
Improved Dual Decomposition for

Distributed Model Predictive Control ⋆

Pontus Giselsson ∗

∗ Electrical Engineering, Stanford University
(e-mail: pontusg@stanford.edu).

Abstract:
In dual decomposition, the dual to an optimization problem with a specific structure is solved in
distributed fashion using (sub)gradient and recently also fast gradient methods. The traditional
dual decomposition suffers from two main short-comings. The first is that the convergence
is often slow, although fast gradient methods have significantly improved the situation. The
second is that computation of the optimal step-size requires centralized computations, which
hinders a fully distributed implementation of the algorithm. In this paper, the first issue is
addressed by providing a tighter quadratic approximation of the dual function than what has
previously been reported in the literature. Then a distributed algorithm is presented in which
the provided dual function approximation is minimized in each step. Since the approximation
is more accurate than the approximation used in standard and fast dual decomposition, the
convergence properties are improved. For the second issue, we extend a recent result to allow
for a fully distributed parameter selection in the algorithm. Further, we show how to apply the
algorithm to optimization problems arising in distributed model predictive control (DMPC) and
that the proposed algorithm enjoys distributed reconfiguration, i.e. plug-and-play, in the DMPC
context.

1. INTRODUCTION

Optimization problems with a separable cost and sparse
constraints can be solved in distributed fashion by dis-
tributed optimization algorithms. Most distributed algo-
rithms exploit the property that the (sub)gradient to the
dual of such optimization problems can be computed in
distributed fashion, which enables for distributed imple-
mentation of dual (sub)gradient algorithms. This approach
is referred to as dual decomposition and originates from
Everett (1963); Danzig and Wolfe (1961); Benders (1962).
The use of sub-gradient or gradient methods to solve the
dual problem usually results in poor convergence proper-
ties of the algorithm. A remedy to this is to instead use a
fast gradient method. The first fast gradient method was
presented in Nesterov (1983) and has since been extended
and generalized in Beck and Teboulle (2009); Nesterov
(2003); Tseng (2008). The benefit of using fast gradient
methods is that, with negligible increase in iteration com-
plexity, the convergence rate is improved from O(1/k) in
standard gradient methods to O(1/k2), where k is the
iteration number. In Giselsson et al. (2013) this approach
was taken, i.e. dual decomposition algorithms based on
fast gradient methods were presented, and significantly
improved convergence behavior was reported, compared
to using standard dual decomposition methods. However,
in many applications further improvements are necessary
for realistic implementation.

⋆ During the preparation of this paper, the author was a member

of the LCCC Linnaeus Center at Lund University. Financial support

from the Swedish Research Council for the author’s Postdoctoral

studies at Stanford University is gratefully acknowledged. Eric Chu

is also gratefully acknowledged for constructive feedback.

One prerequisite to apply fast gradient methods is that
the function to be minimized is convex and differentiable
and has a Lipschitz continuous gradient. These properties
are equivalent to the existence of a quadratic upper bound
with the same curvature in all directions (defined by the
Lipschitz constant) to the function to be minimized. In
gradient and fast gradient methods, the main step in every
iteration is to minimize this quadratic upper bound. This
is equivalent to taking a step in the negative gradient direc-
tion. If the bound does not well approximate the function
to be minimized, slow convergence properties are expected.
By instead letting the quadratic upper bound have differ-
ent curvature in different directions, a closer fit between
the bound and the function can be obtained. For an ap-
propriate choice of non-uniform quadratic upper bound,
this can significantly improve the convergence properties
of fast gradient methods. The key result of this paper is
a characterization of the set of matrices that can be used
to describe a quadratic upper bound to the convex nega-
tive dual function, in the case of strongly convex primal
cost function. This result generalizes previous results, e.g.
Nesterov (2005), where a Lipschitz constant to the dual
gradient is quantified. As a consequence of the presented
result, quadratic upper bounds with different curvature
in different directions can be used in dual decomposition
methods. For an appropriate choice of quadratic upper
bound, this can significantly improve the convergence in
dual decomposition.

To enable distributed implementation of the dual fast gra-
dient method, i.e. dual decomposition, the matrix that de-
scribes the quadratic upper bound must be block diagonal.
In standard dual decomposition, this matrix is tradition-
ally chosen as the reciprocal of the Lipschitz constant to



the dual gradient times the identity matrix. Besides giving
slow convergence properties as previously discussed, this
choice usually requires centralized computations. In this
paper, we extend a recent result in Beck et al. (2014) to
enable a fully distributed initialization procedure to select
the block diagonal matrix that describes the quadratic
upper bound. The extension relies on the new characteri-
zation of the set of matrices that can be used to describe
the quadratic upper bound to the dual function.

In distributed model predictive control (DMPC), dual
decomposition techniques have been used to distribute
the computations over the subsystems Negenborn (2007);
Doan et al. (2011); Giselsson et al. (2013). Although the
use of fast gradient methods in dual decomposition have
significantly improved the convergence, see Giselsson et al.
(2013), it is not enough for realistic implementation in a
distributed control system. In Giselsson (2013), a gener-
alized version of dual decomposition was presented that
allows for different curvature in different directions in the
quadratic upper bound that is minimized in every itera-
tion of the algorithm. This gives a significantly reduced
number of iterations. The algorithm in Giselsson (2013)
is restricted to problems having a quadratic cost, lin-
ear equality constraints, and linear inequality constraints.
Dual variables for all these constraints are introduced,
which results in the dual problem being a quadratic pro-
gram. The algorithm in this paper is an extension and
generalization of the algorithm in Giselsson (2013) that
allows for any (local) convex inequality constraints. Also,
only the equality constraints are dualized in this paper.
These changes give rise to completely different technicali-
ties since the dual function is implicitly defined though an
optimization problem.

A feature of DMPC is that similar optimization problems
are repeatedly solved online. This implies that much offline
computational effort can be devoted to parameter selection
in the algorithm to improve the online convergence. In
this paper, the offline computational effort is devoted to
choose a matrix that describes the quadratic upper bound
to the negative dual function. The numerical evaluation
suggests that this can significantly reduce the number of
iterations in the algorithm. Besides favorable convergence
properties, the presented algorithm also enjoys distributed
configuration and reconfiguration, commonly referred to
as plug-and-play. Distributed reconfiguration or plug-and-
play is the property that if a subsystem is added to (or
removed from) the system, only neighboring subsystems
need to be invoked to reconfigure the algorithm for the
new setup.

For space consideration, all proofs are omitted from this
paper and can be found in the full version paper, Giselsson
(2014).

2. PRELIMINARIES AND NOTATION

2.1 Notation

We denote by R, R
n, R

m×n, the sets of real numbers,
vectors, and matrices. Sn ⊆ R

n×n is the set of symmetric
matrices, and S

n
++ ⊆ S

n, [Sn+] ⊆ S
n, are the sets of positive

[semi] definite matrices. We also use notation 〈x, y〉 = xT y,

‖x‖2 =
√
xTx, and ‖x‖H =

√
xTHx. Finally, IX denotes

the indicator function for the set X , i.e. IX (x) ,
{

0, x∈X
∞, else .

2.2 Preliminaries

In this section, we introduce generalizations of already
well used concepts. We generalize the notion of strong
convexity as well as the notion of Lipschitz continuity of
the gradient of convex functions. We also define conjugate
functions and state a known result on dual properties of a
function and its conjugate.

For differentiable and convex functions f : R
n → R that

have a Lipschitz continuous gradient with constant L, we
have that

‖∇f(x1)−∇f(x2)‖2 ≤ L‖x1 − x2‖2 (1)

holds for all x1, x2 ∈ R
n. This is equivalent to that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
L

2
‖x1 − x2‖22 (2)

holds for all x1, x2 ∈ R
n (Nesterov, 2003, Theorem 2.1.5).

In this paper, we allow for a generalized version of the
quadratic upper bound (2) to f , namely that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (3)

holds for all x1, x2 ∈ R
n where L ∈ S

n
+. The bound (2) is

obtained by setting L = LI in (3).

Remark 1. For concave functions f , i.e. where −f is con-
vex, the Lipschitz condition (1) is equivalent to that the
following quadratic lower bound

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
L

2
‖x1 − x2‖22 (4)

holds for all x1, x2 ∈ R
n. The generalized counterpart

naturally becomes that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
1

2
‖x1 − x2‖2L (5)

holds for all x1, x2 ∈ R
n.

Next, we state a Lemma on equivalent characterizations
of the condition (3).

Lemma 2. Assume that f : R
n → R is convex and

differentiable. The condition that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (6)

holds for some L ∈ S
n
+ and all x1, x2 ∈ R

n is equivalent to
that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≤ ‖x1 − x2‖2L. (7)

holds for all x1, x2 ∈ R
n.

The standard definition of a differentiable and strongly
convex function f : R

n → R is that it satisfies

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
σ

2
‖x1 − x2‖22 (8)

for any x1, x2 ∈ R
n, where the modulus σ ∈ R++ describes

a lower bound of the curvature of the function. In this
paper, the definition (8) is generalized to allow for a
quadratic lower bound with different curvature in different
directions.

Definition 3. A differentiable function f : R
n → R is

strongly convex with matrix H if and only if

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H



holds for all x1, x2 ∈ R
n, where H ∈ S

n
++.

Remark 4. The traditional definition of strong convexity
(8) is obtained from Definition 3 by setting H = σI.

Lemma 5. Assume that f : R
n → R is differentiable and

strongly convex with matrix H . The condition that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H (9)

holds for all x1, x2 ∈ R
n is equivalent to that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≥ ‖x1 − x2‖2H (10)

holds for all x1, x2 ∈ R
n.

The condition (9) is a quadratic lower bound on the
function value, while the condition (3) is a quadratic upper
bound on the function value. These two properties are
linked through the conjugate function

f⋆(y) , sup
x

{
yTx− f(x)

}
.

More precisely, we have the following result.

Proposition 6. Assume that f : R
n → R∪{∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Then the conjugate function f⋆

is convex and differentiable, and ∇f⋆(y) = x⋆(y), where
x⋆(y) = argmaxx

{
yTx− f(x)

}
. Further, ∇f⋆ is Lipschitz

continuous with constant L = 1
σ
.

A straight-forward generalization is given by the chain-rule
and was proven in (Nesterov, 2005, Theorem 1) (which also
proves the less general Proposition 6).

Corollary 7. Assume that f : R
n → R ∪ {∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Further, define g⋆(y) , f⋆(Ay).
Then g⋆ is convex and differentiable, and ∇g⋆(y) =
ATx⋆(Ay), where x⋆(Ay) = argmaxx

{
(Ay)Tx− f(x)

}
.

Further, ∇g⋆ is Lipschitz continuous with constant L =
‖A‖2

2

σ
.

For the case when f(x) = 1
2x

THx + gTx, i.e. f is
a quadratic, a tighter Lipschitz constant to ∇g⋆(y) =
∇f⋆(Ay) was provided in (Richter et al., 2013, Theorem
7), namely L = ‖AH−1AT ‖2.

3. PROBLEM FORMULATION

We consider optimization problems of the form

minimize f(x) + h(x)
subject to Ax = b

(11)

where the decision variables are partitioned as x =
(x1, . . . , xM ) ∈ R

n where xi ∈ R
ni , the cost functions are

separable, i.e. f(x) =
∑M

i=1 fi(xi) and h(x) =
∑M

i=1 hi(xi),
the matrices A ∈ R

m×n and b ∈ R
m are decomposed as

A =



A11 · · · A1M

...
. . .

...
AM1 · · · AMM


 , b =



b1
...

bM




where Aij ∈ R
mi×nj for all i ∈ {1, . . . ,M} and j ∈

{1, . . . ,M} and bi ∈ R
mi for all i ∈ {1, . . . ,M}. We

assume that for all i ∈ {1, . . . ,M}, Aij = 0 for some
j ∈ {1, . . . ,M}, i.e., that the A-matrix is block sparse.
The sparsity structure induced by this assumption is rep-
resented by the sets Ni and Mi, where Ni contains indices

for non-zero blocks of block row i and Mi contains indices
for non-zero blocks of block column i. More precisely, we
have

Ni = {j ∈ {1, . . . ,M} | Aij 6= 0} ,
Mi = {j ∈ {1, . . . ,M} | Aji 6= 0} .

We also introduce concatenated matrices ANi
∈ R

mi×nNi ,
where nNi

=
∑

j∈Ni
nj , that contain all non-zero sub-

matrices Aij , e.g., if N1 = {1, 2, 6} then AN1
=

[A11 A12 A16]. Similarly, we introduce AMi
∈ R

mMi
×ni ,

where mMi
=
∑

j∈Mi
mj ; if M1 = {1, 4, 6}, then AM1

=

[AT
11 AT

41 AT
61]

T . We also introduce consistent notation for
the variables, namely xNi

∈ R
nNi , i.e. xN1

= (x1, , x2, x6)
in the above example. This implies that

∑
j∈Ni

Aijxj =
ANi

xNi
.

These assumptions and the introduced notation imply that
the optimization problem (11) can equivalently be written

minimize

M∑

i=1

{fi(xi) + hi(xi)}

subject to ANi
xNi

= bi, i = {1, . . . ,M}.
(12)

Throughout this paper we assume the following.

Assumption 8.

(a) The functions fi : R
ni → R are strongly convex with

matrix Hi ∈ S
ni

++.
(b) The functions hi : R

ni → R∪{∞} are proper, closed,
and convex.

(c) The matrix A ∈ R
m×n has full row rank.

Remark 9. Assumption 8(a) implies that f =
∑M

i=1 fi is
strongly convex with matrix H , where

H := blkdiag(H1, . . . , HM ). (13)

Assumption 8(b) is satisfied if, e.g., hi are indicator
functions to convex constraint sets. If Assumption 8(c) is
not satisfied, redundant equality constraints can, without
affecting the solution of (11), be removed to satisfy the
assumption.

To form the dual problem, we introduce dual variables
λ = (λ1, . . . , λM ) ∈ R

m, where λi ∈ R
mi . We also

introduce a notation for dual variables that correspond to
the concatenated matrices AMi

, namely λMi
∈ R

mMi .
In the above example with M1 = {1, 4, 6} we have
λM1

= (λ1, λ4, λ6). This gives the following Lagrange dual
problem

sup
λ

inf
x

{
f(x) + h(x) + λT (Ax − b)

}

= sup
λ

inf
x

M∑

i=1

{
fi(xi) + hi(xi) + λT

i (ANi
xNi

− bi)
}

= sup
λ

M∑

i=1

[
inf
xi

{
fi(xi) + hi(xi) + xT

i A
T
Mi

λMi

}
− λT

i bi

]

= sup
λ

M∑

i=1

{
−F ⋆

i (−AT
Mi

λMi
)− λT

i bi
}

(14)

where F ⋆
i , i = {1, . . . ,M}, are conjugate functions to

Fi := fi+hi. We get from (14) that the conjugate function

F ⋆ to F = g + h is given by F ⋆ =
∑M

i=1 F
⋆
i . To evaluate

F ⋆ or F ⋆
i , a minimization problem is solved. We denote



the minimands to these optimization problems by x⋆(λ)
and x⋆

i (λMi
) respectively and they are given by

x⋆(λ) = argmin
x

{
f(x) + h(x) + λTAx

}
, (15)

x⋆
i (λM) = argmin

xi

{
fi(xi) + hi(xi) + λT

Mi
AMi

xi

}
. (16)

We define the local dual functions to be

di(λMi
) := −F ⋆

i (−AT
Mi

λMi
)− bTi λi (17)

and the dual function to be

d(λ) := min
x

{
f(x) + h(x) + λT (Ax − b)

}
(18)

= −F ⋆(−ATλ)− bTλ

where d =
∑M

i=1 di. From Corollary 7 we have that di and
d are differentiable with gradients

∇di(λMi
) = AMi

x⋆
i (λMi

)− b̂i
∇d(λ) = Ax⋆(λ) − b.

respectively, where b̂i = (0, . . . , 0, bi, 0, . . . , 0). Further,
differentiation of the dual function w.r.t. λi is given by

∇λi
d(λ) = ANi

x⋆
Ni

(λi)− bi.

Corollary 7 further implies that the gradients to di
and d are Lipschitz continuous with constants Li =
‖AMi

‖22/λmin(Hi) and L = ‖A‖22/λmin(H) respectively.
As previously discussed, this is equivalent to the existence
of a quadratic lower bound given by (4) to the concave
dual function, with curvature Li and L respectively. In the
following section we will show that the dual function (18)
and local dual functions (17) satisfy the following tighter
lower bounds

d(λ1) ≥ d(λ2) + 〈∇d(λ2), λ1 − λ2〉 − 1
2‖λ1 − λ2‖2AH−1AT

(19)
for all λ1, λ2 ∈ R

m and

di(λ
1
Mi

) ≥ di(λ
2
Mi

) + 〈∇di(λ
2
Mi

), λ1
Mi

− λ2
Mi

〉−
− 1

2‖λ1
Mi

− λ2
Mi

‖AMi
H

−1

i
AT

Mi

(20)

for all λ1
Mi

, λ2
Mi

∈ R
mMi respectively.

4. DUAL FUNCTION PROPERTIES

The following results show that the dual and local dual
functions satisfy (19) and (20) respectively. The results in
this section are proven in the longer version of this paper,
Giselsson (2014).

Theorem 10. Suppose that Assumption 8 holds and that
f is strongly convex with matrix H ∈ S

n
++. The dual

function d defined in (18) is concave, differentiable and
satisfies

d(λ1) ≥ d(λ2) + 〈∇d(λ2), λ1 − λ2〉 − 1
2‖λ1 − λ2‖2L (21)

for every λ1, λ2 ∈ R
m and any L ∈ S

m
+ such that L �

AH−1AT .

Corollary 11. The local dual functions di defined in (17)
are concave, differentiable and satisfy

di(λ
1
Mi

) ≥ di(λ
2
Mi

) + 〈∇di(λ
2
Mi

), λ1
Mi

− λ2
Mi

〉−
− 1

2‖λ1
Mi

− λ2
Mi

‖2
LMi

for all λ1
Mi

, λ2
Mi

∈ R
mMi and any LMi

∈ S
mMi

++ such that

LMi
� AMi

H−1
i AT

Mi
.

Next, we show that if f is a strongly convex quadratic func-
tion and h satisfies certain conditions, then Theorem 10
gives the best possible bound of the form (21).

Proposition 12. Assume that f(x) = 1
2x

THx + ζTx with
H ∈ S

n
++ and ζ ∈ R

n and that there exists a set X ⊆ R
n

with non-empty interior on which h (besides being proper,
closed, and convex) is linear, i.e. h(x) = ξTXx + θX for
all x ∈ X . Further, assume that there exists ν̃ such that
x⋆(ν̃) ∈ int(X ). Then for any matrix L 6� CH−1CT , there
exist ν1 and ν2 such that (21) does not hold.

Proposition 12 shows that the bound in Theorem 10 is
indeed the best obtainable bound of the form (21) if f
is a quadratic and h specifies the stated assumptions.
Examples of functions that satisfy the assumptions on h in
Proposition 12 include linear functions, indicator functions
of closed convex constraint sets with non-empty interior,
and the 1-norm.

Theorem 10 and Corollary 11, provide a tighter quadratic
lower bound to the dual function compared to what has
previously been presented in the literature, i.e. compared
to Proposition 6 and Corollary 7. These results can be ex-
ploited to construct more efficient distributed algorithms.

5. DISTRIBUTED OPTIMIZATION ALGORITHM

Two main disadvantages are associated with standard dual
decomposition using gradient methods or fast gradient
methods. The first is the often slow convergence, especially
if the standard gradient method is used, and the second is
that global information is needed to compute the optimal
step-size. In this section, we will describe generalized
fast gradient methods. These methods together with the
results on the tighter quadratic lower bound to the dual
function presented in the previous section, enables for
significantly improved convergence properties compared to
standard dual decomposition. This is a remedy for the first
issue. For the second issue, we present a fully distributed
initialization procedure of the algorithm that computes the
algorithm parameters.

Generalized fast gradient methods are applicable to solve
problems of the form

minimize g(x)

where x ∈ R
n and g : R

n → R is convex and differentiable
and satisfies

g(x1) ≤ g(x2) + 〈∇g(x2), x1 − x2〉+ 1
2‖x1 − x2‖2L (22)

for all x1, x2 ∈ R
n and some L ∈ S

n
++. The main step of

the algorithm is to minimize the r.h.s. of (22), i.e. to take
a gradient step, since

argmin
x

{
g(y) + 〈∇g(y), x− y〉+ 1

2‖x− y‖2
L

}

= y − L−1∇g(y).

The algorithm is stated next, see Zuo and Lin (2011).

Algorithm 1. Generalized fast gradient method

Set: y1 = x0 ∈ R
n, t1 = 1

For k ≥ 1

xk = yk − L−1∇g(yk)

tk+1 =
1+

√
1+4(tk)2

2

yk+1 = xk +
(

tk−1
tk+1

)
(xk − xk−1)



Since the right hand side of (22) is minimized in every
step of the algorithm, it serves as an approximation of
the function g to be minimized. By restricting L = LI
(where L ∈ R++ is a Lipschitz constant to the gradient) in
the approximation (22) we get the standard fast gradient
method, see e.g. Beck and Teboulle (2009). Using L =
LI, the r.h.s. of (22) has the same curvature in all
directions given by L. If g is not well approximated by this
approximation, slow convergence is expected. By choosing
a matrix L that better captures the shape of the function
to be minimized, a tighter characterization of g can be
obtained, and a faster convergence of the algorithm is
expected. The convergence rate of Algorithm 1 is (see Zuo
and Lin (2011))

g(xk)− g(x⋆) ≤ 2‖x⋆ − x0‖2
L

(k + 1)2
. (23)

The convergence rate of the standard fast gradient method
is given by setting L = LI in (23), see Beck and Teboulle
(2009).

From Theorem 10 we know that the dual function (18)
satisfies the properties required to apply the generalized
fast gradient method, i.e. that the negative dual function
satisfies (22). This implies that Algorithm 1, when applied
to solve the dual problem (14), converges for any L ∈ S

m
++

that satisfies L � AH−1AT . Since d is concave, and
∇d(λ) = Ax⋆(λ) − b, Algorithm 1 applied to solve the
dual problem (14) becomes

Algorithm 2.
Generalized fast dual gradient method

Set: z1 = λ0 ∈ R
m, t1 = 1

For k ≥ 1

xk = argmin
x

{
f(x) + h(x) + (zk)T (Ax− b)

}

λk = zk + L−1(Axk − b)

tk+1 =
1+

√
1+4(tk)2

2

zk+1 = λk +
(

tk−1
tk+1

)
(λk − λk−1)

When solving separable problems of the form (12), Al-
gorithm 2 can be implemented in distributed fashion by
restricting L ∈ S

m
++ to be block diagonal, i.e. of the

form L = blkdiag(L1, . . . ,LM ) where Li ∈ S
mi

++. The
distributed implementation is presented next.

Algorithm 3.
Distributed generalized fast dual gradient method

Initialize z1i = λ0
i ∈ R

mi , t1 = 1.
In every node, i = {1, . . . ,M}, do the following steps
For k ≥ 1

(1) Send zki to each j ∈ Ni, receive zkj from each j ∈ Mi

(2) Form zkMi
= (. . . , zkj , . . .) with all j ∈ Mi

(3) Update local primal variables according to
xk
i = argmin

x

{
fi(x) + hi(x) + xT

i A
T
Mi

zkMi

}

(4) Send xk
i to each j ∈ Mi, receive x

k
j from each j ∈ Ni

(5) Form xk
Ni

= (. . . , xk
j , . . .) with all j ∈ Ni

(6) Update local dual variables according to

λk
i = zki + L−1

i (ANi
xk
Ni

− bi)

tk+1 =
1+

√
1+4(tk)2

2

zk+1
i = λk

i +
(

tk−1
tk+1

)
(λk

i − λk−1
i )

In the following proposition we state the convergence rate
properties of Algorithm 3.

Proposition 13. Suppose that Assumption 8 holds. If L =
blkdiag(L1, . . . ,LM ) ∈ S

m
++ is chosen such that L �

AH−1AT . Then Algorithm 3 converges with the rate

d(λ⋆)− d(λk) ≤
2
∥∥λ⋆ − λ0

∥∥2
L

(k + 1)2
, ∀k ≥ 1 (24)

where k is the iteration number, when solving problems of
the form (12).

Remark 14. By forming a specific running average of pre-
vious primal variables, it is possible to prove a O(1/k)
convergence rate for the distance to the primal variable op-
timum and a O(1/k2) convergence rate for the worst case
primal infeasibility, see Patrinos and Bemporad (2014).

Remark 15. Due to error accumulation of the fast gradi-
ent method, see Devolder et al. (2013), the inner mini-
mizations, i.e. the xk

i -updates, should be solved to high
accuracy.

A remaining issue with the distributed Algorithm 3 is
how to compute the L-matrix and how to distribute these
computations. This is the topic of the following section.

5.1 Distributed computation of the L-matrix

The (optimal) step-size selection in standard fast dual
gradient methods relies on computing a (tight) Lipschitz
constant to the dual gradient. This Lipschitz constant is
usually computed by taking the Euclidean operator norm
of the equality constraint matrix A (see Corollary 7). This
requires centralized computations. In this section we will
extend a recent result in Beck et al. (2014) to allow for
distributed selection of the L-matrix that is used in the
algorithm.

The requirements on the L-matrix are that it should be
block diagonal, i.e. L = blkdiag(L1, . . . ,LM ) to facilitate
a distributed implementation, and that it should satisfy
L � AH−1AT to guarantee convergence of the algorithm.
We will see that Corollary 11 can be used to compute
a matrix L that satisfies these requirements, using local
computations and neighboring communication only. From
Corollary 11 we have that any matrix LMi

∈ S
mMi

++
that describe a quadratic upper bound to the local dual
functions di must satisfy LMi

� AMi
H−1

i AT
Mi

. To allow
for a distributed implementation, we further restrict LMi

to be block-diagonal, i.e. if M1 = {1, 4, 6} then LM1
=

blkdiag(LM1,1,LM1,4,LM1,6) where LMi,j ∈ S
mj

++. These
restrictions on the local matrices LMi

are summarized in
the following set notation

LMi
=
{
LMi

∈ S
mMi

++ | LMi
� AMi

H−1
i AT

Mi
,

LMi
= blkdiag(. . . ,LMi,j , . . .)

with all j ∈ Mi,LMi,j ∈ S
mj

++

}
.

Using this set notation, we propose the following dis-
tributed initialization procedure for Algorithm 3.



Algorithm 4.
Distributed initialization of Algorithm 3

For each i ∈ {1, . . . ,M}
Do

(1) Choose LMi
= blkdiag(. . . ,LMi,j, . . .) ∈ LMi

(2) Send LMi,j to all j ∈ Mi

Receive LMj ,i from all j ∈ Ni

(3) Compute Li =
∑

j∈Ni
LMj ,i

From this initialization we get local Li-matrices that
are used in each local node i and in all iterations of
Algorithm 3. In the following proposition we show that
Algorithm 3 converges with the rate (24) when initialized
using Algorithm 4.

Proposition 16. Suppose that Assumption 8 holds. If Li ∈
S
mi

++ is computed using Algorithm 4. Then Algorithm 3
converges with the rate (24) when solving problems of the
form (12).

The first step in the distributed initialization algorithm
is still not completely specified, i.e., we have not yet
discussed how to choose LMi

. In the following section we
will discuss how to choose LMi

in context of distributed
model predictive control.

6. DISTRIBUTED MODEL PREDICTIVE CONTROL

Distributed model predictive control (DMPC) is a dis-
tributed optimization-based control scheme applied to
control systems consisting of several subsystems that have
a sparse dynamic interaction structure. The local dynam-
ics are described by

xi(t+ 1) =
∑

j∈Ni

Φijxj(t) + Γijuj(t), xi(0) = x̄i

for all i ∈ {1, . . . ,M}, where xi ∈ R
nxi , ui ∈ R

nui ,

Φij ∈ R
nxi

×nxj , Γij ∈ R
nxi

×nuj , and x̄i ∈ R
nxi is a

measurement of the current state. In DMPC, it is common
to have local state and control constraint sets xi ∈ Xi,
ui ∈ Ui, where Xi and Ui are non-empty, closed, and
convex sets. The cost function is usually chosen as the
following sum over a horizon N

M∑

i=1

(
N−1∑

t=0

1

2

[
xi(t)
ui(t)

]T [
Qi 0
0 Ri

] [
xi(t)
ui(t)

])
+

1

2
‖xi(N)‖2Qi,f

where Qi ∈ S
nxi

++, Ri ∈ S
nui

++ , and Qi,f ∈ S
nxi

++. By
stacking the local state and control vectors into yi =
[xi(0)

T , . . . , xi(N)T , ui(0)
T , . . . , ui(N − 1)T ]T we get an

optimization problem of the form

minimize

M∑

i=1

{fi(yi) + hi(yi)}

subject to
∑

j∈Ni

Aijyj = bix̄i

(25)

where fi(yi) = 1
2y

T
i Hiyi, hi(yi) = IYi

(yi), and Hi, Yi,
Aij , and bi are structured according to the stacked vector
yi. The optimization problem (25) is structured as (12)
and can therefore be solved in distributed fashion using
Algorithm 3. In DMPC, the optimization problem (25)
is solved repeatedly in distributed fashion and the first

control action ui(0) is applied to the plant in every
subsystem i ∈ {1, . . . ,M} after each optimization. Since
many similar optimization problems are solved repeatedly
online, much offline computational effort can be devoted
to ease the online computational burden. In this case,
the offline computational effort is devoted to run the
distributed initialization in Algorithm 4. The first step of
Algorithm 4 does not state how to choose the Li matrices,
only that they should be chosen. In the DMPC context, we
propose to solve the following local optimization problem
in step 1 and for each i ∈ {1, . . . ,M}:

minimize tr LMi

subject to LMi
= blkdiag(. . . ,LMi,j , . . .) ∈ LMi

.
(26)

This is a convex semi-definite program (SDP) that can
readily be solved using standard software.

Due to the distributed structure of the initialization pro-
cedure, the DMPC scheme enjoys distributed reconfigura-
tion, commonly referred to as plug-and-play. Distributed
reconfiguration or plug-and-play refers to the feature that
if an additional subsystem is connected to (or removed
from) the system, the only updates needed in the algo-
rithm involve computations in the direct neighborhood of
the added (removed) subsystem. This is the case for Algo-
rithm 4 since if a reconfiguration is needed due to addition
or removal of subsystem i, only subsystems j ∈ Mi need
to be invoked for the reconfiguration.

7. NUMERICAL EXAMPLE

The proposed algorithm is evaluated by applying it to a
system consisting of 100 subsystems that have a sparse
dynamic interaction. The dynamic interaction structure is
decided using the method in (Kraning et al., 2013 §6.1).
The number of states in each subsystem is randomly
chosen from the interval {10, 11, . . . , 20} and the number
of inputs are three or four. The control horizon is chosen
to be N = 10 and the total number of decision variables
in the DMPC optimization problem is 18020. The entries
of the dynamics and input matrices are randomly chosen
from the intervals [−0.7 1.3] and [−1 1] respectively. Then
the dynamics matrix is re-scaled to get a spectral radius of
1.2. The states and inputs are upper and lower bounded by
random bounds generated from the intervals [0.2 1.2] and
[−1.2 −0.2] respectively. The state and input cost matrices
are diagonal and each diagonal entry is randomly chosen
from the interval [1 1000].

The proposed algorithm is evaluated by comparing it to
fast dual decomposition and standard dual decomposi-
tion. Fast dual decomposition is achieved by setting Li =
‖AH−1AT ‖2I for all i in Algorithm 3, where A and H are
the global equality constraint and cost matrices respec-
tively. This choice of Li is optimal if restricted to being a
multiple of the identity matrix, and if all Li are restricted
to be equal (as in fast dual decomposition). By standard
dual decomposition, we refer to dual decomposition with
standard gradient steps. This is achieved by using the
optimal step size, i.e. Li = ‖AH−1AT ‖2I in Algorithm 3,
and letting the last line of point 6) in the algorithm

be zk+1
i = λk

i . This removes the Nesterov acceleration
from the method and results in a standard dual gradi-
ent method, i.e. the standard dual decomposition. In the



Table 1. Numerical comparison of Algorithm 3
and fast and standard dual decomposition.

nbr iters

Algorithm avg. max

Algorithm 3 initialized using Alg. 4 133.7 200

fast dual decomposition 788.5 1309

standard dual decomposition 45784 105651

numerical evaluation, the proposed distributed algorithm,
i.e. Algorithm 3, is initialized using the initialization in
Algorithm 4. In step 1) of this initialization procedure,
the optimization problem (26) is solved in each node i.

The evaluation in Table 1 is obtained by generating 1000
random initial conditions from the state constraint set
and solving the corresponding optimal control problems
using the three different methods. Table 1 reports the
average and max number of iterations required to solve
these problems.

The numerical evaluation reveals that the introduction of
acceleration significantly improves the convergence of dual
decomposition, i.e. fast dual decomposition significantly
outperforms standard dual decomposition. The distributed
algorithm proposed in this paper, i.e. Algorithm 3, further
reduces the communication requirement in dual decompo-
sition with more than a factor of five compared to fast dual
decomposition.

8. CONCLUSIONS

We have proposed a generalization of fast dual decomposi-
tion. In this generalization, a quadratic upper bound to the
negative dual function with different curvature in different
directions is minimized in each step in the algorithm. This
differs from traditional dual decomposition methods where
the main step is to minimize a quadratic upper bound to
the negative dual function that has the same curvature in
all directions. This generalization is made possible by the
main contribution of this paper that characterizes the set
of matrices that can be used to describe this quadratic
upper bound. Further, we show that the algorithm can
be initialized and reconfigured using distributed compu-
tations only. This is traditionally not the case in dual
decomposition where the norm of a matrix that involve
variables from all subsystems is used to compute the opti-
mal step size. For the example considered in this paper, the
proposed algorithm converges more than five times faster
than fast dual decomposition and more than 300 times
faster than standard dual decomposition.

REFERENCES

A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sciences, 2(1):183–202, October 2009.

A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle. Opti-
mal distributed gradient methods for network resource
allocation problems. IEEE Transactions on Control of
Network Systems, 2014. To appear.

J. F. Benders. Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathe-
matik, 4(1):238–252, 1962.

G. B. Danzig and P. Wolfe. The decomposition algorithm
for linear programming. Econometrica, 4:767–778, 1961.

O. Devolder, F. Glineur, and Y. Nesterov. First-order
methods of smooth convex optimization with inexact
oracle. Mathematical Programming, pages 1–39, 2013.

M. D. Doan, T. Keviczky, and B. De Schutter. An iterative
scheme for distributed model predictive control using
Fenchel’s duality. Journal of Process Control, 21(5):
746–755, June 2011. Special Issue on Hierarchical and
Distributed Model Predictive Control.

H. Everett. Generalized Lagrange multiplier method for
solving problems of optimum allocation of resources.
Operations Research, 11:399–417, 1963.

P. Giselsson. A generalized distributed accelerated gra-
dient method for DMPC with iteration complexity
bounds. In Proceedings of 2013 American Control Con-
ference, pages 327–333, Washington D.C., June 2013.

P. Giselsson. Improving fast dual ascent for MPC - Part
I: The distributed case. Automatica, 2014. Submitted.
Available http://arxiv.org/abs/1312.3012.

P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter,
and A. Rantzer. Accelerated gradient methods and dual
decomposition in distributed model predictive control.
Automatica, 49(3):829–833, 2013.

M. Kraning, E. Chu, J. Lavaei, and S. Boyd. Dynamic net-
work energy management via proximal message passing.
Foundations and Trends in Optimization, 1(2):70–122,
2013.

R. R. Negenborn. Multi-Agent Model Predictive Control
with Applications to Power Networks. PhD thesis, TU
Delft, 2007.

Y. Nesterov. A method of solving a convex programming
problem with convergence rate O (1/k2). Soviet Math-
ematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Springer Netherlands, 1st edition,
2003. ISBN 1402075537.

Y. Nesterov. Smooth minimization of non-smooth func-
tions. Math. Program., 103(1):127–152, May 2005.

P. Patrinos and A. Bemporad. An accelerated dual
gradient-projection algorithm for embedded linear
model predictive control. IEEE Transactions on Au-
tomatic Control, 59(1):18–33, 2014.

S. Richter, C. N. Jones, and M. Morari. Certification
aspects of the fast gradient method for solving the dual
of parametric convex programs. Mathematical Methods
of Operations Research, 77(3):305–321, 2013.

P. Tseng. On accelerated proximal gradient methods for
convex-concave optimization. Technical report. Avail-
able: http://www.csie.ntu.edu.tw/~b97058/tseng/
papers/apgm.pdf, May 2008.

W. Zuo and Z. Lin. A generalized accelerated proxi-
mal gradient approach for total-variation-based image
restoration. IEEE Transactions on Image Processing,
20(10):2748–2759, October 2011.


