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Abstract— Theory for Adaptive Nonlinear Model Predictive
Control is developed based on the relaxed dynamic program-
ming inequality. The adaptivity in the controller lies in the
choice of control horizon. The control horizon is chosen such
that a variation of the relaxed dynamic programming inequality
holds for all time steps along the closed loop trajectory. This
provides guarantees for asymptotic stability and closed loop
suboptimality above a certain pre-specified level.

I. INTRODUCTION

Model Predictive Control (MPC) is recognized as a high

performing control structure for complex systems. The foun-

dation of MPC is to, between every applied control action,

solve a finite horizon optimization problem that predicts the

plant future and minimizes a certain cost functional based on

the predictions. When new measurements become available

to the controller, another optimization takes place. Over the

last decades many successful applications with MPC has

been implemented [2], [11].

Many researchers have presented different methods to

ensure asymptotic stability for Model Predictive Controllers

with fixed control horizon. Most of these methods utilize

either a certain cost or constraint on the final state in the

optimization horizon to ensure stability. This final cost or

constraint is designed such that the optimal value function

of the MPC cost is a Lyapunov function to the system, see [9]

for a survey of different methods. A couple of MPC schemes

with variable control horizon has been presented [10], [13],

[14] and [15]. The main idea behind these methods is to vary

the control horizon such that the final state of the horizon

reaches a certain terminal set. In [10], this terminal set is

predefined and in the series of papers [13], [14] and [15],

the terminal set depends on the current state.

In the last couple of years, results has been established for

asymptotic stability of Model Predictive Controllers without

terminal cost or constraints, cf. [1], [4]. These papers show,

under different types of controllability and detectability

conditions that the system is stable for sufficiently large

control horizons. However, bounds on the required horizon

are not given. In [7] suboptimality bounds for Model Pre-

dictive Controllers are developed based on relaxed dynamic

programming which is developed in [8]. Asymptotic stability

is a direct consequence of these suboptimality bounds with

the value function of the MPC cost as Lyapunov function.

This work has been extended in [5] where the suboptimality

bounds together with certain controllability assumptions on

the running cost allow for finding a minimal stabilizing

control horizon for the class of systems satisfying the control-

lability assumptions. These controllability assumptions can,

however, be a cumbersome task to verify for a given non-

linear system. Further, the control horizon required may vary

for different parts of the state space. In an attempt utilize

this, an adaptive MPC scheme, based on the same relaxed

dynamic programming inequality, is presented in [12]. The

control horizon is adapted, on-line, such that the relaxed

dynamic inequality holds in every time step. The work in

[12] ensures asymptotic stability of the system, and that the

step to step suboptimality is above a certain pre-specified

level. However, the pre-specified level of suboptimality is

not guaranteed for the closed loop system from initial state

to the zero-set of running cost.

In this work we consider Adaptive Model Predictive

Control with cost functionals containing neither terminal

constraints nor terminal cost. The adaptation in the Adaptive

MPC lies in the choice of control horizon which is adapted

such that an extended version of the relaxed dynamic pro-

gramming inequality holds in each time step. The extension

to the relaxed dynamic programming framework has two

properties that differ from the original version. The first

differing property is that it allows for time varying control

horizons. The second differing property is that it gives less

conservative sub-optimality estimates since, using a slack

variable, conservatism from previous time steps are used to

ease the conditions for future time steps. Ones the conditions

of the extended relaxed dynamic programming inequality are

satisfied, asymptotic stability is ensured. Further, contrary to

what is the case in [12], closed loop performance above a

pre-specified level, from initial state to the zero set of the

running cost, is guaranteed. This paper has been developed

in parallel with [3] in which similar ideas are used in a

distributed MPC scheme.

The continuation of this paper is organized as follows. In

Section II the MPC idea is presented and some preliminaries

stated. In Section III the relaxed dynamic programming

inequality is extended and altered to fit our context with

varying control horizons. In Section IV the previously stated

inequality is used as design tool for the choice of control



horizon in the MPC controller. In Section V two different

schemes are presented such that asymptotic stability and

suboptimality to a pre-defined degree is obtained. In Section

VI a numerical example is presented and in Section VII we

conclude the paper.

II. PROBLEM SETUP

The aim of this paper is to develop suboptimal control

schemes for nonlinear discrete time systems of the form

x(t + 1) = f(x(t), u(t)) , x(0) = x0 (1)

where x(t) ∈ X and u(t) ∈ U for t ∈ N0. Given a dynamical

system (1) the ultimate objective is to find a feedback control

law such that the following infinite horizon cost functional

is minimized

J∞(x0, u) =

∞
∑

t=0

ℓ(x(t), u(t))

where the stage cost ℓ : X ×U → R
+
0 and u is the sequence

of applied control actions. The corresponding optimal value

function is denoted

V∞(x0) = min
u

J∞(x0, u).

To find such a feedback control law the solution of the

Hamilton-Jacobi-Bellman equation for the infinite horizon

optimal control problem must be found. This is in general not

a tractable problem. To circumvent this undesirable property

the Model Predictive Control methodology is introduced.

The idea behind Model Predictive Control is to truncate

the original infinite horizon cost functional at some finite

time, solve the resulting optimal control problem with finite

horizon, apply the first control action in the open loop

solution. This procedure is then repeated for every time step,

where the truncated optimization problem is fed with the

current state of the system. The iterative nature of the Model

Predictive Controller results in a state feedback controller.

In this work we allow for time varying control horizons,

leading to the following truncated cost functional in each

time step t

JN(t)(x(t), u) =

N(t)
∑

τ=0

ℓ(x(t, τ), u(τ)). (2)

where x(t, 0) = x(t). Throughout this paper, the predicted

state trajectory internal to the controller at time t is denoted

x(t, τ), where τ = 0, ..., N(t). The closed loop state at time

t is denoted x(t). In the MPC controller, the truncated cost

functional (2) is minimized for every time step t with the

system dynamics as equality constraints:

x(t, τ + 1) = f(x(t, τ), u(τ)) , x(t, 0) = x(t).

The corresponding value function is denoted

VN(t)(x(t)) = min
u

JN(t)(x(t), u).

In each time instant, t, a sequence of control actions, u(t, ·),
is optimized. Only the first of those actions, u(t, 0), is applied

to the process before the whole optimization process is

repeated in the following time step. The closed loop solution

state trajectory is denoted

x(t + 1) = f(x(t), u(t, 0)) , x(0) = x0 (3)

for t ∈ N0. The resulting infinite horizon cost for the closed

loop system is denoted

V MPC
∞

(x0) =

∞
∑

t=0

ℓ(x(t), u(t, 0))

The objective of this work is to create an adaptive MPC

scheme in which the control horizon may vary between

different time instants in order to guarantee a pre-specified

bound on the suboptimality, i.e. a bound on the relation

between V MPC
∞

(x0) and V∞(x0).
The work in this paper is based on the relaxed dynamic

programming inequality which provides a means to obtain

suboptimality bounds for, e.g. an MPC-scheme. Before we

are ready to state a proposition about this, we observe that

VN (x(t)) ≥ VM (x(t)) if N ≥ M . This is true since

neither terminal constraints nor terminal cost is present in the

cost function. Further, due to the construction of the value

function, we have that VN (x(t)) : X → R
+
0 . The following

proposition is a slight variation of [7, Proposition 2.2] or [5,

Proposition 2.4].

Proposition 1: Consider a closed loop trajectory x(·) ac-

cording to (3) and suppose that there exist α ∈ (0, 1) such

that

VN (x(t)) ≥ VN (x(t + 1)) + αℓ(x(t), u(t, 0)) (4)

holds for all t ∈ N0. Then

αV MPC
∞

(x(0)) ≤ V∞(x(0)).

Proof. Summation of (4) over t = 0, ..., T gives

α

T
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN (x(0)) − VN (x(T + 1)).

Since VN (x(T + 1)) ≥ 0 and VN (x(0)) ≤ V∞(x(0)) we

have that

α

T
∑

t=0

ℓ(x(t), u(t, 0)) ≤ V∞(x(0)).

The definition of V MPC
∞

(x(0)) gives the desired result as

T → ∞. �

Note that the conditions of the proposition are run-time

conditions which provide an easy way to estimate the sub-

optimality of the closed loop trajectory.

Throughout this paper we assume that the optimal infinite

horizon cost V∞(x0) is finite. Further, the running cost ℓ is

assumed convex and to allow the system to stay in the origin

at zero cost, ℓ(0, 0) = 0. Finally, X is assumed to be control

invariant, i.e., for all x ∈ X, ∃u ∈ U s.t. f(x, u) ∈ X , to

avoid feasibility problems.



III. NMPC ANALYSIS TOOLS

In this section the result in Proposition 1 is extended to

include the case of time varying control horizons. Further, by

introducing a slack variable s(t), we relax the conditions in

Proposition 1 which result in less conservative suboptimality

bounds. The relaxation to Proposition 1 is given in the

following theorem. A similar theorem is presented in [3].

Theorem 1: Consider a closed loop trajectory x(·) accord-

ing to (3) and suppose that there exist α ∈ (0, 1) such that

VN(t)(x(t)) ≥ VN(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)
(5)

where

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))

+ VN(t)(x(t)) − VN(t−1)(x(t − 1)) (6)

and s(0) = 0 hold for all t ∈ N0. Then

αV MPC
∞

(x(0)) ≤ V∞(x(0)).

Proof. Induction of (6) over t gives at t = T

s(T ) = s(T − 1) + αℓ(x(T − 1), u(T − 1, 0))+

+ VN(T )(x(T )) − VN(T−1)(x(T − 1))

= · · · = α

T−1
∑

t=0

ℓ(x(t), u(t, 0))+

+ VN(T )(x(T )) − VN(0)(x(0)).

Insert this into (5) gives

α

T
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)) − VN(T+1)(x(T + 1))

≤ VN(0)(x(0)) ≤ V∞(x(0))

This gives, as T → ∞

αV MPC
∞

(x(0)) = α

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ V∞(x(0)).

This completes the proof. �

Remark 1: The difference between Theorem 1 and Propo-

sition 1, besides the fact that we allow for variable time

horizons, is the introduced slack variable s(t). This slack

variable sums the slack in the inequalities for previous time

steps, giving an easier inequality to fulfil in the current time

step. Since s(t) ≤ 0 for all t, the inequality (5) is easier to

fulfil for given α than the inequality in Proposition 1.

Our next objective is to prove asymptotic stability under

the conditions of Theorem 1. With asymptotic stability in this

context, we mean that for the closed loop system ‖x(t)‖2
2 →

0 as t → ∞. Before we are ready to state the theorem, which

is equivalent to [3, Theorem 2], the following assumption is

needed.

Assumption 1: Assume that there exist a β > 0 such that

min
u

ℓ(x, u) ≥ β‖x‖2
2.

Theorem 2: Consider a closed loop trajectory x(·) accord-

ing to (3) and suppose that Assumption 1 holds and that

V MPC
∞

(x(0)) ≤ M (7)

where M is a finite positive real number. Then ‖x(t)‖2
2 → 0

as t → ∞.

Proof. We show this by a contradiction argument. We have

that

V MPC
∞

(x(0)) =

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ M (8)

where M is a finite positive real number. Assume that

‖x(t)‖2
2 6→ 0 as t → ∞, then there is an ǫ > 0 and a

T ≥ 0 such that ‖x(t)‖2
2 ≥ ǫ for all t ≥ T . Further

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≥

∞
∑

t=T

β‖x(t)‖2
2 ≥ βǫ

∞
∑

t=T

1 (9)

which is unbounded. Thus by contradiction the assertion

holds. �

Remark 2: Note that if the conditions of Theorem 1 hold

then the conditions of Theorem 2 also hold with M =
V∞(x(0))/α which is finite by assumption.

As previously discussed, the conditions in Theorem 1 are

run-time conditions. They can be used as an analysis tool for

a NMPC system to, on-line, estimate the performance of the

closed loop system. If the conditions fail we cannot deduce

anything about stability nor suboptimality in this framework.

The objective of the next section is to use the analysis tools

in this section as design tools to adaptively choose control

horizon N(t) such that the conditions of Theorem 1 hold for

all t and for a pre-specified level of suboptimality.

IV. ADAPTIVE MODEL PREDICTIVE CONTROL

The conditions of Theorem 1 cannot directly be used to

adaptively choose control horizon in an adaptive MPC con-

text. The reason is that information about the next step value

function, VN(t+1)(x(t + 1)), is not available at time t. The

other terms, VN(t)(x(t)) and ℓ(x(t), u(t, 0)) are byproducts

from the optimization problem to be solved when calculating

the control action, and s(t) contains previously calculated

terms. Thus, if an upper bound, V̄N(t+1)(x(t + 1)), can be

calculated at time t such that

V̄N(t+1)(x(t + 1)) ≥ VN(t+1)(x(t + 1)) (10)

then the conditions of Theorem 1 can be changed to

VN(t)(x(t)) ≥ V̄N(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)

and

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))

+ V̄N(t)(x(t)) − VN(t−1)(x(t − 1))

respectively. All terms in these conditions are known at time t
which allows for adaptation of the control horizon N(t) such

that the conditions hold. The use of upper bounds will give

more conservative results then if the actual optimal value

function values was used. Most of this conservatism can,



however, be used to ease the conditions for later time steps

by incorporating this conservatism in the slack variable s(t)
as in the following theorem.

Theorem 3: Consider a closed loop trajectory x(·) accord-

ing to (3) and suppose that for a pre-specified α ∈ (0, 1) we

can find control horizons, N(t) ∈ N1 such that

VN(t)(x(t)) ≥ V̄N(t+1)(x(t + 1)) + αℓ(x(t), u(t, 0)) + s(t)
(11)

where

s(t) = s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))

+ V̄N(t)(x(t)) − V̄N(t−1)(x(t − 1)) (12)

and

s(1) = αℓ(x(0), u(0, 0))+ V̄N(1)(x(1))−VN(0)(x(0)) (13)

and s(0) = 0 hold for all t ∈ N0. Then

αV MPC
∞

(x(0)) ≤ V∞(x(0))

and ‖x(t)‖2
2 → 0 as t → ∞.

Proof. Induction of (12) over t gives at t = T

s(T ) = s(T − 1) + αℓ(x(T − 1), u(T − 1, 0))+

+ V̄N(T )(x(T )) − V̄N(T−1)(x(T − 1))

= · · · = s(1) + α
T−1
∑

t=1

ℓ(x(t), u(t, 0))+

+ V̄N(T )(x(T )) − V̄N(1)(x(1))

= α

T−1
∑

t=0

ℓ(x(t), u(t, 0)) + V̄N(T )(x(T )) − VN(0)(x(0))

Insert this into (11) gives

α

T
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)) − V̄N(T+1)(x(T + 1))+

+ VN(T )(x(T )) − V̄N(T )(x(T ))

≤ VN(0)(x(0)) − V̄N(T+1)(x(T + 1))

≤ VN(0)(x(0)) ≤ V∞(x(0))

This gives, as T → ∞

αV MPC
∞

(x(0)) = α

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ V∞(x(0)),

which proves the assertion about suboptimality.

Theorem 2 proves that ‖x(t)‖2
2 → 0 as t → ∞ since

V MPC
∞

(x(0)) is finite.

This completes the proof. �

Remark 3: The slack variable s(t) in Theorem 3 consists

of two parts, the unused slack from the previous time step:

s(t − 1) + αℓ(x(t − 1), u(t − 1, 0))

+ V̄N(t)(x(t)) − VN(t−1)(x(t − 1))

and the conservatism due to the upper bound of the value

function in the inequality two time steps back:

VN(t−1)(x(t − 1)) − V̄N(t−1)(x(t − 1)).

When these parts are summed up, we get the slack variable

as described in Theorem 3.

Remark 4: We ensure that

α
∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ V∞(x(0))

by ensuring that

α

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)).

Since we know that ℓ(x(t), u(t, 0)) → 0 as t → ∞ and by

assuming that V̄N(t)(x(t)) → 0 as t → ∞ the slack variable

converges s(t) → s as t → ∞. Thus, we have the following

relationship

α
∞
∑

t=0

ℓ(x(t), u(t, 0)) = VN(0)(x(0)) + s

where s is a measure on the conservatism with respect to

what is needed to ensure the conditions of Theorem 3.

Given the following assumption, a bound on the control

horizon needed to ensure the conditions of Theorem 3 is

directly given.

Assumption 2: Assume that for a pre-specified α ∈ (0, 1),
a finite number N0 ∈ N1 is known such that

VN0
(x) ≥ VN0

(f(x, u)) + αℓ(x, u)

holds for all x ∈ X where u is the minimizing control action,

i.e. u = arg min VN0−1(f(x, u)) + ℓ(x, u).
Remark 5: Consult [5] for literature that address the mat-

ter of finding N0 for given α that satisfies Assumption 2.

Assumption 2 gives that the longest control horizon nec-

essary to satisfy the conditions of Theorem 3 is N0 since

s(t) ≤ 0 for all t ∈ N0.

Two-phase adaptive MPC

An extension to Theorem 3, in which a two-phase strategy

is used, is presented here. If sub-optimality of at least α is

desired, Assumption 2 can be evaluated to find the corre-

sponding N0. Further, for some Nβ < N0 the corresponding

0 < β < α can be evaluated that satisfies Assumption 2. In

the first phase the adaptive MPC runs with α as suboptimality

and N0 as upper bound to the control horizon necessary.

At some time T > 0, if a certain condition holds, the

second phase starts where the adaptive MPC runs with β as

suboptimality and Nβ as upper bound to the control horizon.

The following theorem shows that the original performance

objective, αV MPC
∞

(x(0)) ≤ V∞(x(0)), is achieved.

Theorem 4: Assume that Assumption 2 holds for a pre-

specified α with horizon N0 and for some 0 < β < α with

horizon Nβ < N0. Further assume that phase two, with β
and Nβ , starts at some T > 0 if

α

T−1
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)) −
α

β
VNβ

(x(T )) (14)

where N(0) ≤ N0. Then the performance bound

αV MPC
∞

(x(0)) ≤ V∞(x(0)) still hold and for all t ≥ T
the longest control horizon needed is Nβ .



Proof. Theorem 3 and Assumption 2 gives that for any

switching time T ≥ 0 one obtains

β

∞
∑

t=T

ℓ(x(t), u(t, 0)) ≤ VNβ
(x(T )).

with control horizon N ≤ Nβ for all t ≥ T . Further

α

T−1
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)) −
α

β
VNβ

(x(T ))

≤ VN(0)(x(0)) − α

∞
∑

t=T

ℓ(x(t), u(t, 0))

which gives

α

∞
∑

t=0

ℓ(x(t), u(t, 0)) ≤ VN(0)(x(0)) ≤ V∞(x(0)).

This completes the proof. �

The purpose of the this theorem is to reduce the computa-

tional complexity of the adaptation scheme by shortening the

control horizon needed for the upper bound.

V. ADAPTIVE NMPC SCHEMES

A simple adaptation scheme that finds the control horizon

length necessary to satisfy the conditions of Theorem 3 is

presented in this section.

A. General adaptation scheme

The following adaptation scheme is used to ensure the

conditions of Theorem 3.

Scheme

1) Calculate VN(t)(x(t))
2) Calculate V̄N(t+1)(f(x(t), u(t, 0)))
3) While the conditions of Theorem 3 do not

hold (or N(t) ≥ N0 [under Assumption 2])

• Set N(t)← N(t) + 1
• Calculate VN(t)(x(t))
• Calculate V̄N(t+1)(f(x(t), u(t, 0)))

4) Apply u(t, 0)
5) Set N(t + 1)← max(N(t)− 1, Nmin)
6) Set t← t + 1 and go to 1)

With this scheme, the largest decrease in control horizon

between two consecutive steps is one. To use the proposed

scheme for Theorem 4, the condition (14) need to be checked

in every sample. If the condition holds for some T > 0, start

phase two with β sub-optimality degree and Nβ as upper

bound to the length of the control horizon.

The only term in the conditions, (11), that is not available

after the ordinary MPC optimization, is the upper bound

to the value function in the next step. This upper bound

can, based on different assumptions, be calculated in various

ways. We present two schemes which follow the general

scheme but differ in their respective ways to calculate the

upper bound.

B. Scheme 1

Calculation of the upper bounds in this scheme is based on

Assumption 2. The lowest possible upper bound is, of course,

VN0
(f(x(t), u(t, 0))). The computational time of calculating

that value is the same as calculating VN0
(x(t)). This would

make the adaptivity superfluous since it would not be pos-

sible to reduce the computational complexity compared to

using traditional MPC with fixed control horizon, N = N0.

However, a feasible control horizon from f(x(t), u(t, 0))
over N − 1 time steps is available from the calculation of

VN (x(t)). An upper bound for the value of the remaining

N0 − N + 1 time steps can be obtained by calculating

VN0−N+1(x(t,N)). Thus an upper bound is achieved in the

following way:

V̄N(t+1)(x(t + 1)) = VN (x(t)) − ℓ(x(t), u(t, 0))−

− ℓ(x(t,N), u(t,N)) + VN0−N+1(x(t,N))

where all terms except the last one are known after comput-

ing VN (x(t)).

In the scheme Nmin needs to be chosen. This value

should be chosen such that Nmin ≥ N0/2 to spend more

computational effort on the optimization problem needed for

control than on the optimization problem needed for the

upper bound.

C. Scheme 2

The method to calculate the upper bounds in this second

scheme does not rely on any assumptions on the control

horizon needed to ensure the conditions in the following

time step. To calculate an upper bound to the next step

value function, an upper bound to the infinite horizon value

function is needed, i.e. V̄∞(f(x(t), u(t, 0))). Such an upper

bound can be obtained by solving the usual optimal control

problem with the additional constraint that the final state in

the horizon should be in the origin. The corresponding value

function is denoted V 0
N (x). Similar to in the first scheme we

get the following upper bound

V̄∞(x(t + 1)) = VN (x(t)) − ℓ(x(t), u(t, 0))−

− ℓ(x(t,N), u(t,N)) + V 0
N (x(t,N)).

The first N−1 steps of the upper bound trajectory is decided

by the MPC-optimization. The remaining trajectory is chosen

to have control horizon N with final constraints in the origin.

VI. NUMERICAL EXAMPLE

A cart example is presented here to numerically show how

the adaptive NMPC scheme performs. The cart moves in two

dimensions where each direction of motion is modeled as a

discrete time double integrator

x(t + 1) =









1 h 0 0
0 1 0 0
0 0 1 h
0 0 0 1









x(t) +









h2/2
h

h2/2
h









u(t).



The control signals u ∈ R
2 and the states x ∈ X where

X =
{

x ∈ R
4

∣

∣ x1 ≥ −3, x3 ≥ −3, (x1 + x3) ≥ −1,

− 30 ≤ x2 ≤ 30, −30 ≤ x4 ≤ 30
}

where the subscript corresponds to its location in the state

vector. The stage cost considered is

ℓ(x, u) = xT x + uT u

The control objective is to control the system from its initial

position, x(0) = (10 ,−30 , 10 ,−10)T , to the origin while

minimizing the stated stage along the closed loop trajectory.

In table I numerical results from simulations based on the

schemes presented in the previous section are presented and

compared to other schemes. All simulations are performed

to achieve the suboptimality bound α = 0.8. For this choice

of α, Assumption 2 is satisfied for N0 = 20.

MPC scheme comparisons

Scheme N0 β Nβ Nmin N̄ αcalc c̄(10.3s)
1 20 0.3 10 5 5.6 0.987 0.24

1 20 - - 10 10.4 0.989 0.72

2 - - - 5 6.7 0.993 2.1

const N 20 - - - 20 0.994 1.0

TABLE I

RESULTS FROM EXPERIMENTS WITH DIFFERENT NMPC SCHEMES

In the first row, results for scheme 1 are presented, where

Assumption 2 is known to hold for α = 0.8, N0 = 20 and for

β = 0.3, Nβ = 10. The scheme is based on Theorem 3 and

Theorem 4. The second row contain results when running the

scheme based on Assumption 2 with α = 0.8, N0 = 20. In

the third row results for scheme 2, i.e. without assumptions

on the control horizon, are presented. The final row contain

the results obtained when a fixed horizon controller is used.

To guarantee the desired sub-optimality, Assumption 2 is

assumed to hold for α = 0.8, N0 = 20.

Note that the scheme behind row 1 require most a priori

knowledge of the system. The scheme behind row 2 and the

one with constant control horizon require the same knowl-

edge. The scheme in row 3 is the scheme that guarantees the

desired sub-optimality with least a priori information of the

system.

The last three columns of the table present the results.

The column with N̄ contain the mean length of the control

horizon. The mean is calculated using the first 100 time

samples. One can note that the mean length is close to the

minimum allowed control horizon in all schemes. The col-

umn with αcalc specifies the performance for each scheme.

The performance is very similar for all schemes and very

close to optimal performance. The final column might be the

most interesting one since it contains the mean calculation

time of the optimization problems needed to be solved before

the control action can be applied. The scheme with most a

priori information has the shortest mean computation time,

less than one fourth compared to if constant control horizon

was used. The adaptive scheme in row 2 also has shorter

mean computational time than the one with constant hori-

zon. They are based on the same assumptions, which hints

that this adaptive MPC approach is more computationally

efficient than the traditional fixed horizon approach, at least

in this example. The scheme behind the third row is based

on less assumptions and more computational time is required

to ensure the same performance.

VII. CONCLUSIONS

We have presented theory for Adaptive Model Predic-

tive Control based on the relaxed dynamic programming

inequality. Asymptotic stability and closed loop performance

above a certain pre-specified level is guaranteed. Numerical

examples have shown that the computational complexity

of the adaptation scheme is, on average, lower than for

a traditional MPC scheme with fixed control horizon that

ensures the same performance.
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