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Abstract We consider distributed model predictive control (DMPC) where a sparse

centralized optimization problem without a terminal cost or a terminal constraint set

is solved in distributed fashion. Distribution of the optimization algorithm is enabled

by dual decomposition. Gradient methods are usually used to solve the dual problem

resulting from dual decomposition. However, gradient methods are known for their

slow convergence rate, especially for ill-conditioned problems. This is not desirable

in DMPC where the amount of communication should be kept as low as possible.

In this chapter, we present a distributed optimization algorithm applied to solve op-

timization problems arising in DMPC that has significantly better convergence rate

than the classical gradient method. This improved convergence rate is achieved by

using accelerated gradient methods instead of standard gradient methods and by in a

well-defined manner, incorporating Hessian information into the gradient-iterations.

We also present a stopping condition to the distributed optimization algorithm that

ensures feasibility, stability and closed loop performance of the DMPC-scheme,

without using a stabilizing terminal cost or terminal constraint set.
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1 Introduction

Dual decomposition techniques have often been applied to solve distributed opti-

mization problems with a strongly convex objective arising in distributed model

predictive control. Traditionally, the dual problem resulting from dual decomposi-

tion is solved using gradient methods. These methods are known to have bad con-

vergence rate properties O(1/p) with p the iteration number [12], especially for

ill-conditioned problems. Thus, to implement a DMPC controller based on dual

decomposition and a gradient method would require extensive communication. In

this chapter we propose a method that reduces the communication requirement sig-

nificantly when solving the dual problem obtained from dual decomposition. The

communication reduction is made possible by two main improvements compared

to the classical gradient method. The first improvement is to use accelerated gradi-

ent methods, which converges as O(1/p2), instead of gradient methods to solve the

dual problem. For more on accelerated gradient methods, the reader is referred to

[12, 1, 14, 15]. Also, the optimal step size for the algorithm is provided which is im-

portant for performance reasons. The other improvement is on the gradient step. In

every iteration in gradient or accelerated gradient methods, a quadratic upper bound

with the same curvature in every direction is minimized to compute the new iterate.

If this quadratic upper bound does not well approximate the cost function, the num-

ber of iterations can be significant. By allowing for different curvature in different

directions of the quadratic upper bound, a much closer fit between the cost func-

tion and the upper bound can be obtained, especially for ill-conditioned problems.

This can reduce significantly the number of iterations, hence the amount of com-

munication, needed to achieve the desired accuracy of the solution. The distributed

optimization algorithm with improved convergence rate was published in [3].

We also present a stopping condition for the presented distributed optimization

algorithm. The stopping condition is developed to guarantee feasibility, stability,

and a prespecified performance of the closed loop system. Traditionally, a terminal

cost and a terminal constraint set is used to prove stability in MPC. These are usu-

ally dense, i.e., involve all state variables. In dual decomposition, the cost function

should be separable and the constraints should be sparse. Hence, we cannot rely on

a terminal cost or a terminal constraint set prove stability in DMPC based on dual

decomposition. However, stability and performance of the closed loop system can

be established by choosing the control horizon such that the optimal value func-

tion is decreasing with a certain amount in each time step. Further, feasibility in

duality-based optimization can only be guaranteed in the limit. To guarantee feasi-

bility with a finite number of iterations, an adaptive constraint tightening approach is

presented. The constraint tightening enables a feasible solution within finite number

of iterations and the adaptation adapts the amount of constraint tightening to guar-

antee that the optimal value function is decreasing in each time step. This implies

that feasibility, stability, and a prespecified performance of the closed loop system

are guaranteed using the presented stopping condition. The stopping condition was

published in [8].
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2 Problem Formulation

We consider control of linear dynamical systems of the form

x(k + 1) = Ax(k) +Bu(k), x(0) = x̄

where x ∈ R
nx , u ∈ R

nu , A ∈ R
nx×nx , and B ∈ R

nx×nu . We assume that the

pair (A,B) is controllable. The state and control vectors are partitioned according

to

x = [xT
1 , . . . ,x

T
|N |]

T , u = [uT
1 , . . . ,u

T
|N |]

T

where xi ∈ R
nxi , ui ∈ R

nui , for all i ∈ N are referred to as local variables,

N = {1, . . . , |N |} is the set of subsystems, and |N | is the number of subsystems.

The dynamics matrices are partitioned according to the state and control variable

partitions

A =







A11 · · · A1|N |
...

. . .
...

A|N |1 · · · A|N ||N|






, B =







B11 · · · B1|N |
...

. . .
...

B|N |1 · · · B|N ||N|







where Aij = R
nxi

×nxj and Bij = R
nxi

×nuj . We assume that the matrices have a

sparse structure, i.e., that some Aij = 0 and Bij = 0. The neighboring interaction

is defined by the following sets

Ni =
{

j ∈ N |Aij 6= 0 or Bij 6= 0},

Mi =
{

j ∈ N |Aji 6= 0 or Bji 6= 0}.

Using the introduced local variables and the neighborhood sets, the local dynamics

is described by

xi(k + 1) =
∑

j∈Ni

(Aijxj(k) +Bijuj(k)) , xi(0) = x̄i.

There are constraints on the local state and control variables, they should satisfy

xi ∈ Xi, and ui ∈ Ui where

Xi = {xi ∈ R
nxi |Cx,ixi ≤ dx,i}, Ui = {ui ∈ R

nui | Cu,iui ≤ du,i}

and Cx,i, Cu,i, dx,i > 0, and du,i > 0 are real matrices/vectors with appropriate

dimensions. The assumption that dx,i > 0 and du,i > 0 implies that 0 ∈ int(Xi)
and 0 ∈ int(Ui). The global constraint sets, X and U , are products of local sets, i.e.,

X = X1 × . . .×X|N |, U = U1 × . . .× U|N |.
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The total number of inequalities describing the sets X and U is denoted by nc. We

assume quadratic local stage-cost functions, i.e., local stage-cost functions of the

form

ℓi(xi,ui) =
1

2

(

xT
i Qixi + uT

i Riui

)

where cost matrices Qi ∈ R
nxi

×nxi and Ri ∈ R
nui

×nui for all i ∈ N are as-

sumed symmetric and positive definite. This gives the following stage-cost for the

full system

ℓ(x,u) =

|N |
∑

i=1

ℓi(xi,ui) =
1

2

|N |
∑

i=1

(

xT
i Qixi + uT

i Riui

)

=
1

2

(

xTQx+ uTRu
)

where Q = blkdiag(Q1, . . . ,Q|N |) and R = blkdiag(R1, . . . ,R|N |). For future

reference we also introduce

ℓ∗(x) := min
u∈U

ℓ(x,u) = ℓ(x,0) =
1

2
xTQx.

We use prediction horizon Np = N and control horizon Nc = N . Also, neither a

terminal cost nor a terminal constraint set is used in the DMPC optimization prob-

lem formulation. Hence, the optimization problem to be solved for initial condition

x̄ in the DMPC scheme is:

VN (x̄) := min
x̂,û

N−1
∑

l=0

1

2
(x̂T (l)Qx̂(l) + ûT (l)Rû(l))

s.t. (x̂(l), û(l)) ∈ X × U , l = 0, . . . , N − 1
x̂(l + 1) = Ax̂(l) +Bû(l), l = 0, . . . , N − 2
x̂(0) = x̄

(1)

where x̂(l) and û(l) denote the predicted state and control variables l steps ahead.

To describe the optimization problem in a more compact form, the following stacked

vectors are introduced

zi = [x̂T
i (0), . . . , x̂

T
i (N − 1), ûT

i (0), . . . , û
T
i (N − 1)]T

for all i ∈ N and z = [zT1 , . . . , z
T
|N |]

T . This implies that the optimization problem

(1) more compactly can be written as

VN (x̄) := min
z

1
2z

THz

s.t. Fz = gx̄

Cz ≤ d

(2)

where
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H = blkdiag(H1, . . . ,H|N |), x̄ = [x̄T
1 , . . . , x̄

T
|N |]

T ,

F = [FT
1 , . . . ,F

T
|N |]

T , g = [gT
1 , . . . ,g

T
|N |]

T ,

C = blkdiag(C1, . . . ,C|N |), d = [dT
1 , . . . ,d

T
|N |]

T

and

Hi = blkdiag(Qi, . . . ,Qi,Ri, . . . ,Ri),

Fi = [Fi1, . . . ,Fi|N |],

Fij =



















































































0 Bij

Aij

. . .
. . .

. . .
. . .

. . .

Aij 0 Bij













, j ∈ Ni\{i}













−I Bii

Aii

. . .
. . .

. . .
. . .

. . .

Aii −I Bii













, j = i

0, j /∈ Ni

gi = [gi1, . . . ,gi|N |],

gij =

{

[−AT
ij ,0

T , . . . ,0T ]T , j ∈ Ni

0, j /∈ Ni

Ci = blkdiag(Cx,i, . . . ,Cx,i,Cu,i, . . . ,Cu,i),

di = [dT
x,i, . . . ,d

T
x,i,d

T
u,i, . . . ,d

T
u,i]

T .

The optimization problem (2) is solved in every time instant in the DMPC controller

with the latest measurement as initial condition to the state predictions. Communi-

cation between subsystems i and j is allowed if j ∈ Ni ∪Mi.

3 Description of the DMPC Method

In this section the proposed DMPC methodology is presented. We present a dis-

tributed algorithm based dual decomposition and a generalized accelerated gradient

method. We also present a stopping condition that can be used to guarantee feasibil-

ity, stability, and a prespecified performance of the closed loop system.
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3.1 Dual Problem Formulation

We introduce dual variables λ ∈ R
nλ for the equality constraints and dual variables

µ ∈ R
nµ

≥0 for the inequality constraints in (2), where nλ = (N − 1)(nx + nu) and

nµ = Nnc. This gives the following dual problem

max
µ≥0,λ

min
z

1

2
zTHz+ λT (Fz− gx̄) + µT (Cz− d).

By solving the inner minimization problem explicitly, the dual problem becomes

max
µ≥0,λ

−
1

2
(FTλ+CTµ)TH−1(FTλ +CTµ)− λTgx̄− µTd. (3)

The dual function for initial condition x̄ is defined as

DN(x̄,λ,µ) := −
1

2
(FTλ+CTµ)TH−1(FTλ +CTµ)− λTgx̄− µTd (4)

which is quadratic, concave, and differentiable with gradient

∇DN (x̄,λ,µ) = −

[

F

C

]

H−1(FTλ+CTµ)−

[

gx̄

d

]

. (5)

We partition the dual variables into local dual variables λi ∈ R
nλi and µi ∈ R

nµi

≥0

according to λ = [λT
1 , . . . ,λ

T
|N |]

T and µ = [µT
1 , . . . ,µ

T
|N |]

T , where the partitions

are introduced according to matrices F and C respectively. This gives that the dual

function gradients w.r.t. to local dual variables are given by

∇λi
DN (x̄,λ,µ) =

∑

j∈Ni

[

− FijH
−1
j

(

∑

l∈Mj

FT
ljλl +CT

j µj

)

− gij x̄j

]

∇µi
DN (x̄,λ,µ) = −CiH

−1
i

(

∑

j∈Mi

FT
jiλj +CT

i µi

)

− di.

By setting the primal variable

zi = −H
−1
i

(

∑

j∈Mi

FT
jiλj +CT

i µi

)

(6)

we get that the local gradients are described by

∇λi
DN (x̄,λ,µ) =

∑

j∈Ni

(Fijzj − gij x̄j) , ∇µi
DN (x̄,λ,µ) = Cizi − di.

(7)
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Further, the gradient of the dual function ∇DN is Lipschitz continuous with con-

stant

L = ‖[FT CT ]TH−1[FT CT ]‖. (8)

3.2 Gradient-Based Methods

Optimization problems with a differentiable and convex cost function f : Rnv → R

and closed and convex constraint set V , can be solved using projected gradient meth-

ods. If the gradient to f is Lipschitz continuous with constant L, then the opti-

mal step size for the gradient-step can be shown to be 1/L. The projected gradient

method is described by the following iteration

vp+1 = argmin
v∈V

(∥

∥

∥

∥

v − vp +
1

L
∇f(vp)

∥

∥

∥

∥

)

where p is the iteration number. The iteration is a step in the gradient direction with

step length 1/L. The resulting point is projected using Euclidean projection onto

the feasible set V . By introducing the notation 〈x, y〉 = xT y, we get the following

equivalent formulation of the projected gradient algorithm

vp+1 = argmin
v∈V

[

f(vp) + 〈∇f(vp),v − vp〉+
L

2
‖v − vp‖2

]

.

Hence, in a gradient method, a quadratic function with the same curvature in every

direction is minimized in every iteration of the algorithm. The quadratic function is

actually an upper bound to f since the Lipschitz continuity assumption implies that

for every v1,v2 ∈ R
nv the following holds

f(v1) ≤ f(v2) + 〈∇f(v2),v1 − v2〉+
L

2
‖v1 − v2‖

2. (9)

The classical gradient method is known to have bad convergence rate properties,

O(1/p). However, this convergence rate can be improved significantly by instead

using accelerated gradient methods that have a convergence rate of O(1/p2). A

simple accelerated projected gradient algorithm is given by the following iterations

v̄p = vp +
p− 1

p+ 2
(vp − vp−1)

vp+1 = argmin
v∈V

[

f(v̄p) + 〈∇f(v̄p),v − v̄p〉+
L

2
‖v − v̄p‖2

]

.

The increase in algorithm complexity compared to the classical gradient method is

minor, but the improvement in convergence rate is vast. However, this improvement

in convergence rate is not always enough to achieve satisfactory accuracy within

a small number of iterations. Another improvement to the convergence rate of the
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algorithm can be obtained by letting the quadratic upper bound that is minimized

in every iteration, have different curvatures in different directions. The resulting

generalized accelerated gradient algorithm is described by the following iterations

v̄p = vp +
p− 1

p+ 2
(vp − vp−1)

vp+1 = argmin
v∈V

[

f(v̄p) + 〈∇f(v̄p),v − v̄p〉+
1

2
‖v − v̄p‖2

L

]

where L ∈ R
nv×nv is a symmetric positive definite matrix that must be chosen such

that for every v1,v2 ∈ R
nv the following holds

f(v1) ≤ f(v2) + 〈∇f(v2),v1 − v2〉+
1

2
‖v1 − v2‖

2
L
. (10)

This requirement is very similar to the requirement for Lipschitz continuity (9).

The only difference is in the quadratic term. The generalized accelerated gradient

method can equivalently be written as

v̄p = vp +
p− 1

p+ 2
(vp − vp−1) (11)

vp+1 = argmin
v∈V

(∥

∥v − v̄p + L−1∇f(v̄p)
∥

∥

L

)

. (12)

where L−1 serves as a step matrix for the gradient-step. By choosing the L-matrix

wisely, Hessian-information can be introduced to the gradient algorithm, which fur-

ther improves the convergence rate. The generalized accelerated gradient method

differs from the accelerated gradient method only in the weight used in the quadratic

penalty. It also shares the same theoretical convergence rate O(1/p2).

3.3 The Distributed Algorithm

By choosing theL-matrix appropriately, the generalized accelerated gradient method

can be applied to solve the dual problem (3). The L-matrix must satisfy

L � [FT CT ]TH−1[FT CT ]

which implies that (10) holds for f = −DN where DN is the dual function defined

in (4). The objective of the algorithm is to enable for a distributed implementation,

hence the L-matrix should be chosen to accompany this requirement. We introduce

a structural constraint on the L-matrix which is described by the following set

L = {L ∈ R
(nλ+nµ)×(nλ+nµ) | L = blkdiag(Lλ1

, . . . ,LλM
,Lµ

1
, . . . ,LµM

)}
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where Lλi
∈ R

nλi
×nλi and Lµi

∈ R
nµi

×nµi for all i ∈ N . We also introduceLλ =
blkdiag(Lλ1

, . . . ,LλM
) and Lµ = blkdiag(Lµ1

, . . . ,LµM
) for future reference.

An L-matrix that satisfies the above mentioned requests can be computed by solving

the following semidefinite program

min
L∈L

trace(L) (13)

s.t. L � [FT CT ]TH−1[FT CT ]

L ≻ 0

The idea behind solving a convex optimization problem to compute the step matrix

is similar to the idea used in explicit MPC; by increasing the amount of offline com-

putational burden, the online execution time or amount of communication can be

reduced significantly. Using the algorithm description in (11)-(12) and the gradient

computations in (5) it is straightforward to verify that the generalized accelerated

gradient algorithm when applied to the dual problem becomes

zp = −H−1(FTλp +CTµp)

z̄p = zp +
p− 1

p+ 2
(zp − zp−1)

λ̄
p
= λp +

p− 1

p+ 2
(λp − λp−1)

λp+1 = λ̄
p
+ L−1

λ (Fz̄p − gx̄)

µ̄p = µp +
p− 1

p+ 2
(µp − µp−1)

µp+1 = argmin
µ≥0

(

∥

∥µ− µ̄p − L−1
µ (Cz̄p + d)

∥

∥

2

Lµ

)

These computations can be distributed by using the local gradients defined in (6)

and (7). The resulting distributed algorithm is presented below.

Algorithm 1 Distributed optimization algorithm

Initialize λ0
i = λ−1

i ,µ0
i = µ−1

i and z0i = z−1
i

In every node, i, the following computations are performed

For p ≥ 0

1. Update primal variables according to:

z
p
i = −H−1

i

((

∑

j∈Mi

FT
jiλ

p
j

)

+CT
i µ

p
i

)

z̄
p
i = z

p
i +

p− 1

p+ 2
(zpi − z

p−1
i )

2. Send z̄
p
i to each j ∈Mi, receive z̄

p
j from each j ∈ Ni
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3. Update dual variables according to:

λ̄
p

i = λ
p
i +

p− 1

p+ 2
(λp

i − λ
p−1
i )

λ
p+1
i = λ̄

p

i + L−1
λi

(

∑

j∈Ni

(Fij z̄
p
j − gij x̄j)

)

µ̄
p
i = µ

p
i +

p− 1

p+ 2
(µp

i − µ
p−1
i )

µ
p+1
i = argmin

µ≥0

(

∥

∥µ− µ̄
p
i − L−1

µi
(Ciz̄

p
i − di)

∥

∥

Li
µ

)

4. Send λ
p+1
i to each j ∈ Ni, receive λ

p+1
j from each j ∈ Mi

If all Lµi
, i ∈ N are chosen diagonal, the minimization to find µ

p+1
i in Al-

gorithm 1 can be replaced by max(0, ·) which is computed uncostly. Using non-

diagonal Lµi
gives more elaborate iterations, but the number of iterations to achieve

satisfactory accuracy of the solution may decrease significantly. This is advanta-

geous in DMPC, where the amount of communication should be kept as small as

possible, without compromising the global closed loop performance.

The algorithm converges in both primal variables z
p
i and dual function value at

the rate O(1/p2). In [3] methods to compute iteration complexity bounds to achieve

a prespecified accuracy of the solution are presented. In [7] similar methods are

presented for the case where L is a multiple of the identity matrix. Also, in [7] it

was shown how to precondition the matrices describing the inequality constraints

and equality constraints optimally. The optimal preconditioning refers to the pre-

conditioning that minimizes the iteration complexity bound that guarantees a dual

function value accuracy.

3.4 Stopping Condition

One drawback of using duality-based optimization in DMPC is that feasibility of

the primal problem can be guaranteed only in the limit of iterations. Also, the op-

timization problem used in Algorithm 1 has neither a terminal cost nor a terminal

constraint set. These are usually required to prove stability in MPC. In this section

we will briefly present a stopping condition for the duality-based optimization al-

gorithm in Algorithm 1. The stopping condition guarantees feasibility, stability and

performance of the closed loop system and it reduces the amount of communica-

tion needed since it enables for early termination of the optimization algorithm. The

stopping condition is based on relaxed dynamic programming for stability and per-

formance, and adaptive constraint tightening for feasibility. We start by describing

relaxed dynamic programming when applied to MPC with optimization problems

without a terminal cost or a terminal constraint set.
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Relaxed dynamic programming applied to MPC states that if the control horizon

N is such that for every x ∈ X the following holds

VN (x) ≥ VN (Ax +BνN (x)) + αℓ(x, νN (x)) (14)

where α ∈ (0, 1), VN is the optimal value function to the optimization problem

(2) without terminal constraint set of terminal cost, and νN is the MPC feedback

control law obtained by solving (2) and applying the first control action in optimal

control trajectory in every sample. Then we get asymptotic stability and closed loop

performance as specified by

α

∞
∑

k=0

ℓ(x(k), νN (x(k))) ≤ V∞(x(0)) (15)

where x(k + 1) = Ax(k) + BνN (x(k)). A method to find control horizon N
such that (14) holds is presented in [10]. This was further extended in [9] where

it was shown how to compute the minimal control horizon for systems that satis-

fies a certain controllability assumption on the stage costs. Another, more explicit,

characterization of the relation between the control horizon N and the performance

parameter α was presented in [8]. Once a control horizon N is known such that

(14) holds for every x ∈ X , performance and stability is guaranteed by computing

the optimal solution to (2). However, stability and performance can be guaranteed

also for suboptimal solutions, which indicates a potential benefit of using a stopping

condition that ensures this.

The issue that feasibility can be guaranteed only in the limit of iterations in

duality-based optimization, is addressed by an adaptive constraint tightening ap-

proach. We use the following optimization problem with tightened constraint sets

V δ
N (x̄) := min

z

1
2z

THz

s.t. Fz = gx̄

Cz ≤ (1 − δ)d

(16)

where δ ∈ (0, 1) specifies the relative constraint tightening used and the matrices

in (16) are specified at the end of Section 2. The objective is to choose constraint

tightening δ such that it can be guaranteed that (14) holds and that feasibility can be

guaranteed with finite number of iterations. The problem (16) is solved through the

dual problem

max
λ,µ≥0

−
1

2
(FTλ+CTµ)TH−1(FTλ+CTµ)− λTgx̄− µTd(1− δ)

using Algorithm 1. The dual function for initial condition x̄ and with constraint

tightening δ is defined as

Dδ
N (x̄,λ,µ) := −

1

2
(FTλ+CTµ)TH−1(FTλ+CTµ)− λTgx̄− µTd(1− δ)
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To online guarantee that the condition (14) holds, a lower bound to the l.h.s. is

needed and an upper bound to the r.h.s. is needed. A lower bound to the l.h.s. of

(14) is obtained by using the following lemma which is proven in [8, Lemma 1].

Lemma 1 For every x̄ ∈ R
nx , λ ∈ R

nλ and µ ∈ R
nµ

≥0 we have that

V 0
N (x̄) ≥ Dδ

N(x̄,λ,µ)− δµTd.

Hence, a lower bound to V 0
N is readily available from the optimization algorithm

data in each iteration p. To compute an upper bound to the r.h.s. of (14) we define

the following primal cost for initial condition x̄ using control trajectoryu(0 : N−1)

PN (x̄,u(0 : N − 1)) =



























N−1
∑

l=0

ℓ(ξ(l),u(l)), if ξ(l + 1) = Aξ(l) +Bu(l),
ξ(0) = x̄,
ξ(l) ∈ X ,u(l) ∈ U ,
l = 0, . . . , N − 1

∞, else.

The cost PN is finite if the state and control trajectories are feasible and∞ if they

are not. Hence

PN (x̄,u(0 : N − 1)) ≥ VN (x̄)

for any control trajectory u(0 : N − 1). The cost at iteration p in the algorithm is

PN (x̄, ûp(0 : N−1)) where ûp is extracted from zp in Algorithm 1. By introducing

the shifted control trajectory

ûp
s(0 : N − 1) = [ûp(1)T , . . . , ûp(N − 1)T 0T ]T

a cost for the next time step at iteration p is

PN (Ax̄ +Bûp(0), ûp
s(0 : N − 1)).

We have that

PN (Ax̄+Bûp(0), ûp
s(0 : N−1))+ℓ(x̄, ûp(0)) ≥ VN (Ax̄+Bûp(0))+ℓ(x̄, ûp(0))

(17)

which implies that an upper bound to the r.h.s. of (14) can readily be computed in

any iteration p. The objective of the stopping condition is to adapt the constraint

tightening δ and stop at iteration p such that

Dδ
N (x̄,λp,µp)− δ(µp)Td ≥ PN (Ax̄+Bûp(0), ûp

s(0 : N − 1)) +αℓ(x̄, ûp(0)).

This implies feasibility of the next step due to the definition of PN and that

V 0
N (x̄) ≥ V 0

N (Ax̄+Bûp(0)) + αℓ(x̄, ûp(0))
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holds due to Lemma 1 and (17). This, in turn, implies asymptotic stability and per-

formance as specified by (15). In the stopping condition, there are three parameters

that need to be set. These are the desired performance α ∈ (0, 1), the initial con-

straint tightening δinit ∈ (0, 1), and an optimality tolerance ǫ ∈ [0.05, 0.001]. The

stopping condition is presented below.

Algorithm 2 Stopping condition

Input: x̄

Set p = 0, l = 0, δ = δinit
Run ∆p iterations of Algorithm 1 based on optimization problem (16)

Do

If Dδ
N (x̄,λp,µp) ≥ PN (x̄, ûp(0 : N − 1))− ǫ

l+1 ℓ
∗(x̄)

or δdTµp > ǫℓ∗(x̄)
Set δ ← δ/2 // reduce constraint tightening

Set l ← l + 1 // reduce optimality tolerance

Set p = 0 // reset step size and iteration counter

End

Run ∆p iterations of Algorithm 1 based on optimization problem (16)

Set p← p+∆p
Until Dδ

N (x̄,λp,µp) ≥ PN (Ax̄+Bûp(0), ûp
s(0 : N − 1)) + αℓ(x̄, ûp

0) and

δdTµp ≤ ǫℓ∗(x̄)
Output: ûp(0)

To guarantee that the stopping condition will terminate with finite number of

iterations and that the feasibility, stability, and performance results hold, there are

restrictions on how the control horizon N must be chosen for a given α ∈ (0, 1).
The reader is referred to [8] for details of this choice.

3.5 Evaluation of Algorithm Efficiency

The efficiency of the algorithms presented in this chapter is evaluated by applying

them to a randomly generated system. The cost function, constraints, and dynamics

of the randomly generated system are specified in [4, Supplement A.1]. The system

consists of three interconnected subsystems with five states and one input each, i.e.,

15 states and 3 inputs in total. The magnitude of the largest eigenvalue is 1.1 and

the upper and lower bounds on the states are chosen randomly from the intervals

[0.5, 1.5] and [−0.15, 0.05] respectively. The upper and lower bounds on the inputs

are chosen randomly from the interval [0.5, 1.5] and [−1.5,−0.5] respectively. The

cost matrices Q and R are diagonal with diagonal elements chosen randomly from

the interval [1, 100]. Using the method in [8] it is shown that using α = 0.01, (14)

is satisfied with control horizon N = 6.

In Table 1 the algorithm evaluation is presented. We compare the iteration com-

plexity when using Algorithm 1 with a block-diagonal L-matrix computed as in
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(13). This distributed generalized accelerated gradient algorithm is referred to as

Alg. 1, GAG. This is compared to when using Algorithm 1 with the optimal step

size, i.e., with L = LI where L is the (smallest) Lipschitz constant to the dual func-

tion (8). This distributed accelerated gradient algorithm is referred to as Alg. 1, AG.

We also compare these algorithms to when using a standard gradient method with

the optimal step size, which is the traditional way of solving the dual problem in dis-

tributed fashion. This gradient method is obtained by setting z̄
p
i = z

p
i , λ̄

p

i = λ
p
i , and

µ̄
p
i = µ

p
i in Algorithm 1. This distributed gradient method is referred to as Alg. 1,

G. The methods are compared with and without the preconditioning presented in

[7] and with and without the stopping condition in Algorithm 2. The comparison

is made on 1000 randomly generated points that are chosen from a uniform distri-

bution over the state constraint set. Also, an estimate of the region of attraction is

presented and compared to the estimated region of attraction in centralized MPC

where the terminal constraint set is chosen as the maximal output admissible set.

The centralized MPC formulation is referred to as CMPC. All data in Table 1 that

comes from Algorithm 1 are obtained by cold-starting the algorithm.

The first column in Table 1 specifies the algorithm used. The second and third

columns specify the optimality tolerance ǫ and the initial constraint tightening δinit
in the stopping condition in Algorithm 2. If Algorithm 2 is not used, the parameters

specify the following optimality condition

Dδ
N (x̄,λp,µp) ≥ PN (x̄, ûp(0 : N − 1))− ǫℓ∗(x̄).

Columns four and five specify if preconditioning and the stopping condition in Al-

gorithm 2 are used respectively. Columns six and seven specify the average and

max number of iterations needed. The seventh column specifies the average final

constraint tightening and the final columns specifies the estimated region of attrac-

tion, i.e., the percentage of initial conditions steered to the origin.

Table 1 reveals that by using accelerated gradient method instead of gradient

methods, the algorithm is improved by a factor 20. Further, by using precondition-

ing an additional improvement by a factor 1-4 is achieved. The stopping condition,

besides guaranteeing stability, improves the convergence by another factor 1-3. By

allowing for L-matrices instead of only scalar step sizes, we get another improve-

ment by a factor around 10. Hence, using the presented methods, the number of iter-

ations is, for this example, decreased by almost three orders of magnitude compared

to the traditional and straightforward application of a gradient method, although the

gradient method here is equipped with the optimal step size. Further, the compar-

ison in estimated region of attraction for the presented method without a terminal

constraint set and CMPC with a terminal constraint set reveals that the region of

attraction can be increased significantly by not using a terminal constraint set.
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Table 1 Algorithm comparison for Algorithm 1 based on the generalized accelerated gradient

method (GAG), the accelerated gradient method (AG), and the gradient method (G). The algo-

rithms are compared with and without preconditioning and the stopping condition in Algorithm 2.

Average and max number of iterations as well as average constraint tightening is presented. Also,

the region of attraction (R.o.A.) is estimated and compared to centralized MPC with a terminal

constraint set.

Alg. ǫ δinit precond stop cond avg. # iters max # iters avg. δ R.o.A.

Alg. 1, GAG 0.005 0.1 y y 8.86 41 0.052 57.6 %
Alg. 1, GAG 0.005 0.01 y n 19.36 47 0.01 57.6 %
Alg. 1, GAG 0.005 0.1 n y 9.65 48 0.053 57.6 %
Alg. 1, GAG 0.005 0.01 n n 25.00 53 0.01 57.6 %

Alg. 1, AG 0.005 0.1 y y 64.92 122 0.054 57.6 %
Alg. 1, AG 0.005 0.01 y n 146.68 400 0.01 57.6 %
Alg. 1, AG 0.005 0.1 n y 126.68 455 0.053 57.6 %
Alg. 1, AG 0.005 0.01 n n 515.30 1161 0.01 57.6 %

Alg. 1, G 0.005 0.1 y y 1185.8 2906 0.055 57.6 %
Alg. 1, G 0.005 0.01 y n 2458.9 10194 0.01 57.6 %
Alg. 1, G 0.005 0.1 n y 3807.7 13991 0.089 57.6 %
Alg. 1, G 0.005 0.01 n n 9954.9 21225 0.01 57.6 %

CMPC - - - - - - - 0.7 %

4 Theoretical results

Application of accelerated gradient methods to DMPC based on dual decomposi-

tion and with an additional 1-norm term in the objective is presented in [6]. Iteration

complexity bounds for the algorithm in [6] is presented in [7]. Based on the iteration

complexity bounds, it is also shown how to precondition the optimization problem

data optimally in [7]. The algorithm in [6] is in [3] extended to allow for step ma-

trices instead of scalar step sizes. The algorithm in [3] is presented in Algorithm 1

in this chapter. Also, iteration complexity bounds to achieve a prespecified accuracy

of the solution for Algorithm 1 are provided in [3]. Compared to existing methods

that use dual decomposition to solve the optimization problem arising in distributed

model predictive control, Algorithm 1 gives considerably lower iteration complex-

ity.

In [8] it is shown for which initial conditions the stopping condition in Algo-

rithm 2 is guaranteed to terminate. Also, a result guaranteeing feasibility, closed

loop stability, and a prespecified performance when using the stopping condition in

Algorithm 2 is presented. The region of attraction using the presented stopping con-

dition compared to using a centralized MPC formulation with a terminal cost and a

terminal constraint set, where the terminal constraint set is chosen as the maximal

output admissible set, is evaluated in [8, 5]. For some systems, the region of attrac-

tion when using the presented stopping condition is significantly larger. Robustness

to bounded errors when using the stopping condition in Algorithm 2 is shown in

[5]. In [5] also an output feedback DMPC scheme based on the stopping condition

in Algorithm 2 is presented.
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5 Applications

The presented methods have been applied in a simulated hydro power valley bench-

mark problem [13]. The hydro power valley benchmark consists of six dams that are

placed along a river and three lakes that are interconnected to the river. The dams

are equipped with turbines to generate power and interconnections between the lakes

and the river are equipped with pumps and turbines such that water can flow in any

direction. The objective of the control problem is to follow a time-varying power

reference with the power production, while keeping flows and water levels within

allowed limits. The model contains nonlinearities and binary constraints that are ad-

dressed to enable for an efficient and well performing implementation of the meth-

ods presented in this chapter. The case study is presented in [2].

Another application where these methods have been used is for disturbance man-

agement in the process industry. Chemicals in the process industry are often man-

ufactured in several production areas within a production site. The production ar-

eas are interconnected by the product flow and each interconnection usually has

a buffer-tank. If problems occur in one of the production areas, the other produc-

tion areas are affected. The objective of the control is to set the production rates

for the individual production areas to maximize the total throughput while avoiding

shut-down of any production area due to lack of product inflow, i.e., to avoid empty

buffer-tanks. This case study is presented in [11].
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