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ABSTRACT

Model Predictive Control (MPC) is applied to a pendulum

system consisting of a pendulum and a cart. The objective

of the MPC-controller is to steer the system towards pre-

calculated trajectories that move the system from one op-

erating point to another. The sample time of the controller

sets hard limitations on the execution time of the optimiza-

tion routine in the MPC-controller. The optimization prob-

lem to solve is cast as a convex optimization problem that

can be efficiently solved to allow for real time implementa-

tion. The control scheme is applied to a physical pendulum

and cart system and the performance of the proposed con-

troller is compared to optimal performance.
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1 Introduction

Model Predictive Control is a widely recognized control

methodology for control of complex systems with state and

control constraints. The idea of Model Predictive Con-

trol is to determine a control trajectory by minimizing a

cost function based on predictions of future states over a fi-

nite time interval, starting with the current state of the sys-

tem. The first control action in the obtained trajectory is

applied to the system. When new state measurements be-

come available, the optimization procedure is repeated with

the new measurements used as initial values to the state

predictions. There are hard timing constraints on the opti-

mization routine before the control action must be applied.

Solving an optimization problem can be a time-consuming

task, which is why MPC has traditionally been considered

a control methodology for systems with relatively slow dy-

namics that can be controlled with sample times measured

in seconds or minutes. Thorough descriptions of MPC can

be found in, e.g. [1] and [2] and examples of industrial pro-

cesses, that have successfully been controlled using MPC

can be found in [3]. Over the past decade, with faster com-

puters and more efficient algorithms, systems with faster

dynamics can be controlled using MPC. If the system di-

mensions are small, explicit MPC can be used, c.f. [4], [5]

for linear systems and [6] for systems with non-linear dy-

namics. In [7] the structure and sparsity inherent in MPC

optimization problems are exploited to greatly reduce the

execution time of the on-line optimization routine for sys-

tems with linear dynamics.

In this work we try to combine the flexibility of being

able to control a non-linear system, with the efficiency of

available solvers when the dynamics are linear which usu-

ally result in a convex optimization problem. This is ob-

tained by linearizing the non-linear dynamics around a pre-

calculated nominal trajectory. These pre-calculated nom-

inal trajectories should, in absence of disturbances, move

the system through the non-linear dynamics between two

operating points. The objective of the MPC-controller is to

steer the system towards the pre-calculated trajectories to

achieve the original objective despite disturbances.

The MPC-controller is applied to a physical pendu-

lum and cart system to show its applicability to a non-linear

system. The work in this paper is a continuation of the work

presented in [8] in which time-optimal trajectories for the

pendulum and cart system are calculated. These trajecto-

ries are used as nominal feed-forward trajectories in this

paper. This means that the objective of the MPC-controller

is to control the system towards the nominal trajectories ob-

tained in [8]. The MPC-controller is designed to help any

feasible feed-forward trajectory to achieve its optimization

objective. A special case of such feed-forward trajectory

is (time-optimal) swing-up of the pendulum. There is an

extensive literature on the subject of swing-up and control

of a pendulum system, e.g. [9], [10]. Most of this liter-

ature use the rotary inverted pendulum to avoid problems

with a limited track, and have a two-phase controller, one

swing-up and one stabilizing controller close to the inverted

position. However, in [11] a NMPC-controller is used to

swing-up and stabilize a planar pendulum in the inverted

position. The optimization need to be terminated after four

iterations, before the optimum is reached, to not exceed the

allowed execution time. The MPC-controller proposed in

this paper makes use of pre-calculated feed-forward trajec-

tories to linearize the non-linear dynamics around. The re-

sulting time-varying linear model is used to state a convex

quadratic optimization problem that is solved in each sam-

ple in the MPC-controller. Such problems can be solved

very efficiently by standard solvers. The purpose of this

work is to show that simple methods, which are easy to im-

plement and has relatively low computational complexity,

can be used to control highly non-linear systems as the pen-

dulum system. Further the performance degradation com-



pared to what can optimally be achieved is analyzed and

shown to be very small.

The article is organized as follows. In Section 2, the

problem we are investigating is formulated. Section 3 de-

scribes the pendulum system. In Section 4 the minimum-

time optimization problems from [8] are stated and the re-

sults are presented. The Model Predictive Controller is de-

scribed in Section 5 and experimental results are presented.

The performance of the closed loop system is analyzed in

Section 6. Finally in Section 7 the paper is concluded.

2 Problem setup

The problem considered in this paper and in the companion

paper, [8], is to achieve time-optimal transitions through

the non-linear dynamics of the pendulum system. The dy-

namics of the system are relatively fast, which requires fre-

quent updates of the control signal to be applied to the pro-

cess. The objective is to develop a feedback solution that

do not require too much on-line computational effort, or

special purpose optimization algorithms.

The optimization problem described in [8] is of the

form

min
u

tf

subject to ẋ = f(x) + g(x)u
x ∈ X u ∈ U
x(0) = x0 x(tf ) = xtf

(1)

where f(x) and g(x) describes the non-linear dynamics of

the pendulum system. The optimization objective is to min-

imize the transition time, tf , between the initial state, x(0),
and the terminal state, x(tf ), while satisfying state and con-

trol constraints. There are two problems considered in [8].

The first problem is concerns swing-up of the pendulum.

The second problem is to move the cart from one side of

the track to the other with the pendulum starting and stop-

ping in the downward position, while the end-point of the

pendulum should avoid a pre-specified obstacle.

The open-loop control trajectories that result from the

optimization problems in [8] can be applied to the pendu-

lum system as feed-forward control. The problem consid-

ered in this paper is to design an MPC-controller that con-

trols the system towards the pre-calculated time-optimal

feed-forward trajectories.

3 The Pendulum System

The pendulum system consists of a cart that is mounted on

a track with a pendulum freely hanging from the cart. The

cart is driven by a Faulhaber DC-motor and a rack and pin-

ion to convert the rotating motion of the motor to linear mo-

tion of the cart. Further, the system is equipped with a Hall

effect sensor to measure pendulum angle, a current sensor

to measure motor current and a magnetic motor encoder

that enables us to extract position measurements of the cart.

There are also two programmable Atmel ATmega 16 micro

processors mounted on the cart for control purposes. The

first micro processor is able to output motor voltage to the

motor drive unit and receive current measurements. The

second micro processor receives the motor encoder signals

and the angle measurement signal. The two micro proces-

sors can communicate with each other and the second mi-

cro processor communicates with Matlab/Simulink on a PC

via the serial interface.

3.1 Cart control

The motion of the cart is controlled in a cascaded control

structure. See Figure 1 for a schematic view of the cas-

caded control structure. The innermost loop controls the

irvru ∫∫
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-1

i
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v x
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Figure 1. Cascaded control structure for the cart control.

current through the DC-motor. P1 represents the current

dynamics which can be modeled as a first order dynami-

cal system with a time-constant of 0.17 ms. C1 represents

the current-controller, which is a PI-controller, that controls

the actual motor current, i, to its reference, ir. This cur-

rent controller runs at a sampling rate of 28.8 kHz on the

first micro processor. The current reference, ir, is set by

the outer control loop that controls the cart velocity. The

current dynamics are fast in comparison to the velocity dy-

namics, which makes ir ≈ i a good approximation. The

transfer function from i to v, i.e. P2, is ideally an inte-

grator with a gain. The velocity dynamics are controlled

with another PI-controller, C2. There are no velocity mea-

surements available. A velocity estimate is however ob-

tained by differentiating the position measurement. This

controller runs on the second micro processor at a sampling

rate of 1 kHz. The reference to the velocity control loop,

vr, is received from Matlab/Simulink on the PC. The ve-

locity reference is obtained by integrating the acceleration

reference, u, on the PC-side. To avoid non-smooth behav-

ior of the cart, the velocity reference needs to be updated at

a higher frequency than 50 Hz. Therefore the acceleration

reference, u, is also sent to the velocity controller from the

PC. The velocity reference is updated in the micro proces-

sor according to vr(t) = vr(t0) + u(t0)(t − t0) in every

sample, where t0 is the time when the last references was

received from the PC, t ∈ [t0, t0 + h] and h is the PC com-

munication sampling time. These updates are consistent

with the velocity reference in the next sample from the PC

which is vr(t0 + h) = vr(t0) + u(t0)h. This results in a

smooth acceleration profile of the cart.

This cascaded control structure is suitable when fast

closed loop dynamics from vr to v is desired. In the eyes of



the slower MPC control loop on the PC, vr = v is a good

approximation. Due to this, the cart motion can accurately

be modeled as a double integrator from control signal, u, to

cart position, x.

3.2 System modeling

Due to the low level control previously described the cart

position, p, depends on the control signal, u, according to

p̈ = u. (2)

The pendulum is attached to the cart. When the pendulum

is swinging, reaction forces in the mounting point creates

disturbances to the cart motion. These disturbances are at-

tenuated by the cascaded control structure on the cart, mak-

ing the double integrator model of the cart accurate despite

disturbances. The pendulum is modeled as a simple gravity

pendulum, in which the weight of the rod is neglected. The

pendulum dynamics are well known, let θ be the pendulum

angle and the dynamics are described by

θ̈ = −
g

l
sin θ +

u

l
cos θ, (3)

where θ = 0 is defined to be the pendulum downward po-

sition, g is the gravitational acceleration, l is the length of

the idealized simple gravity pendulum which is chosen to

match the pendulum frequency around the downward po-

sition and u is the cart acceleration. The full system dy-

namics are described by Equations (2) and (3). Note that

since the cart acceleration is used as control signal, the cart

and pendulum dynamics are decoupled. They can be seen

as two separate dynamical systems that are driven by the

same control signal.

The position of the cart and the pendulum angle are

defined such that the pendulum end point in the horizontal

direction, xpend, and in the vertical direction, ypend, are

given by

xpend = p− l sin θ

ypend = −l cos θ.

4 Optimal Feed Forward Trajectories

Two different minimum-time optimal control problems are

considered in this paper. The first problem is a minimum-

time swing-up problem with some additional constraints.

The second problem is a path-constrained minimum-time

problem. The optimal feed forward trajectories used in this

paper are identical to and generated as in [8]. The optimiza-

tion problems are solved using the JModelica.org platform,

[12], which allow for solving dynamic optimization prob-

lems by specifying the dynamical model, the cost function

and constraints on a high level. The problems and the solu-

tion from [8] are stated below.
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Figure 2. Experimental results for swing-up problem when

control trajectory applied in open loop. The optimal pen-

dulum end point trajectory is also plotted for comparison

reasons.

4.1 Pendulum Swing-up

The optimization objective is to reach the inverted posi-

tion as fast as possible, starting from the downward posi-

tion. Further constraints include that the cart should start

and stop at the same position. The cart and angular ve-

locities should be zero when the pendulum has reached the

inverted position. The applied control signal, i.e., the cart

acceleration, u, is limited to be in the interval ±5m/s
2

and

its derivative must satisfy −100m/s
3
≤ u̇ ≤ 100m/s

3
.

Since the cart track is finite, the cart position must satisfy

−0.5m ≤ p ≤ 0.5m. The optimization problem is stated

mathematically in (4)

min
u

tf

subject to θ̈ = − g
l
sin θ + u

l
cos θ

p̈ = u
−0.5 ≤ p ≤ 0.5
|u| ≤ 5 |u̇| ≤ 100

θ(tf ) = π θ̇(tf ) = 0
p(tf ) = 0 ṗ(tf ) = 0

(4)

where tf is the final time. To analyze the plant-model ac-

curacy the optimal feed-forward trajectory was applied to

the physical plant with identical initial conditions as in the

optimization, i.e. zero. The resulting pendulum end point

trajectory, together with the optimal trajectory, is found in

Figure 2.

4.2 Optimization with path-constraints

In this optimization problem the cart should move from one

side of the track to the other side while the end point of the

pendulum avoids a certain obstacle defined by

(
xpend − 0.5

0.05

)2

+

(
ypend + 0.4

0.3

)2

= 1
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Figure 3. Experimental results for path constrained prob-

lem when control trajectory applied in open loop. The opti-

mal pendulum end point trajectory is also plotted for com-

parison reasons.

The pendulum should start and stop at rest in the downward

position. Track and control limitations are equivalent to in

the swing-up problem. We get the following optimization

problem

min
u

tf

subject to θ̈ = − g
l
sin θ + u

l
cos θ

p̈ = u
xpend = p− l sin θ
ypend = −l cos θ
(

xpend−0.5
0.05

)2

+
(

ypend+0.4
0.3

)2

≥ 1

−0.1 ≤ p ≤ 0.9
|u| ≤ 5 |u̇| ≤ 100

θ(tf ) = 0 θ̇(tf ) = 0
p(tf ) = 0.8 ṗ(tf ) = 0

(5)

where tf again is the final time. Optimization results, as

well as the trajectory obtained when applying the control

action to the physical system, again with initial conditions

zeros, are found in Figure 3.

The result from the optimization problems (4) and (5)

are continuous time state and control trajectories. The dis-

crete time counterparts, that will be used in the sequel, are

obtained by taking the values from the corresponding con-

tinuous trajectories at each sampling point. The discrete

time variables are denoted p0(t), ṗ0(t), θ0(t), θ̇0(t), u0(t)
and x0(t) = [p0(t) ṗ0(t) θ0(t) θ̇0(t)]T .

5 Model Predictive Control

The open-loop control trajectories from the previous sec-

tion gives close to optimal state trajectories when applied

to the physical pendulum system, see Figures 2 and 3.

This behavior cannot be expected when disturbances are

present. In the optimization problems in the previous sec-

tion it is specified that the pendulum should start at rest in

the downward position. When there are disturbances in the

initial state of the pendulum, the trajectories do not match

very well. This can be seen in Figure 4 for the swing-up

and in Figure 5 for the path constrained problem. The ex-

periments where started when the pendulum was swinging

back and forth with a magnitude of approximately 45◦. In

this section we introduce MPC-feedback to cope with such

disturbances. The objective is to design a well performing

MPC-feedback which is easy to implement and satisfies the

real-time requirements of the physical pendulum system.
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Figure 4. Pendulum end point trajectory for the real system

when pendulum is swinging initially and no feedback is

used.
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Figure 5. Pendulum end point trajectory for the real system

when pendulum is swinging initially and no feedback is

used.

5.1 Discrete time pendulum model

The continuous dynamics of the pendulum system must be

discretized and linearized to be used in this Model Predic-

tive Control context. In each time instant, t, the system, (2)-

(3), is linearized around the nominal states, x0(t), and and

nominal control, u0(t), which are obtained from the opti-

mization problems in the previous section. Since the cart



dynamics are linear, we only need to linearize the pendu-

lum dynamics around the nominal states. To achieve this,

introduce ∆zθ(t) which is the deviation from the lineariza-

tion point for the pendulum states and ∆v(t) which is the

control signal for this linearized model. This gives the fol-

lowing linearized pendulum dynamics

˙∆zθ(t) =

(
0 1

− g
l
cos θ0(t) 0

)

∆zθ(t) +

(
0

1
l
cos θ0(t)

)

∆v(t)

=

(
0 1

−ω0(t)2 0

)

︸ ︷︷ ︸

A(t)

∆zθ(t) +

(

0
ω0(t)2

g

)

︸ ︷︷ ︸

B(t)

∆v(t)

where ω0(t)2 = g
l
cos θ0(t). The resulting linear time-

varying dynamics depend only on the nominal pendulum

angle, θ0(t). To obtain a discrete time model, the linearized

model is discretized using zero-order-hold according to

∆xθ(t+ h) = eA(t)h∆xθ(t) +

h∫

s=0

eA(t)(h−s)B∆uds

where ∆u is a piece-wise constant control signal and

eA(t)h = I +A(t)h+
(A(t)h)2

2!
+

(A(t)h)3

3!
+ · · ·

=I +

(
0 1

−ω0(t)2 0

)

h−

(
ω0(t)2 0

0 ω0(t)2

)
h2

2!

+

(
0 −ω0(t)2

ω0(t)4 0

)
h3

3!
+

(
ω0(t)4 0

0 ω0(t)4

)
h4

4!

+

(
0 ω0(t)4

−ω0(t)6 0

)
h5

5!
−

(
ω0(t)6 0

0 ω0(t)6

)
h6

6!

+

(
0 −ω0(t)6

ω0(t)8 0

)
h7

7!
+ · · ·

=







∞∑

k=0

(−1)k

(2k)! (ω
0(t)h)2k

−ω0(t)
∞∑

k=0

(−1)k

(2k+1)! (ω
0(t)h)2k+1

· · ·

· · ·

1
ω0(t)

∞∑

k=0

(−1)k

(2k+1)! (ω
0(t)h)2k+1

∞∑

k=0

(−1)k

(2k)! (ω
0(t)h)2k







=

(
cosω0(t)h 1

ω0(t) sinω
0(t)h

−ω0(t) sinω0(t)h cosω0(t)h

)

The last equality comes from the Taylor series expansion

of cosine and sine. When eA(t)h is known, the integral can

easily be calculated

h∫

s=0

eA(t)(h−s)B∆uds = ∆u

h∫

s=0

(
ω0(t)

g
sinω0(t)(h− s)

ω0(t)2

g
cosω0(t)(h − s)

)

ds

= ∆u

(
1
g
cosω0(t)(h− s)

−ω0(t)
g

sinω0(t)(h− s)

)h

s=0

=

(
1
g
(1− cosω0(t)h)
ω0(t)

g
sinω0(t)h

)

∆u

A discrete time model of the double integrator, (2), is well

known to be

∆xp(t+ h) =

(
1 h
0 1

)

∆xp(t) +

(
h2

2
h

)

∆u(t)

This gives the following full model that is linearized around

the nominal feed-forward trajectories

∆x(t+ 1) = Φ(t)∆x(t) + Γ(t)∆u(t) (6)

where

Φ(t) =







1 h 0 0
0 1 0 0
0 0 cosω0(t)h 1

ω0(t) sinω
0(t)h

0 0 −ω0(t) sinω0(t)h cosω0(t)h







Γ(t) =








h2

2
h

1
g
(1− cosω0(t)h)
ω0(t)

g
sinω0(t)h








The resulting model is a time-varying discrete time linear

dynamical system which is to be used in the Model Predic-

tive Controller.

5.2 Linear MPC

The model developed in the previous section is unstable

for certain pendulum angles. Due to this, predicting future

states directly with (6) would result in poor predictions. To

avoid that, a LQ-feedback term that depends on the pendu-

lum angle is introduced, ufb(t) = −L(t)∆x(t). For accu-

rate predictions, the feedback vector L(t) must be known

for all t in the prediction horizon. This can be achieved

by calculating the LQ-optimal feedback in every time in-

stant in the horizon. If the feedback is applied with the

same sample period as the MPC-controller, h, the predic-

tion model to be used in the MPC-controller for each time

instant, t, is

∆x(τ + 1|t) = (Φ(τ) − Γ(τ)L(τ))∆x(τ |t) + Γ(τ)∆u(τ |t)
(7)

= ΦL(τ)∆x(τ |t) + Γ(τ)∆u(τ |t)

with initial condition ∆x(t|t) = ∆x(t) and ∆u(t|t) =
∆u(t) which is applied to the process. This model is



stable for all time instants. In the MPC-problem we are

dealing with state and control signal deviations from the

nominal trajectories. The constraints on the system deals

with actual state and control limitations. In every sample,

u(t) = u0(t) +∆u(t) + ufb(t), is sent as control signal to

the system. The maximal allowed acceleration is ±7m/s2.

This is chosen since the inner control loops do not saturate

for that choice. The control constraint set is defined as

U =
{
∆u ∈ R |∆u + u0 + ufb| ≤ 7

}
. (8)

The only state constraint present is due to track limitations.

The track where the cart is moving is slightly longer than 1

meter. This gives the following state constraint set

X =
{
∆x ∈ R

4
[
1 0 0 0

](
∆x+ x0

)
≤ 1− p0 (9)

[
− 1 0 0 0

](
∆x+ x0

)
≤ p0

}
,

where the track length is set to 1 meter and p0 is the initial

position of the cart on the track.

The MPC problem to be solved in each time sample,

t, is

min
∆u(·)

t+N∑

τ=t

∆x(τ |t)TQ∆x(τ |t) + ∆u(τ |t)TR∆u(τ |t)

with Q � 0 and R ≻ 0, subject to (7), (8) and (9) and for

τ = t, ..., t +N . Since the objective function is quadratic,

the dynamics linear and the control and state constraint sets

are linear in ∆u and ∆x the resulting optimization problem

is a quadratic program.

The outcome of the optimization is twofold. Firstly,

the control signal to be applied, ∆u(t), is calculated. Sec-

ondly, a prediction of the deviation from the optimal trajec-

tory is obtained. This information can be used to improve

the estimated pendulum angle trajectory to linearize around

in subsequent samples.

All state variables cannot be measured directly, only

cart and pendulum positions are measured. The cart ve-

locity is estimated by a derivative filter on the second mi-

cro processor which is updated in 1 kHz. The most recent

estimate is sent to the PC when it is needed by the MPC-

controller. The pendulum angular velocity is estimated by a

derivative filter in Simulink which is updated ones in every

MPC-sample. This gives accurate enough estimates since

the pendulum dynamics are quite slow.

5.3 Implementational aspects

The MPC controller described previously is implemented

in Simulink and communicates with one of the micro-

processors on the cart via serial interface. The control hori-

zon is chosen to N = 50, which gives 50 control vari-

ables and 200 state variables to decide in each optimiza-

tion. The sampling time, which is chosen to h = 0.02s,

sets hard limitations on the allowed execution time of the

MPC-controller before the control signal must be applied.

The software used to solve the QP-problem in each sample

is a solver written in C with a Matlab interface, [13]. The

execution time of one MPC-cycle with this setup is close

to 6ms on a standard PC with a 2.6 GHz processor. This

gives a processor load at around 6ms/20ms = 30% when

running this MPC-controller on the physical pendulum sys-

tem.

5.4 Experimental results
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Figure 6. Pendulum end point trajectory for the real system

when pendulum is swinging initially and feedback is used.
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Figure 7. Pendulum end point trajectory for the real system

when pendulum is swinging initially and feedback is used.

Resulting pendulum end point trajectories, when ap-

plying the MPC-feedback to the physical system, are visu-

alized in Figures 6 and 7. The weight matrix, Q is chosen

to penalize position and pendulum angle error more than

the corresponding velocities. Further the R-matrix is cho-

sen rather small to not penalize control action too much.

The feedback gain vector L is calculated by LQ-methods

using unit weights on both states and with initial pendu-

lum swings whose magnitude are comparable to the con-

trol. The experiments are performed with initial pendu-

lum swings whose magnitude are comparable to the mag-

nitude of the initial swings when no feedback was present



in Figures 4 and 5, namely around 45◦. Due to the initial

swinging, the trajectories are far from the optimal ones in

the beginning but the feedback brings the actual trajectories

closer to the optimal trajectories with time. This shows that

the introduced model approximations are accurate enough

to achieve good performance in the physical pendulum sys-

tem. Videos of similar experiments, with and without ini-

tial swinging of the pendulum, can be found in [14].

6 Performance evaluation

In this section the performance of the applied control

scheme is compared to optimal performance. The perfor-

mance evaluation is made to analyze the effects caused

by the linearization of the pendulum dynamics as well as

effects from other approximations on the best achievable

performance. The only state variable that affects the lin-

earized model is the pendulum angle. For this reason, we

only investigate performance degradation and stability re-

gion for different initial pendulum angles. The compar-

ison is made with swing-up trajectories as feed-forward.

The performance of the control scheme is calculated as the

running stage cost. The control action is applied to the

continuous pendulum system (2)-(3) with initial conditions

x(0) = [p(0) ṗ(0) θ(0) θ̇(0)]T = [0 0 θ0 0]T for different

initial pendulum angles θ0. The applied control signal is

piece-wise constant with pieces lasting one sample time, h.

The running stage cost is defined as

K∑

t=0

∆x(t)TQ∆x(t) + ∆u(t)TR∆u(t)

where ∆x(t) = x(t)− x0(t), x(t) contains the actual con-

tinuous time system state trajectories and x0(t) are nominal

state trajectories corresponding to the applied feed-forward

u0(t). This is a natural performance metric to choose since

the MPC-controller minimizes a truncated version of this

sum. The K variable is a large number such that the corre-

sponding stage cost is small enough to have negligible im-

pact on the sum. This performance measure quantifies how

well the MPC-feedback manages to control the continuous

time pendulum system towards the nominal trajectories.

This performance can be compared to the optimal per-

formance with is calculated by solving the following opti-

mization problem

min
∆uc(·)

∫ tf

t=0 ∆xc(t)
TQ∆xc(t) + ∆uc(t)

TR∆uc(t)dt

subject to θ̈c = − g
l
sin θc +

uc

l
cos θc

p̈c = uc

∆xc = xc − x0

uc = ∆uc + u0(t)− L(t)∆xc∣
∣p0 +∆pc

∣
∣ ≤ 0.5 |uc| ≤ 7

θc(0) = θ0 θ̇c(tf ) = 0
pc(tf ) = 0 ṗc(tf ) = 0

θc(tf ) = π θ̇c(tf ) = 0
pc(tf ) = 0 ṗc(tf ) = 0

(10)

where the subscript, c, means that the system is controlled

with a continuous feedback and tf = Kh to have the same

amount of time to control the system to the terminal state

as in the MPC case. The problem is solved using the JMod-

elica.org platform, just like the time-optimal feed-forward

trajectories in Section 4. The resulting optimal trajectories

are sampled with sample time, h, and summed according

to
K∑

t=0

∆xc(t)
TQ∆xc(t) + ∆uc(t)

TR∆uc(t)

to get a value comparable to the MPC-performance.
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Figure 8. Performance comparison between applied MPC

and optimal feedback for all stabilizing initial pendulum

angles.
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Figure 9. Performance comparison between applied MPC

and optimal feedback for initial pendulum angles, θ0 ∈
[−50◦ 50◦].

The optimization problem, (10), is less restrictive than

the discrete-time linear MPC feedback since we do not re-

quire a piece-wise constant control action in this formu-

lation. Further the feedback-term, L(t)∆x, is calculated

as the continuous optimal LQ-feedback corresponding to

the discrete-time optimal LQ-feedback in the MPC-setting.

The optimal value of this optimization problem is a lower



bound to what can be achieved for the MPC feedback. The

optimal cost and the feedback MPC cost are shown in Fig-

ures 8 and 9 for different initial pendulum angles. Fig-

ure 8 shows the cost for all initial pendulum angles that

the MPC-system manages to control to the terminal state,

i.e. the inverted pendulum position. Close to the stability

boundary the cost is grows dramatically. It is interesting to

note that the stability region is not symmetric around the

downward position of the pendulum, this is due to the fact

the the feed-forward swing-up has a predefined trajectory

which appears easier to follow if started on one side than

the other. Further it is quite remarkable that, despite lin-

earization of the system model, the system is stabilized for

such a large region of initial pendulum angles. Figure 9 is

a zoom-in of Figure 8 and shows the cost for initial pendu-

lum angles that are in the interval between −50◦ and 50◦.

The MPC cost is relatively close to the optimal one in this

region and the feedback system is performs well for initial

pendulum swings within this region.

7 Conclusion

We have developed an Model Predictive Controller

that controls the actual system trajectories towards pre-

calculated feed-forward trajectories in a pendulum system.

The feed-forward trajectories takes the system from one

operating point to another. We have studied one swing-

up example and one path-constrained example which have

been applied to the physical pendulum system. Since the

MPC-controller is based on a linearization of the system

dynamics, the stabilizing region is limited if the actual dy-

namics differ to much from the modeled dynamics. The

stability region, with respect to initial pendulum positions,

turned out to be very large. Further, the performance of the

MPC-controller was close to optimal performance inside

this stability region.
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