL
i = 1⇒ si = 0 , βL

i = 0⇒ µL
i = 0

where all β, µ, λ, s and x̄,y are decision variables, then Φα ≥
ΦN .

Proof. The set X0
N can equivalently be written as

X
0
N = {x ∈ R

n | Ay∗(x, 0) = bx,Cy∗(x, 0) ≤ d,

CxASy
∗(x, 0) ≤ dx, Cxx ≤ dx}. (31)

We express the set X0
N in (29) using (31). The equivalence

between the optimization problems (30) and (29) is established

in [24, Theorem 2]. The remaining parts of the proposition

follow by applying Proposition 2. �

The transformation from (29) to (30) is done by expressing

the lower level optimization problem in (29) by its sufficient

and necessary KKT conditions to get a single level indefi-

nite quadratic program with complementarity constraints. The

resulting indefinite quadratic program with complementarity

constraints can in turn be cast as a MILP to get (30).

Remark 3: Although MILP problems are NP-hard, there are

efficient solvers available such as CPLEX and GUROBI. There

are also solvers available for solving the bilevel optimiza-

tion problem (29) directly, e.g., the function solvebilevel in

YALMIP, [25].

If the chosen control horizon N is not long enough for

ΦN ≤ Φα, different heuristics can be used to choose a new

longer horizon to be verified. One heuristic is to assume

exponential controllability as in Remark 1, i.e., that there exist

constants C ≥ 1 and σ ∈ (0, 1) such that

Cστ ℓ(x̄, vk0) ≥ ℓ(zkτ , v
k
τ) (32)

for all τ = 0, . . . , N − 1. The C and σ-parameters should be

determined using the optimal solution y to (7) for the x that

minimized (30) in the previous test. Under the assumption

that (32) holds as N increases, a new guess on the control

horizon N can be computed by finding the smallest N such

that CσN−1 ≤ Φα.

B. Controllability parameter estimation

The test in Proposition 3 verifies if the control horizon

N is long enough for the controllability assumption to hold

for the required controllability parameter Φα. Thus, an initial

guess on the control horizon is needed. A guaranteed lower

bound can easily be computed by solving (7) for a variety

of initial conditions x̄ and compute the worst controllability

parameter, denoted by Φ̂N , for these sample points. If the

estimated controllability parameter Φ̂N ≥ Φα, we know that

the control horizon need to be increased for (30) to hold. If

instead Φ̂N ≤ Φα the control horizon N might serve as a

good initial guess to be verified by (30).

Remark 4: For large systems, (30) may be too complex to

verify the desired performance. In such cases, the heuristic

method mentioned above can be used in conjunction with

an adaptive horizon scheme. The adaptive scheme keeps the

horizon fixed for all time-steps until the controllability as-

sumption does not hold. Then, the control horizon is increased

to satisfy the assumption and kept at the new level until the

controllability assumption does not hold again. Eventually the

control horizon will be large enough for ΦN ≤ Φα and the

horizon need not be increased again.

V. NUMERICAL EXAMPLE

We evaluate the efficiency of the proposed distributed feed-

back control law νN by applying it to a randomly generated

dynamical system with sparsity structure that is specified in

[26, Supplement A.1]. The random dynamics matrix is scaled

such that the magnitude of the largest eigenvalue is 1.1. The

system has 3 subsystems with 5 states and 1 input each.

All state variables are upper and lower bounded by random

numbers in the intervals [0.5, 1.5] and [−0.15,−0.05] respec-

tively and all input variables are upper and lower bounded by

random numbers in the intervals [0.5, 1.5] and [−0.5,−1.5]
respectively. The stage cost is chosen to be

ℓi(xi, ui) = xT
i xi + uT

i ui

for i = 1, 2, 3. The suboptimality parameter is chosen

α = 0.01. According to Theorem 1, to quantify the control

horizon N(α), the optimality tolerance ǫ must be chosen

and κ computed, where κ is the smallest constant such that

κQ � ATQA. We get κ = 1.22 and choose ǫ = 0.005. Using

(25), we get ΦN(0.01) ≤ 0.51. Verification by solving the

MILP in (30) gives that the smallest control horizon N(0.01)
that satisfies ΦN(0.01) ≤ 0.51 is N(0.01) = 6.

Table I presents the results. The first column specifies

the stopping condition used, “stop. cond.” for the stopping

8

TABLE I
EXPERIMENTAL RESULTS FOR DIFFERENT PERFORMANCE REQUIREMENTS

α AND DIFFERENT INITIAL CONSTRAINT TIGHTENINGS δinit .

Algorithm comparison, α = 0.01, N = 6

condition ǫ δinit avg. # iters max # iters avg. δ

stop. cond. 0.005 0.001 288.3 506 0.001
stop. cond. 0.005 0.01 151.5 260 0.01
stop. cond. 0.005 0.05 73.7 237 0.049
stop. cond. 0.005 0.1 70.7 236 0.057
stop. cond. 0.005 0.2 72.8 236 0.060
stop. cond. 0.005 0.5 69.2 234 0.076

opt. cond. 0.005 0.001 324.5 506 0.001
opt. cond. 0.005 0.01 171.5 260 0.01

condition presented in Algorithm 1 and “opt. cond.” for a

optimality conditions. The second column specifies the duality

gap tolerance ǫ and the third column specifies the initial

constraint tightening δinit for the stopping condition and the

relative accuracy requirement for the constraints when using

optimality conditions.

Columns four, five and six contain the simulation results.

The results are obtained by simulating the system with 1000

randomly chosen initial conditions that are drawn from a

uniform distribution on X . Column four and five contain the

mean and max numbers of iterations needed and column six

presents the average constraint tightening δ used at termination

of Algorithm 1.

We see that the adaptive constraint tightening approach

gives considerably less iterations for a larger initial tightening.

However, for more than 10% initial constraint tightening

(δinit = 0.1), the number of iterations is not significantly

affected. It is remarkable to note that 50% initial constraint

tightening (δinit = 0.5) is as efficient as, e.g., 5% (δinit =
0.05) considering that more reductions in the constraint tight-

ening need to be performed. This indicates early detection

of infeasibility. We also note that for a suitable choice of

initial constraint tightening, the average number of iterations

is reduced significantly.

VI. CONCLUSIONS

We have equipped the duality-based distributed optimization

algorithm in [19], when used in a DMPC context, with a

stopping condition that guarantees feasibility of the optimiza-

tion problem and stability and a prespecified performance of

the closed-loop system. A numerical example is provided that

shows that the stopping condition can reduce significantly the

number of iterations needed to achieve these properties.

VII. ACKNOWLEDGMENTS

The authors were supported by the Swedish Research

Council through the Linnaeus center LCCC and the eLLIIT

Excellence Center at Lund University.

REFERENCES

[1] A. Richards and J. How, “Robust distributed model predictive control,”
International Journal of Control, vol. 80, no. 9, pp. 1517–1531, Sep.
2007.

[2] W. Dunbar, “Distributed receding horizon control of dynamically cou-
pled nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 7, pp. 1249–1263, Jul. 2007.

[3] R. Hermans, M. Lazar, and A. Jokic, “Almost decentralized lyapunov-
based nonlinear model predictive control,” in Proceedings of the 2010

American Control Conference, Baltimore, July 2010, pp. 3932 – 3938.

[4] D. Jia and B. Krogh, “Distributed model predictive control,” in Pro-

ceedings of the 2001 American Control Conference, Arlington, VA, Jun.
2001, pp. 2767–2772.

[5] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp.
44–52, Feb. 2002.

[6] A. Venkat, I. Hiskens, J. Rawlings, and S. Wright, “Distributed MPC
strategies with application to power system automatic generation con-
trol,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6,
pp. 1192–1206, Nov. 2008.

[7] R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi-agent model
predictive control for transportation networks: Serial versus parallel
schemes,” Engineering Applications of Artificial Intelligence, vol. 21,
no. 3, pp. 353–366, Apr. 2008.

[8] Y. Wakasa, M. Arakawa, K. Tanaka, and T. Akashi, “Decentralized
model predictive control via dual decomposition,” in Proceedings of

the 47th IEEE Conference on Decision and Control, Cancun, Mexico,
Dec. 2008, pp. 381 – 386.

[9] D. Doan, T. Keviczky, and B. De Schutter, “An improved distributed
version of Han’s method for distributed MPC of canal systems,” in
12th symposium on Large Scale Systems: Theory and Applications,
Villeneuve d’Ascq, France, July 2010.

[10] I. Necoara and J. Suykens, “Application of a smoothing technique to
decomposition in convex optimization,” IEEE Transactions on Automatic

Control, vol. 53, no. 11, pp. 2674 –2679, Dec. 2008.

[11] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.

Program., vol. 103, no. 1, pp. 127–152, May 2005.

[12] D. Doan, T. Keviczky, I. Necoara, M. Diehl, and B. De Schutter, “A
distributed version of Han’s method for DMPC using local communica-
tions only,” Control Engineering and Applied Informatics, vol. 11, no. 3,
pp. 6–15, 2009.

[13] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789 – 814, Jun. 2000.

[14] J. Rawlings and D. Mayne, Model Predictive Control: Theory and

Design. Nob Hill Publishing, 2009.

[15] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel, “Model predictive
control: for want of a local control Lyapunov function, all is not lost,”
IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 546–558,
2005.

[16] L. Grüne, “Analysis and design of unconstrained nonlinear MPC
schemes for finite and infinite dimensional systems,” SIAM Journal on

Control and Optimization, vol. 48, no. 8, pp. 4938–4962, 2009.

[17] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE

Transactions on Automatic Control, vol. 51, no. 8, pp. 1249–1260, Aug.
2006.

[18] L. Grüne and A. Rantzer, “On the infinite horizon performance of
receding horizon controllers,” IEEE Transactions on Automatic Control,
vol. 53, no. 9, pp. 2100–2111, Oct. 2008.

[19] P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer,
“Accelerated gradient methods and dual decomposition in distributed
model predictive control,” Automatica, vol. 49, no. 3, pp. 829–833, 2013.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[21] J. R. Gossner, B. Kouvaritakis, and J. A. Rossiter, “Stable generalized
predictive control with constraints and bounded disturbances,” Automat-

ica, vol. 33, no. 4, pp. 551–568, Apr. 1997.

[22] M. Doan, T. Keviczky, and B. De Schutter, “A dual decomposition-based
optimization method with guaranteed primal feasibility for hierarchical
MPC problems,” in Proceedings of the 18th IFAC World Congress,
Milan, Italy, Aug.–Sep. 2011, pp. 392–397.

[23] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: A survey,”
4OR: A Quarterly Journal of Operations Research, vol. 3, no. 2, pp. 87–
107, 2005.

[24] C. Jones and M. Morari, “Approximate Explicit MPC using Bilevel
Optimization,” in European Control Conference, Budapest, Hungary,
Aug. 2009.

9

[25] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[26] P. Giselsson, “Gradient-based distributed model predictive control,”
Ph.D. dissertation, Department of Automatic Control, Lund University,
Sweden, Nov. 2012.

[27] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course (Applied Optimization), 1st ed. Springer Netherlands, 2003.
[28] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,

USA: Cambridge University Press, 2004.
[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems,” SIAM J. Imaging Sciences, vol. 2,
no. 1, pp. 183–202, Oct 2009.

[30] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM J. on Optimization,
vol. 19, no. 4, pp. 1757–1780, Feb. 2009.

A. Proof for Lemma 2

We divide the proof into two parts, the first for x̄ = 0 and

the second for x̄ 6= 0. For x̄ = 0 we have at iteration k = 0
that y0 = 0 which is the optimal solution. Hence (24) holds

for k = 0 since all terms are 0 and 0 = Aξ0N−1 ∈ X .

Next, we show the result for x̄ 6= 0. Whenever (7) is feasible

we have convergence in primal variables [19, Theorem 1]. This

together with the linear relation through which ξ is defined

(14) gives ξkτ → z∗τ for τ = 0, . . . , N − 1 as k → ∞. We

have z∗τ ∈ (1 − δ)X and since (1 − δ)X ⊂ X for every

δ ∈ (0, 1] this implies that there exists finite kx0 such that

ξkτ ∈ X for all k ≥ kx0 . Equivalent convergence reasoning

holds for vkτ . Together this implies that there exists finite kP0
such that PN (x̄,vk) < ∞ and that PN (x̄,vk) → V δ

N (x̄) for

all k ≥ kP0 . Together with convergence in dual function value

[19, Theorem 1] gives that

Dδ
N (x̄,λk,µk) ≥ PN (x̄,vk)− ǫℓ∗(x̄)

holds with finite k since ℓ∗(x̄) > 0 and ǫ > 0. This concludes

the proof. �

B. Proof for Lemma 3

We introduce yk = [(ξk(x̄, δ))T (vk(x̄, δ))T]T , where

ξk(x̄, δ) and vk(x̄, δ) satisfies the dynamic equations (14).

Whenever (24) holds we have that ξkτ (x̄, δ) ∈ X and

vkτ (x̄, δ) ∈ U for τ = 0, . . . , N − 1. We also introduce

y∗ = [(z∗(x̄, 0))T (v∗(x̄, 0))T]T . This implies

1

2
(yk − y∗)TH(yk − y∗) =

=
1

2
(yk)THyk − 1

2
(y∗)THy∗ − 〈Hy∗,yk − y∗〉

≤ PN (x̄,vk)− V 0
N (x̄) ≤ Dδ

N (x̄,λk,µk) + ǫℓ∗(x̄)− V 0
N (x̄)

≤ δ(µk)Td+ ǫℓ∗(x̄)

where the first inequality comes from the first order opti-

mality condition [27, Theorem 2.2.5] and by definition of

V 0
N and PN . The second inequality is due to (24) and the

last inequality follows from Lemma 1. Further, since H =
blkdiag(Q, . . . , Q,R, . . . , R) we have for τ = 0, . . . , N − 1
that

1

2

∥

∥

∥

∥

[

ξkτ (x̄, δ)
vkτ (x̄, δ)

]

−
[

z∗τ (x̄, 0)
v∗τ (x̄, 0)

]∥

∥

∥

∥

2

H

≤ 1

2
(yk − y∗)TH(yk − y∗)

≤ δ(µk)Td+ ǫℓ∗(x̄)

where H = blkdiag(Q,R), whenever (24) holds. This com-

pletes the proof. �

C. Proof for Lemma 4

Since x ∈ X
0
N but x /∈ X

δ
N we have that V 0

N (x̄) < ∞ and

V δ
N (x̄) =∞. Further, from the strong theorem of alternatives

[28, Section 5.8.2] we know that since V δ
N (x̄) = ∞ for the

current constraint tightening δ the dual problem is unbounded.

Hence there exist λf , µf such that

δµT
f d ≥ Dδ

N (x̄,λf ,µf)− V 0
N (x̄) ≥ 2ǫℓ∗(x̄) (33)

where Lemma 1 is used in the first inequality. Further, the

convergence rate in [29, Theorem 4.4] for algorithm (10)-(13)

is

Dδ
N(x̄,λ∗,µ∗)−Dδ

N(x̄,λk,µk) ≤ 2L

(k + 1)2

∥

∥

∥

∥

[

λ∗

µ∗

]

−
[

λ0

µ0

]∥

∥

∥

∥

2

.

By inspecting the proof to [29, Theorem 4.4] (and [29, Lemma

2.3, Lemma 4.1]) it is concluded that the optimal point

λ∗,µ∗ can be changed to any feasible point λf ,µf and the

convergence result still holds, i.e.,

Dδ
N(x̄,λf ,µf)−Dδ

N(x̄,λk,µk) ≤ 2L

(k + 1)2

∥

∥

∥

∥

[

λf

µf

]

−
[

λ0

µ0

]∥

∥

∥

∥

2

.

That is, there exists a feasible pair (λf ,µf) such that with

finite k we have

Dδ
N (x̄,λk,µk) > Dδ

N(x̄,λf ,µf)− ǫℓ∗(x̄). (34)

This implies

δdTµk ≥ Dδ
N(x̄,λk,µk)− V 0

N (x̄)

> Dδ
N(x̄,λf ,µf)− V 0

N (x̄)− ǫℓ∗(x̄) ≥ ǫℓ∗(x̄)

where Lemma 1 is used in the first inequality, (34) in the sec-

ond inequality and (33) in the final inequality. This completes

the proof. �

D. Proof for Theorem 1

To prove the assertion we need to show that the do loop will

exit for every x̄ ∈ int(X0
N). For every point x̄ ∈ int(X0

N) there

exists δ̄ ∈ (0, 1) such that x̄
1−δ̄
∈ int(X0

N). Since int(X0
N) ⊆

X0
N , we have that V 0

N (x̄
1−δ̄

) < ∞ and the optimal solution

y(x̄
1−δ̄

, 0) satisfies Ay∗(x̄
1−δ̄

, 0) = b x̄
1−δ̄

and Cy∗(x̄
1−δ̄

, 0) ≤
d. We create the following vector

ȳ(x̄) := (1− δ̄)y∗(
x̄

1 − δ̄
, 0) (35)

which satisfies

Aȳ(x̄) = Ay∗(
x̄

1− δ̄
, 0)(1− δ̄) = bx̄

1− δ̄

1− δ̄
= bx̄ (36)

Cȳ(x̄) = Cy∗(
x̄

1 − δ̄
, 0)(1− δ̄) ≤ d(1− δ̄). (37)

Hence, by definition (23) of X
δ
N we conclude that for every

x̄ ∈ int(X0
N) there exist δ̄ ∈ (0, 1) such that x̄ ∈ Xδ̄

N . This

implies that for every x̄ ∈ int(X0
N) we have that either x̄ ∈ Xδ

N

for the current constraint tightening δ ∈ (0, 1) or x̄ /∈ X
δ
N but

x̄ ∈ X0
N . Thus, from Lemma 2 and Lemma 4 we conclude

10

that either the do loop is terminated or δ is reduced and l
is increased for every x̄ ∈ int(X0

N) with finite number of

algorithm iterations k.

To guarantee that the do loop will terminate for every x̄ ∈
int(X0

N), we need to show that the conditions in the do loop

will hold for small enough δ and with finite k. That is, we

need to show that the following two conditions will hold.

1) For small enough δ, i.e., large enough l, we have that

δ(µk)Td ≤ ǫℓ∗(x̄) (38)

where δ = 2−lδinit holds for every algorithm iteration

k.

2) For small enough δ, i.e., large enough l, the condition

Dδ
N (x̄,λk,µk) ≥ PN (Ax̄+Bvk0 ,v

k
s)+αℓ(x̄, vk0) (39)

with α satisfying (25) holds with finite k whenever

Dδ
N(x̄,λk,µk) ≥ PN (x̄,vk) +

ǫ

l + 1
ℓ(x̄, vk0) (40)

holds.

We start by showing argument 1. From the convergence rate

of the algorithm [19] it follows that there exists D > −∞
such that Dδ

N (x̄,λk,µk) ≥ D for every algorithm iteration

k ≥ 0. This is used below where we extend the result from

[30, Lemma 1] to handle the presence of equality constraints.

For algorithm iteration k ≥ 0, x̄ ∈ int(X0
N) and δ ≤ δ̄/2 we

have

D ≤ Dδ
N (x̄,λk,µk)

= inf
y

1

2
yTHy + (λk)T (Ay − bx̄)+

+ (µk)T (Cy − (1 − δ)d)

≤ 1

2
(ȳ(x̄))THȳ(x̄) + (λk)T (Aȳ(x̄)− bx̄)+

+ (µk)T (Cȳ(x̄)− (1 − δ)d)

≤ (1 − δ̄)2V 0
N (

x̄

1− δ̄
) + (µk)T (Cȳ(x̄)− (1− δ̄)d)+

+ (µk)Td(δ − δ̄)

≤ V 0
N (

x̄

1− δ̄
) + (µk)Td(δ − δ̄)

≤ V 0
N (

x̄

1− δ̄
)− 1

2
(µk)Tdδ̄

where the equality is by definition, the second inequality holds

since any vector ȳ(x̄) is gives larger value than the infimum,

the third and fourth inequalities are due to (35), (36) and (37)

and since (1− δ̄) ∈ (0, 1) and the final inequality holds since

δ ≤ δ̄/2. This implies that

(µk)Td ≤
2(V 0

N (x̄
1−δ̄

)−D)

δ̄

which is finite. We denote by ld the smallest l such that δ̄ ≥
2−ldδinit. Since δ = 2−lδinit this implies that

δ(µk)Td ≤ δ
2(V 0

N (x̄
1−δ̄

)−D)

δ̄
≤ 2−lδinit

2(V 0
N (x̄

1−δ̄
)−D)

2−ldδinit

≤ 2−l+ld+1(V 0
N (

x̄

1− δ̄
)−D)→ 0 (41)

as l → ∞. Especially, with finite l we have that (38) holds

for every algorithm iteration k. This proves argument 1.

Next we prove argument 2. We start by showing for large

enough but finite l that PN (Ax̄ + BνN (x̄),vk
s) is finite

whenever (40) holds. From the definition of PN and vk
s we

have that PN (Ax̄+BνN (x̄),vk
s) is finite whenever PN (x̄,vk

s)
is finite and if AξkN−1(x̄, δ) ∈ X . For algorithm iteration k
such that (40) holds we have

‖A(ξkN−1(x̄, δ)− z∗N−1(x̄, 0))‖2 ≤

≤ ‖A‖2
λmin(H)

‖ξkN−1(x̄, δ)− z∗N−1(x̄, 0)‖2H

≤ 2‖A‖2
λmin(H)

(δ(µk)Td+
ǫ

l+ 1
ℓ∗(x̄))

≤ 2‖A‖2
λmin(H)

(

2−l+ld+1(V 0
N (

x̄

1− δ̄
)−D) +

ǫ

l+ 1
ℓ∗(x̄)

)

→ 0

(42)

as l → ∞ where H = blkdiag(Q,R) and the smallest

eigenvalue λmin(H) > 0 since H is positive definite. The

first inequality follows from Cauchy-Schwarz inequality and

Courant-Fischer-Weyl min-max principle, the second inequal-

ity comes from Lemma 3 and the third comes from (41).

By definition of Xδ
N we have Az∗N−1(x̄, 0) ∈ int(X) which

through (42) implies that AξkN−1(x̄, δ) ∈ X for some large

enough by finite l, i.e., small enough δ, and for algorithm

iteration k such that (40) holds.

What is left to show is that (39) holds for every α ≤ 1 −
2ǫ− κ(

√
2ǫ+

√
ΦN)2(

√
2ǫ + 1)2 for large enough but finite

l whenever (40) holds. From Lemma 3 and (41) we know for

large enough l and any algorithm iteration k such that (40)

holds that

1

2

∥

∥

∥

∥

[

ξkτ
vkτ

]

−
[

z∗τ
v∗τ

]∥

∥

∥

∥

2

H

≤ δ(µk)Td+
ǫ

l+ 1
ℓ∗(x̄)

= 2−lδinit(µ
k)Td+

ǫ

l+ 1
ℓ∗(x̄) ≤ 2ǫℓ∗(x̄)

for any τ = 0, . . . , N − 1, where H = blkdiag(Q,R). Taking

the square-root and applying the reversed triangle inequality

gives

∣

∣

∣

∣

∥

∥

∥

∥

[

ξkτ
vkτ

]∥

∥

∥

∥

H

−
∥

∥

∥

∥

[

z∗τ
v∗τ

]∥

∥

∥

∥

H

∣

∣

∣

∣

≤
∥

∥

∥

∥

[

ξkτ
vkτ

]

−
[

z∗τ
v∗τ

]∥

∥

∥

∥

H

≤ 2
√

ǫℓ∗(x̄).

(43)

11

This implies that
∥

∥

∥

∥

[

ξkN−1

vkN−1

]∥

∥

∥

∥

H

≤
∥

∥

∥

∥

[

z∗N−1

v∗N−1

]∥

∥

∥

∥

H

+ 2
√

ǫℓ∗(x̄)

=
√
2
√

ℓ(z∗N−1, v
∗
N−1) + 2

√

ǫℓ∗(x̄)

≤
√

2ΦN

√

ℓ(z∗0 , v
∗
0) + 2

√

ǫℓ∗(x̄)

≤ (
√

2ΦN + 2
√
ǫ)
√

ℓ(z∗0 , v
∗
0)

= (
√

ΦN +
√
2ǫ)

∥

∥

∥

∥

[

z∗0
v∗0

]∥

∥

∥

∥

H

≤ (
√

ΦN +
√
2ǫ)

(∥

∥

∥

∥

[

ξk0
vk0

]∥

∥

∥

∥

H

+ 2
√

ǫℓ∗(x̄)

)

≤ (
√

ΦN +
√
2ǫ)(1 +

√
2ǫ)

∥

∥

∥

∥

[

ξk0
vk0

]∥

∥

∥

∥

H

where we have used (43), z∗0 = ξk0 = x̄, ‖[zTvT]T ‖H =
√

zTQz + vTRv =
√

2ℓ(z, v) and Definition 1. Squaring

both sides gives through the definition of κ that

1

κ
ℓ∗(AξkN−1) ≤ ℓ∗(ξkN−1) = ℓ(ξkN−1, v

k
N−1)

≤ (
√

ΦN +
√
2ǫ)2(1 +

√
2ǫ)2ℓ(ξk0 , v

k
0). (44)

We get for large enough l and for k such that (40) holds that

Dδ
N(x̄,λk,µk) ≥
≥ PN (x̄,vk)− ǫ

l + 1
ℓ∗(x̄)

≥ PN (x̄,vk)− ǫℓ∗(x̄)

= PN (Ax̄ +Bvk0 ,v
k
s) + (1 − ǫ)ℓ(ξk0 , v

k
0)− ℓ∗(AξkN−1)

≥ PN (Ax̄ +Bvk0 ,v
k
s)+

+
(

1− ǫ− κ(
√

ΦN +
√
2ǫ)2(1 +

√
2ǫ)2

)

ℓ(x̄, vk0)

≥ PN (Ax̄ +Bvk0 ,v
k
s) + αℓ(x̄, vk0)

where the first inequality comes from (40), the second since

l ≥ 0, the equality is due to (16), the third inequality comes

from (44), and the final inequality comes from (25). This

concludes the proof for argument 2. Thus, the do loop will

terminate with finite l and k. This implies that νN is defined

for every x̄ ∈ int(X0
N), i.e. that dom(νN) ⊇ int(X0

N).
Finally, to show (26) we have that

V 0
N (x̄) ≥ Dδ

N(x̄,λk,µk)− δdTµk

≥ PN (Ax̄+Bvk0 ,v
k
s)− ǫℓ∗(x̄) + αℓ(x̄, vk0)

≥ V 0
N (Ax̄+Bvk0) + (α − ǫ)ℓ(x̄, vk0)

where the first inequality comes from Lemma 1, the second

from (38) and (39) which obviously hold also for any x̄ ∈
dom(νN), and the third holds since PN (Ax̄ + Bvk0 ,v

k
s) ≥

VN (Ax̄ + Bvk0) and by definition of ℓ∗. This concludes the

proof. �

