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Abstract— Theory for Distributed Model Predictive Control
(DMPC) is developed based on dual decomposition of the
convex optimization problem that is solved in each time sample.
The process to be controlled is an interconnection of several
subsystems, where each subsystem corresponds to a node in
a graph. We present a stopping criterion for the DMPC
scheme that can be locally verified by each node and that
guarantees closed loop suboptimality above a pre-specified level
and asymptotic stability of the interconnected system.

I. INTRODUCTION

A common approach for control of large-scale networked

systems is to design local controllers that ignore the in-

teraction between subsystems. This might, however, lead

to severely deteriorated global performance. A centralized

optimization-based approach, i.e. Model Predictive Control

(MPC), could be much better, but is often impractical due

to communication constraints and an overwhelming number

of decision variables. Distributed MPC, where the global

optimization problem is decomposed into many smaller opti-

mization problems that can be solved locally for each subsys-

tem, is therefore appealing. In this distributed framework, the

interaction between subsystems is taken into account, while

the flexibility of the decentralized approach is still there.

In the case of centralized MPC many researchers have

presented different methods to ensure stability. Most of the

methods use some terminal constraint or terminal cost to

guarantee stability, see [8] for a survey of such methods.

Recently, stability and suboptimality results have been estab-

lished for centralized MPC schemes without terminal cost

or terminal constraints in [6], [5]. Some distributed MPC

formulations have been presented in the literature.

However, for distributed MPC applied to systems where

subsystems have coupled dynamics, the amount of literature

that concerns stability is rather small. In [1] a distributed

MPC formulation is presented based on an iteration scheme

where all subsystems optimize with neighbouring influence

fixed. Provided the interaction between neighbouring subsys-

tems satisfy a stability constraint, asymptotic stability can be

shown. However, it is shown in [10] that the optimization

might reach a Nash Equilibrium far from the optimal point

which might lead to bad closed loop performance. In [10]

another distributed MPC approach is presented where all

iterations in the scheme are feasible and ensure stability. One

limitation in this work is that knowledge of the global system,

provided all nodes interact, is needed in each node. Further

the computed control trajectory from each node from the

previous iteration is needed. In [3] a distributed dual-mode

MPC-scheme for coupled nonlinear systems is presented.

Stability is proven by bounding the discrepancy between how

much an agent is affected by its neighbours and how much

the agent believes he will be affected in the first mode. In

the second mode, close to the origin, the global system is

assumed to be stabilized by local feedback in each node.

The distributed Model Predictive Controller in this paper

is based on dual decomposition with sub-gradient updates

of the lagrange multipliers. Such algorithms are known to

have fairly slow convergence properties. However, in control,

the performance of the closed loop system is the primary

objective. A stopping criterion, which is based on relaxed

dynamic programming [7], for the distributed Model Pre-

dictive Controller is developed which significantly reduces

the amount of iterations needed in the dual decomposition

algorithm. The stopping criterion is designed such that closed

loop performance above a certain pre-specified degree is

achieved and asymptotic stability of the closed loop system

is guaranteed. This paper has been developed in parallel with

[4] in which similar ideas are used in an adaptive MPC

scheme for the centralized case.

The paper is organized as follows. In Section II we formu-

late the optimization problem that is solved in each sample

of the distributed MPC-controller. In Section III we describe

a dual decomposition algorithm that solves the optimization

problem in a distributed fashion. MPC analysis and design

tools, based on relaxed dynamic programming, are presented

in Section IV. In Section V it is shown how the developed

design tool can be used as a stopping criterion for distributed

MPC. Numerical examples are given in Section VI in which

the performance of the proposed scheme is evaluated. Finally

in Section VII we conclude the paper.

II. PROBLEM SETUP

Consider a dynamical system with the state vector x =
[x1;x2 . . . xJ ] and the dynamics

xi(t + 1) =

J∑

j=1

Aijxj(t) + Biui(t) xi(0) = x̄i (1)



for all i = 1, . . . ,J , where xi ∈ Xi ⊆ R
ni and ui ∈ Ui ⊆

R
mi . The system has an associated graph, with one node for

every i and a directed edge from j to i unless Aij is zero.

The dynamics of the full system can be written as

x(t + 1) = Ax(t) + Bu(t) x(0) = x̄ (2)

where x ∈ X ⊆ R
n, n =

∑

i ni and u ∈ U ⊆ R
m, m =

∑

i mi.

The control objective is to minimize the following infinite

horizon cost:

V ∞(x̄) := min
u

∞∑

t=0

J∑

i=1

ℓi(xi(t), ui(t))

︸ ︷︷ ︸

ℓ(x(t),u(t))

(3)

subject to (2) and convex constraints

xi(t) ∈ Xi and ui(t) ∈ Ui for all i, t. (4)

Under general assumptions (essentially convexity of ℓ), we

will see that the problem can be solved to arbitrary accuracy

with a distributed Model Predictive Control (MPC) scheme,

where the only communication that is allowed is between

neighboring nodes. Hence node i may exchange information

with all nodes j that are connected to i by an edge of the

graph.

For the centralized case, the MPC-controller is based on

iterative solutions of the following finite horizon approxima-

tion of (3):

V N (x(t)) := min
u

N∑

τ=0

ℓ(x(t, τ), u(t, τ)) (5)

subject to

xi(t, τ) ∈ Xi and ui(t, τ) ∈ Ui for all i, τ (6)

and the plant predictions:

x(t, τ + 1) = Ax(t, τ) + Bu(t, τ) x(t, 0) = x(t). (7)

The objective function in the minimization is a straight for-

ward truncation of the infinite horizon objective. This means

that no terminal cost or terminal constraints are present. From

the optimization (5) a control sequence u(t, τ) is obtained.

The first of those control actions, u(t, 0), is applied to the

process giving the following closed loop dynamics

x(t + 1) = Ax(t) + Bu(t, 0) x(0) = x̄ (8)

Note that the predicted plant evolution in the controller at

time t is denoted x(t, τ) where τ is the internal time, while

the actual closed loop state at time t is denoted x(t).
The optimal performance, from initial state to the origin,

is defined in (3), while the actual performance of the MPC

controller is defined as

V ∞
MPC(x̄) :=

∞∑

t=0

ℓ(x(t), u(t, 0)) (9)

where the state evolution is defined by (8). The ultimate

objective of this paper is to create a distributed MPC scheme

such that V ∞
MPC(x̄) is within a certain pre-specified factor

of the optimal performance V ∞(x̄).
Throughout the remainder of this paper we assume that

the optimal infinite horizon cost V ∞(x̄) is finite. Further,

the running cost ℓ : X × U → R
+
0 is assumed convex

with ℓ(0, 0) = 0, which means the system can stay in the

origin at zero cost. Finally, to avoid feasibility problems, X is

assumed to be control invariant, i.e., for all x ∈ X, ∃u ∈ U
s.t. Ax + Bu ∈ X .

III. DUAL DECOMPOSITION

The problem (5) can be decomposed using so called dual

decomposition. For this purpose, we follow the notation of

[2] and introduce the decoupled state equations

xi(τ + 1) = Aiixi(τ) + Biui(τ) + vi(τ) xi(0) = x̄i

(10)

with the additional constraints that

vi(τ) =
∑

j 6=i

Aijxj(τ) for all τ (11)

For notational convenience we have dropped the t-parameter

in x(t, τ) and u(t, τ) in this section. The variable vi can

be interpreted as the expected influence of other agents in

the update of xi. The constraints (11) are then relaxed by

introduction of corresponding Lagrange multipliers in the

cost function. This gives

max
p

min
u,v,x

N
X

τ=0

J
X

i=1

h

ℓi(xi, ui) + p
T
i

“

vi −
P

j 6=i
Aijxj

” i

=

= max
p

X

i

min
ui,xi,vi

N
X

τ=0

h

ℓi(xi, ui) + p
T
i vi − x

T
i

“

P

j 6=i
A

T
jipj

” i

| {z }

ℓ
p

i
(xi,ui,vi)

subject to (6), (10) and the restriction that p(N) = 0, since

we have only N equality constraints.

To summarize, a decomposition of the objective as well as

distributed optimality conditions are given by the following

proposition.

Proposition 1: Suppose that ℓ1, . . . , ℓJ are convex and

that the minimum in (5) is attained. Then

V N (x̄) = max
p

J∑

i=1

min
xi,ui,vi

(
N∑

τ=0

ℓp
i (xi(τ), ui(τ), vi(τ))

)

(12)

where maximization is subject to p(N) = 0, (6) and (10).

Moreover, the maximum in (12) is attained if and only if the

constraints (1) are satisfied.

Proof. The equality (12) is an instance of standard La-

grangian duality. The maximum in (12) is attained if and

only if the gradient with respect to p is zero. The gradient

with respect to pi(τ) is vi(τ) −
∑

j 6=i Aijxj(τ), so all the

constraints (1) must be satisfied at optimum. �

Proposition 1 shows that the computation of xi, ui and

vi for given prices pj is completely decentralized. However,

finding the optimal prices requires coordination. The expres-

sions on the right hand side of (12) are concave functions



of p. Hence optimal prices can be found as the limits of

a gradient iteration: Given some price prediction sequence

{pk
i (τ)}N

τ=0, corresponding state predictions {xk
i (τ)}N

τ=1

and input predictions {uk
i (τ)}N

τ=0 are computed locally by

minimization of
∑N

τ=0 ℓp
i

(
xi(τ), ui(τ), vi(τ)

)
subject to (6)

and (10). Then prices can then be updated distributively by

a gradient step

pk+1
i (τ) = pk

i (τ) + γk
i

[

vk
i (τ) −

∑

j 6=iAijx
k
j (τ)

]

(13)

for τ = 0, . . . , N . Convergence of such gradient algorithms

has been proved under different types of assumptions on the

step size sequence γk
i , see [9]. In the continuation we assume

that the γk
i are such that the dual decomposition iterations

converge towards the optimum. However, the convergence

rate of such algorithm may be fairly slow. This undesirable

property is addressed in the following sections where a

stopping criterion is developed which guarantees certain

closed loop performance and stability. This criterion shows

to significantly decrease the number of iterations needed

compared to if the optimum was to be found.

Before we continue with the development of the stopping

criterions, we need the following definition:

V N,k
i (x̄i) :=

N∑

τ=0

[

ℓi(x
k
i , uk

i ) + (pk
i )T

(

vk
i −

∑

j 6=iAijx
k
j

) ]

where k denotes the iteration number and all variables are

optimized according to (12). Also note that by standard

duality we have that

V N,k(x̄) :=

J∑

i=1

V N,k
i (x̄i) ≤ V N (x̄)

for any k. If the conditions in the stopping criterions are

satisfied for k = K ∈ N1, the control action to be applied

to the process is

u(t, 0) = [uK
1 (0);uK

2 (0) . . . uK
J (0)] (14)

which together with (8) defines the closed loop solution.

IV. MPC TOOLS

In this section two tools for DMPC based on dual de-

composition are developed. The first tool is an analysis tool

based on the relaxed dynamic programming inequality. If

the conditions of this analysis tool are satisfied, asymptotic

stability and closed loop suboptimality to a certain degree

are guaranteed. This analysis tool is then developed to a

design tool that can be used as a stopping criterion for the

number of iterations needed in the DMPC scheme to ensure

asymptotic stability and closed loop suboptimality to a pre-

specified degree. For both tools in this section it is assumed

that data from all nodes are available when checking the

conditions. In the next section, it is shown how the conditions

of the design tool can be verified in a distributed manner

suitable for implementation of the DMPC scheme.

A. MPC Analysis Tool

The analysis tool presented here is based on the work

about relaxed dynamic programming, see [7]. In [6] asymp-

totic stability and a certain degree of suboptimality is proved

if the relaxed dynamic programming inequality

V N (x(t)) ≥ V N (Ax(t)+Bu(t, 0))+αℓ(x(t), u(t, 0)) (15)

holds for some α ∈ (0, 1) and for all time steps in the closed

loop trajectory. Further in [5] it is shown that using some

controllability assumptions on the running cost, ℓ, a minimal

control horizon N such that (15) is satisfied for all x ∈
X can be calculated for the class of systems satisfying the

controllability assumptions. Thus, in the continuation of this

paper we use the following assumption:

Assumption 1: Assume that for a pre-specified value of

α ∈ (0, 1) a control horizon N is known such that

V N (x(t)) ≥ V N (Ax(t) + Bu(t, 0)) + αℓ(x(t), u(t, 0))

holds for all x ∈ X .

In the distributed MPC-scheme the control horizon is chosen

such that Assumption 1 holds.

The work in [5] considers MPC in which the optimum of

each optimization problem is attained. Next we will state two

theorems for unfinished optimizations based on the relaxed

dynamic programming inequality (15) that ensure a certain

degree of suboptimality and asymptotic stability respectively.

The first theorem is about suboptimality and is an variation

of [4, Theorem 1] to include unfinished optimizations.

Theorem 1: Consider the closed loop solution x(·) ac-

cording to (8) with control signal (14) applied after K(t)
iterations. Assume that there is an α ∈ (0, 1) such that

V
N,K(t)(x(t)) ≥ V

N,K(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)
(16)

where

V N,K(t)(x(t)) ≥ 0 (17)

and

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))+

+ V N,K(t)(x(t)) − V N,K(t−1)(x(t − 1)) (18)

and s(0) = 0 hold for all t ∈ N0. Then

αV ∞
MPC(x(0)) ≤ V ∞(x(0))

Proof. Induction of (18) gives

s(T ) = s(T − 1) + αℓ(x(T − 1), u(T − 1, 0))+

+ V N,K(T )(x(T )) − V N,K(T−1)(x(T − 1))

= . . . = α
T−1∑

t=0

ℓ(x(t), u(t, 0))+

+ V N,K(T )(x(T )) − V N,K(0)(x(0))



Insertion of this into (16) gives for any T ∈ N0

α

T∑

t=0

ℓ(x(t), u(t, 0)) ≤

≤ V N,K(0)(x(0)) − V N,K(T+1)(x(T + 1))

≤ V N,K(0)(x(0)) ≤ V N (x(0)) ≤ V ∞(x(0))

where the second inequality comes from (17). The third

inequality is a direct consequence of duality theory. The

last inequality is due to the observation that longer control

horizon gives larger cost since no terminal constraint or

terminal cost is present. The result follows from the definition

of V ∞
MPC(x(0)) as T → ∞. �

Our next objective is to prove asymptotic stability of the

system if the conditions of Theorem 1 are satisfied. Before

we state the stability theorem, which is also used in [4], the

following assumption on the running cost is needed.

Assumption 2: Assume that there exist a β > 0 such that

min
u

ℓ(x, u) ≥ β‖x‖2
2.

Theorem 2: Consider the closed loop trajectory (8) with

control action (14). Assume that

V ∞
MPC(x(0)) ≤ M (19)

where M is a finite positive real number. Then ‖x(t)‖2
2 → 0

as t → ∞.

Proof. A contradiction argument is used to show this. We

have that

V ∞
MPC(x(0)) =

∞∑

t=0

ℓ(x(t), u(t, 0)) ≤ M (20)

where M is a finite positive real number. Assume that

‖x(t)‖2
2 6→ 0 as t → ∞, then there is an ǫ > 0 and a

T ≥ 0 such that ‖x(t)‖2
2 ≥ ǫ for all t ≥ T . Further

∞∑

t=0

ℓ(x(t), u(t, 0)) ≥

∞∑

t=T

β‖x(t)‖2
2 ≥ βǫ

∞∑

t=T

1 (21)

which is unbounded. Thus by contradiction the assertion

holds. �

Remark 1: Note that Theorem 1 gives the condition of

Theorem 2 with M = V ∞(x(0))/α, which is finite by

assumption.

The two theorems presented here are analysis tools that

can be verified in run-time. The objective of the next section

is to use these analysis tools as stopping criterion for the

distributed MPC scheme.

B. MPC Design Tool

The objective of this section is to develop a design

tool that utilizes the analysis tool developed in Section IV-

A. The analysis tool cannot be used directly as a design

tool, since at time t information about the dual value

function, V N,K(t+1)(x(t + 1)), at time t + 1 is needed.

However, if an upper bound, denoted V̄ N,K(t+1)(x(t + 1)),
to V N,K(t+1)(x(t+1)) is known at time t the conditions of

Theorem 1 can be changed to

V
N,K(t)(x(t)) ≥ V̄

N,K(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)

where with V N,K(t)(x(t)) ≥ 0 and

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))+

+ V̄ N,K(t)(x(t)) − V N,K(t−1)(x(t − 1))

and the results from Theorem 1 clearly hold. Due to the upper

bound used, the conditions get more conservative. Most of

this conservatism can be eliminated by changing the update

of the slack variable s(t) as in the following theorem.

Theorem 3: Consider a closed loop trajectory (8) with

control action (14). Assume that for a pre-specified α ∈
(0, 1) that

V
N,K(t)(x(t)) ≥ V̄

N,K(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)
(22)

where

V N,K(t)(x(t)) ≥ 0 (23)

and

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))

+ V̄ N,K(t)(x(t)) − V̄ N,K(t−1)(x(t − 1)) (24)

for t ≥ 2 and

s(1) = αℓ(x(0), u(0, 0)) + V̄ N,K(1)(x(1))− V N,K(0)(x(0))
(25)

and s(0) = 0. Then

αV ∞
MPC(x(0)) ≤ V ∞(x(0))

and ‖x(t)‖2
2 → 0 as t → ∞.

Proof. Induction over (24) gives

s(T ) = s(T − 1) + αℓ(x(T − 1), u(T − 1, 0))+

+ V̄ N,K(T )(x(T )) − V̄ N,K(T−1)(x(T − 1))

= . . . = s(1) + α

T−1∑

t=1

ℓ(x(t), u(t, 0))+

+ V̄ N,K(T )(x(T )) − V̄ N,K(1)(x(1))

= α
T−1∑

t=0

ℓ(x(t), u(t, 0))+

+ V̄ N,K(T )(x(T )) − V N,K(0)(x(0))

where the last inequality comes from (25). Insertion of this

into (22) gives for any T ∈ N0

α
T∑

t=0

ℓ(x(t), u(t, 0)) ≤

≤ V N,K(0)(x(0)) − V̄ N,K(T+1)(x(T + 1))+

+ V N,K(T )(x(T )) − V̄ N,K(T )(x(T ))

≤ V N,K(0)(x(0)) − V̄ N,K(T+1)(x(T + 1))

≤ V N,K(0)(x(0)) ≤ V N (x(0)) ≤ V ∞(x(0))



where the second and third inequalities come from that

V̄ N,K(T )(x(T )) is an upper bound to V N,K(T )(x(T )) which

is positive. The fourth inequality is an application of duality

theory which says that the value of a dual feasible point is

less than the primal optimal point. The last inequality is due

to the observation that a longer control horizon gives larger

cost in absence of terminal cost and terminal constraints. The

assertion about suboptimality follows from the definition of

V ∞
MPC(x(0)) as T → ∞.

Since V ∞
MPC(x(0)) is finite, Theorem 2 gives that

‖x(t)‖2
2 → 0 as t → ∞.

This completes the proof. �

V. DISTRIBUTED MODEL PREDICTIVE CONTROL

In this section we present a locally verifiable stopping

criterion for the number of iterations needed in the DMPC

scheme. The stopping criterion is based on the design tool

developed in the previous section. If the conditions hold in

every sample, we can guarantee suboptimality to a certain

degree for the closed loop system and asymptotic stability.

Throughout this section we assume that the control horizon,

N , in the DMPC scheme is such that Assumption 1 holds

for a pre-specified value α ∈ (0, 1).
To ensure the conditions in Theorem 3 an upper bound

is needed. Any primal feasible solution over N time steps,

defined as

PN (x(t), u(t, ·)) =

N∑

τ=0

ℓ(x(t, τ), u(t, τ))

with plant predictions according to (7) and initial state,

x(t + 1), is an upper bound to V N,K(t+1)(x(t + 1)) since

P
N (x(t + 1), u(t, ·)) ≥ V

N (x(t + 1)) ≥ V
N,K(t+1)(x(t + 1)).

To account for the fact that the primal solution might be

infeasible, we define PN (x(t), u(t, ·)) = ∞ if the solution

is infeasible. The local part of the primal cost is defined as

PN
i (xi(t), ui(t, ·)) =

N∑

τ=0

ℓi(xi(t, τ), ui(t, τ))

To calculate the primal cost, the following control sequence,

based on the control sequence in the current iteration, k, of

the dual decomposition scheme, uk(t, ·), is used

uk
P (t, τ) =

{

uk(t, τ + 1), τ = 0, . . . , N − 1

0, τ = N

This gives the following upper bound to be used in the

DMPC scheme

PN (x(t + 1), uk
P (t, ·))

where x(t + 1) is the predicted next state if the current

control action, uk(t, 0), is applied. The upper bound can

be computed locally with neighbouring communication by

forward simulation of the system.

To locally verify the conditions of Theorem 3 the follow-

ing conditions are used in each node

V N,k
i (xi(t)) − PN

i (xi(t + 1), uk
i,P (t, ·)) ≥

≥ αℓi(xi(t), u
k
i (t, 0)) + si(t) (26)

where

V N,k
i (xi(t)) ≥ 0 (27)

and

si(t) = si(t − 1) + αℓi(xi(t − 1), ui(t − 1, 0))+

+ PN
i (xi(t), u

K(t)
i,P (t, ·))−

− PN
i (xi(t − 1), u

K(t−1)
i,P (t − 1, ·)) (28)

and

si(1) = αℓi(xi(0), ui(0, 0))+

+ PN
i (xi(1), u

K(1)
i,P (1, ·)) − V

N,K(0)
i (xi(0)) (29)

and si(0) = 0.

Under Assumption 1 the conditions hold for the global

system after sufficiently many iterations. However, it is not

certain that these distributed tests will pass even at optimum.

The conditions must be complemented by the following

optimality condition

V N,k
i (xi(t)) = PN

i (xi(t), u
k(t, ·)). (30)

A distributed MPC scheme that guarantees the conditions

of Theorem 3 is summarized in the following theorem

Theorem 4: Consider a closed loop trajectory (8) with

control action (14) which is applied after K(t) iterations

where the K(t) = k such that

(26), (27), (28), (29), si(0) = 0 or (30)

holds for all t ∈ N0 and all i = 1, ...,J . Further suppose

that Assumption 1 holds. Then the conditions of Theorem 3

hold which guarantee

αV ∞
MPC(x(0)) ≤ V ∞(x(0))

and ‖x(t)‖2
2 → 0 as t → ∞ for the global system.

Proof. For any t ∈ N0 summation over i of (26), (27), (28),

(29), si(0) = 0 directly gives the conditions of Theorem 3.

These local conditions might not pass for all time instants,

then the iterations continue until the optimal point is reached

and (30) holds. Assumption 1 gives that the conditions of

Theorem 3 hold if the optimum is reached, since s(t) ≤ 0
for all t ∈ N0. This completes the proof. �

VI. NUMERICAL EXAMPLE

The performance of the developed distributed MPC

scheme is evaluated by applying it to an artificial example

with equally sized water containers. The water containers

are connected in series and the flow between neighbouring

containers are proportional to the relative difference in water

level. Between every second container there are pumps that



can control the water flow between the two containers they

are connected to. In this example we consider the case of ten

water containers and five pumps. The system is decomposed

to consist of five subsystems, each with two containers

and one pump. The local subsystems have the following

dynamics:

xi(t + 1) = Ai,ixi(t) + Ai,i−1xi−1(t)+

+ Ai,i+1xi+1(t) + Biui(t)

where

A1,1 =

(
0.9 0.1
0.1 0.8

)

A5,5 =

(
0.8 0.1
0.1 0.9

)

Ai,i =

(
0.8 0.1
0.1 0.8

)

for i = 2, 3, 4

and

Ai,i−1 =

(
0 0.1
0 0

)

= AT
i,i+1 Bi =

(
1
−1

)

for i = 1, . . . , 5 where A1,0 = A5,6 = 0
The mean water level of the system is actually uncon-

trollable since the total amount of water in the containers

is constant. By requiring that 1
T x(0) = 0 the mean water

level is defined to be zero. The objective is to control the

individual water levels to the mean value of the water levels,

i.e. to zero, while minimizing the following local running

cost:

ℓi(xi, ui) = xT
i xi + uT

i ui.

The control horizon is chosen to N = 10 which, by

simulation, is verified to satisfy Assumption 1. The following

table presents the results obtained for different schemes when

suboptimality specified by α = 0.8 is desired.

MPC scheme comparisons

Scheme cond mean # iters αcalc pupd

DMPC all 1.95 0.841 prev

DMPC all 7.05 0.891 0

DMPC (26),(30) 150.0 0.889 prev

DMPC (30) 161.6 0.893 prev

DC - - 0.720 -

C - - 0.893 -

TABLE I

RESULTS FROM EXPERIMENTS WITH DIFFERENT MPC SCHEMES

The first column describes what conditions are used as stop-

ping criterion in the Distributed MPC scheme. The second

column presents the mean number if iterations required for

the conditions to hold. The third column specifies the result-

ing performance compared to optimal performance. The last

column pupd specifies how the price-updates are performed

between optimizations. A zero means that the prices initially

are chosen to 0 in each optimization. If the entry says ’prev’

the previously calculated prices are shifted one time step and

used as initial prices for the new optimization.

The first four rows present result when using the DMPC

scheme presented in this article, with different conditions as

stopping criterion. When the full scheme is used, presented

in the first row, only 1.95 iterations are needed on average

while still guaranteeing the suboptimality requirements. This

can be compared to the second row, where the prices are set

to zero between every new optimization. Then 7.05 iterations

must be performed on average to guarantee the conditions.

The scheme behind the results in row three has si(t) = 0
in (26). The number of iterations get very large using this

scheme. This shows that the introduced slacks si(t) has a

large effect on the number of iterations needed to ensure a

certain suboptimality bound. The condition in row four is

that the optimum in the optimization should be found. This

requires a large number of iterations on average.

Row five, labeled DC, corresponds to decentralized control

in which the local optimizations are performed ignoring the

coupling between systems. Using the method, no guarantees

about performance or stability can be made, and the system

in this case do not reach the desired performance. Row six,

labeled C, presents results when applying centralized MPC.

This results in the same control strategy as the one in row

four where the optimum is found in each sample.

VII. CONCLUSIONS

We have presented theory for distributed Model Predictive

Control based on dual decomposition, where the process

to be controlled is an interconnection of several linear

subsystems. We have developed stopping criterions which

can be verified locally in each node, that guarantees closed

loop asymptotic stability and suboptimality to a pre-specified

degree for the global system. The provided numerical exam-

ples show that the number of iterations needed to guarantee

the conditions is significantly smaller than if the optimum

was to be reach in all optimizations.
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[6] Lars Grüne and Anders Rantzer. On the infinite horizon performance

of receding horizon controllers. IEEE Transactions on Automatic

Control, 53:2100–2111, 2008.
[7] Bo Lincoln and Anders Rantzer. Relaxing dynamic programming.

IEEE Transactions on Automatic Control, 51:1249–1260, 2006.
[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-

strained model predictive control: Stability and optimality. Automatica,
36:789 – 814, 2000.

[9] N.Z. Shor. Minimization methods for nondifferentiable functions.
Springer, Berlin, 1985. Translated from Russian.

[10] A.N. Venkat, J.B. Rawlings, and S.J. Wright. Stability and optimality
of distributed model predictive control. In Proceedings of the 44th

IEEE Conference on Decision and Control and European Control

Conference, pages 6680–6685, Spain, 2005.


