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Abstract— First order optimization methods often perform
poorly on ill-conditioned optimization problems. However, by
preconditioning the problem data and solving the precondi-
tioned problem, the performance of the first order method
can be significantly improved. In this paper, we show how
to compute such preconditioners when solving the dual of
strongly convex optimization problems using fast dual proximal
gradient methods. The proposed preconditioning is evaluated
by solving ill-conditioned optimization problems that arise from
controlling the pitch angle in an aircraft using model predictive
control. The numerical example shows improvements of two to
three orders of magnitude in the fast dual proximal gradient
method compared to when no preconditioning is used.

I. INTRODUCTION

We consider an accelerated version of the proximal gradi-

ent method, or equivalently the forward-backward splitting

method, applied to solve a dual problem. The proximal

gradient method (or forward-backward splitting method) can

be applied to solve composite convex optimization problems

of the form

minimize ℓ(x) + ψ(x) (1)

where ℓ is smooth, and ψ is proper, closed, and convex. The

algorithm consists of first taking a gradient step (or forward

step) in ℓ, then a proximal step (or backward step) in ψ,

where the prox-step is defined as

proxψ(y) = argmin
x

{
ψ(x) + 1

2‖x− y‖22
}
.

The proximal gradient method becomes

xk+1 = proxtψ
(
xk − t∇ℓ(xk)

)
(2)

where t is a step-size which is optimally chosen as t =
1/L, where L is a Lipschitz constant to ∇ℓ, see [13].

A special case of the proximal gradient method is the

projected gradient method [10], which is obtained when ψ
is the indicator function for a constraint set. These proximal

gradient methods (or forward-backward splitting methods)

do not possess an optimal convergence rate, as shown in

[11]. In [12], Nesterov devised an (up to a constant) optimal

gradient method that later has been extended and generalized

to accelerate projected gradient methods [13] and proximal

gradient methods [1], [19]. The algorithmic difference be-

tween the proximal gradient method in (2) and the fast

proximal gradient method in [1] is that, in the latter case,

the forward-backward step is taken from the auxiliary point

yk = xk+βk(xk−xk−1), where βk grows in a specific way,

instead of from the previous iterate xk. Despite the simple
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algorithmic modification, the theoretical convergence rate is

significantly improved, and most often also the practical con-

vergence. For more on forward-backward splitting methods

and other methods suitable for solving problems of the form

(1), the reader is referred to [15].

Even though fast (proximal) gradient methods often con-

verge significantly faster than standard (proximal) gradient

methods, the performance can still be unsatisfactory when

applied to ill-conditioned problems. In an attempt to resolve

this, we present in this paper methods to precondition the

problem data such that, when the fast (proximal) gradient

method is applied to the preconditioned problem, good per-

formance is achieved. The proposed preconditioning methods

are applicable when solving the dual to a strongly con-

vex composite optimization problem. The preconditioning is

based on a result in [7] that accurately describes how the

shape of the dual function changes with the preconditioning.

The objective is to choose a preconditioner that reshapes the

dual function to, as close as possible, resemble the first-order

approximation of the dual function used in the algorithm.

Computation of such a preconditioner might be expensive.

Hence, the intended application is code-generation for solv-

ing multi-parametric programs, where considerable time can

be spent to generate the code and to compute a preconditioner

that is used in all instances of the problem.

Related work include our recent papers [7], [6], in which

a dual approach to the one taken here is presented. The

idea in this paper is to use preconditioning to reshape the

dual function to match the first order approximation in

the algorithm. In [7], [6], the approximation used in the

algorithm is instead reshaped to fit the shape of the dual

function. In this paper, we show that these two approaches

are indeed dual to each other and that they yield equivalent

algorithms. This result shows that the algorithms presented

in [7], [6], can be interpreted as solving a preconditioned

problem using a fast dual proximal gradient method.

The preconditioning proposed in this paper is evaluated by

applying it to a (ill-conditioned) multi-parametric optimiza-

tion problem arising from model predictive control (MPC) of

the pitch angle in an aircraft. The evaluation reveals that for

such ill-conditioned problems, the the number of iterations

can be reduced by two to three orders of magnitude compared

to if no preconditioning is used. We also generate C code for

the multi-parametric program and compare to state-of-the-

art code-generator FORCES [5] which is tailored for MPC-

problems. The evaluation shows that the fast dual proximal

gradient method with the proposed preconditioning performs

better than FORCES on the considered problem.



A. Notation and definitions

We denote by R the set of real numbers, Rn the set of

column real numbers of length n, Rm×n the set of m × n
real matrices. Further, R = R ∪ {∞} denotes the extended

real line. Moreover, S
n the subset of symmetric matrices

in R
n×n, Sn+ the subset of positive semi-definite matrices

in S
n, and S

n
++ the subset of positive definite matrices in

S
n. Further, L � M and L ≻ M where L,M ∈ S

n

denotes L − M ∈ S
n
+ and L − M ∈ S

n
++ respectively.

We consider Euclidean spaces with inner product 〈x, y〉 =
xT y and norm ‖x‖2 =

√
xTx. Moreover, IX denotes the

indicator function for the set X , i.e. IX (x) ,

{
0, x∈X
∞, else .

The conjugate function to f is denoted f∗ and is defined

by f∗(y) = supx{yTx − f(x)}. Next, we define strong

convexity and smoothness.

Definition 1: A function f : R
n → R is β-strongly

convex if

f(x) ≥ f(y) + 〈u, x− y〉+ β
2 ‖x− y‖22

holds for all x, y ∈ R
n and u ∈ ∂f(y).

Definition 2: A convex function f : R
n → R is β-

smooth if

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2 ‖x− y‖22

holds for all x, y ∈ R
n.

Remark 1: An equivalent characterization that f is β-

smooth is that ∇f is β-Lipschitz continuous, i.e. that

‖∇f(x)−∇f(y)‖2 ≤ ‖x− y‖2 (3)

holds for all x, y ∈ R
n.

II. PRELIMINARIES AND PROBLEM FORMULATION

The topic of this paper is preconditioning of fast dual gra-

dient methods for solving the dual to optimization problems

of the form

minimize f(x) + g(y)
subject to Ax = y

(4)

where x ∈ R
n, y ∈ R

m, and A ∈ R
m×n. Throughout this

paper, we assume that (4) satisfies the following assumptions:

Assumption 1:

a) The function f : R
n → R is such that f − 1

2‖ · ‖2H is

1-strongly convex.

b) The extended valued function g : R
n → R is proper,

closed, and convex.

c) A ∈ R
m×n has full row rank.

Remark 2: Assumption 1(a) holds, e.g., for functions

f(x) = 1
2x

THx+ ξTx+h(x) with H ∈ S
n
++, ξ ∈ R

n, and

h being any proper, closed, and convex function. Functions

that satisfy Assumption 1(b) include g = IX and g = I∗X
where X is a closed and convex set, g = ‖ · ‖1, and g = 0.

Since the objective is to solve (4) using a fast gradient

method applied to the dual problem, we introduce dual

variables µ ∈ R
m for the equality constraints Ax = y. The

(negated) dual problem becomes (see [18, Corollary 31.2.1])

minimize d(µ) + g∗(µ) (5)

where

d(µ) := f∗(−ATµ). (6)

The following proposition, that has been proven, e.g., in [17],

states that d is continuously differentiable and that ∇d is

Lipschitz continuous.

Proposition 1: Suppose that Assumption 1 holds. Then

d is convex and continuously differentiable with gradient

∇d(µ) = −Ax⋆(µ), where

x⋆(µ) := argmin
x

{f(x) + µTAx}. (7)

Further, ∇d is Lipschitz continuous with constant L =
‖AH−1AT ‖22.

III. FAST DUAL PROXIMAL GRADIENT METHODS

The dual problem (5) is of the form (1). Further, Propo-

sition 1 and [18, Theorem 12.2] show that d and g∗ in (5)

satisfy the properties required to apply fast proximal gradient

methods. Thus, the proximal gradient method in (2) can be

applied to solve the dual problem (5). The resulting algorithm

becomes:

Algorithm 1: Fast dual proximal gradient method

Set: µ0 = µ−1 ∈ R
m, β0 = 0

For k ≥ 0

νk = µk + βk(µk − µk−1)
xk = argminx

{
f(x) + (νk)TAx

}

µk+1 = prox 1

L
g∗

(
νk + 1

L
Axk

)

In the first step of the algorithm the difference between

the two previous µk-iterates is pre-multiplied with βk. To

guarantee fast convergence of the algorithm, these βk must

grow in a controlled way. One option is to set βk = k−1
k+2 ,

which is slightly sub-optimal. The optimal choice is βk =

θk( 1
θk−1 − 1), where consecutive θk satisfy 1

(θk−1)2
= 1−θk

(θk)2
,

see [19]. Using any of these two {βk}-sequences, and L ≥
‖AH−1AT ‖2, Algorithm 1 converges with the rate

D(µk)−D(µ⋆) ≤
2L

∥∥µ⋆ − µ0
∥∥2
2

(k + 2)2
(8)

where D := d+ g∗ and µ⋆ is an optimal solution to (5), see

[19].

The second step in the algorithm is used to help computing

the gradient ∇d(νk) = −Ax⋆(νk) = −Axk. This xk also

serves as the primal iteration which converges to the primal

optimal solution. It can also be shown, see [16], that by

forming a specific running average of previous primal iterates

xk, it is possible to prove a O(1/k) convergence rate for the

distance to the unique primal variable optimum.

Finally, the third step is the forward-backward step or

proximal gradient step described in (2). Since evaluation of

the prox-operation requires the solution of an optimization

problem involving g∗, the function g∗ must be “simple”

enough for the prox-step to be readily computed. The



forward-backward step can be expressed differently by not-

ing that

prox 1

L
g∗

(
ν − 1

L
∇d(ν)

)
=

= argmin
µ

{
1
2‖µ− ν + 1

L
∇d(ν)‖22 + 1

L
g∗(µ)

}

= argmin
µ

{
d(ν) + 〈∇d(ν), µ− ν〉+ L

2 ‖µ− ν‖22 + g∗(µ)
}
.

(9)

This implies that in Algorithm 1, the function d is approx-

imated by the r.h.s. of the smoothness definition in Defini-

tion 2, and the algorithm converges for all L such that this

r.h.s. is an upper bound to d, i.e. for all Lipschitz constants

to ∇d. The r.h.s. of the smoothness definition is a quadratic

function with the same curvature in all directions, speci-

fied by L. For ill-conditioned problems, i.e. problems for

which d has very different curvature in different directions,

this serves as a bad approximation of d. Hence, for such

problems a direct application of Algorithm 1 would result

in poor convergence behavior. However, by appropriately

preconditioning the problem data, the function d can be

reshaped to better fit the approximation used in Algorithm 1

without affecting the primal optimal solution. By solving

the preconditioned problem instead of the original problem,

significant improvements in the convergence of the algorithm

can be achieved. In the following section we show how to

compute preconditioners that enable for such improvements.

IV. PRECONDITIONING

In this section, we show how to achieve better performance

of Algorithm 1 using preconditioning. It is straightforward to

verify that Algorithm 1 is invariant under a linear change of

primal variables, i.e. Algorithm 1 is equivalent for any primal

variable preconditioning. However, by pre-multiplying the

equality constraints in (4) from the left with an invertible

matrix, the algorithm changes without affecting the primal

optimal solution. This can be exploited to achieve faster

convergence of the algorithm.

As mentioned, in Algorithm 1 the function d is approxi-

mated by a quadratic function with the same curvature in all

directions, namely the r.h.s. of the smoothness definition:

d(µ) ≤ d(ν) + 〈∇d(ν), µ− ν〉+ L

2
‖µ− ν‖22 (10)

where L is a Lipschitz constant to ∇d. For ill-conditioned d
this serves as a bad approximation. In this section, we will

see that by appropriately preconditioning the optimization

data, the function d can be reshaped to be well approximated

by the r.h.s. of (10).

We consider the following equivalent formulation of (4)

minimize f(x) + g(y)
subject to EAx = Ey

(11)

where E ∈ R
m×m is an invertible preconditioner. The dual

problem to (11) becomes

minimize d(ETµ) + g∗(ETµ).

By introducing

dE(µ) := d(ETµ) (12)

g∗E(µ) := g∗(ETµ) (13)

the dual problem to (11) can equivalently be written as

minimize dE(µ) + g∗E(µ). (14)

Applying the fast proximal gradient method to (14) gives the

following algorithm:

Algorithm 2:

Preconditioned fast dual proximal gradient method

Set: µ0 = µ−1 ∈ R
m, β0 = 0

For k ≥ 0

νk = µk + βk(µk − µk−1)
xk = argminx

{
f(x) + (νk)TEAx

}

µk+1 = prox 1
L
g∗
E

(
νk + 1

L
EAxk

)

where L here is a Lipschitz constant to ∇dE . Before we

proceed on how to choose E to make Algorithm 2 efficient,

we show that E can always be scaled to get L = 1 without

changing the algorithm.

Proposition 2: Assume that (14) is preconditioned with

E and that the sequence {νk, xk, µk} is generated by Al-

gorithm 2 with step-size 1
L

, where L = ‖EAH−1ATET ‖.

Further assume that the sequence {ν̂k, x̂k, µ̂k} is generated

by Algorithm 2 using preconditioner Ê = 1√
L
E and with

L̂ = 1. Then, if additionally µ0 = 1√
L
µ̂0 and µ−1 = 1√

L
µ̂−1,

we get νk = 1√
L
ν̂k, xk = x̂k, and µk = 1√

L
µ̂k for all k ≥ 0.

Proof. Since
√
Lµ0 = µ̂0 and

√
Lµ−1 = µ̂−1, we have that

ν1 = 1√
L
ν̂1. Further,

(ν1)TEAx = 1√
L
(ν̂1)T

√
LÊAx = (ν̂1)T ÊAx

which implies that x1 = x̂1. Finally,

µ1 = prox 1
L
g∗
E

(
ν1 − 1

L
EAx1

)
=

= argmin
v

{
L
2 ‖v − ν1 + 1

L
EAx1‖22 + g∗E(v)

}

= argmin
v

{
L
2 ‖v − 1√

L
ν̂1 + 1√

L
ÊAx̂1‖22 + g∗E(v)

}

= argmin
v

{
1
2‖

√
Lv − ν̂1 + ÊAx̂1‖22 + g∗(ET v)

}

= 1√
L
argmin

ṽ

{
1
2‖ṽ − ν̂1 + ÊAx̂1‖22 + g∗( 1√

L
ET ṽ)

}

= 1√
L
argmin

ṽ

{
1
2‖ṽ − ν̂1 + ÊAx̂1‖22 + g∗(ÊT ṽ)

}

= 1√
L
proxg∗

Ê

(
ν̂1 − ÊAx̂1

)
= 1√

L
µ̂1.

Recursive application of these arguments gives the result. �

The preceding result shows that it is sufficient to consider

preconditioners E that give a Lipschitz constant to ∇dE that

is L = 1. Thus, it is sufficient to consider preconditioners E
that satisfy

‖EAH−1ATET ‖2 = 1.



However, this relation does not indicate how to choose a

preconditioner E. In the following theorem, we present a

result that will indicate how this can be done. The result

follows directly from [7, Theorem 11] when applied to dE
instead of d.

Theorem 1: The function dE defined in (12) (with d
defined in (6)) is convex, differentiable and satisfies

dE(µ) ≤ dE(ν) + 〈∇dE(ν), µ− ν〉+ 1

2
‖µ− ν‖2

L
(15)

for every µ, ν ∈ R
m and L ∈ S

m
+ that satisfies L �

EAH−1ATET .

Before we proceed on how to use this result to compute

preconditioners, we state two more results that are also

proven in [7]. The first results shows that if f is a quadratic

function plus a proper, closed, and convex function h that

satisfies a certain condition, then Theorem 1 gives the best

possible upper bound to dE of the form (15). The second

result gives an improved bound in the case where f is a

quadratic function plus h, where h is the indicator function

for an affine subspace.

Proposition 3: Assume that f(x) = 1
2x

THx+ξTx+h(x)
with H ∈ S

n
++ and ξ ∈ R

n and that there exists a set

X ⊆ R
n with non-empty interior on which h (besides being

proper, closed, and convex) is linear, i.e. h(x) = ξTXx+ θX
for all x ∈ X . Further, assume that there exists ν̃ such that

x⋆(ν̃) ∈ int(X ). Then for any matrix L 6� EAH−1ATET ,

there exist µ and ν such that (15) does not hold.

Proposition 3 shows that the bound in Theorem 1 is

indeed the best obtainable bound of the form (15) if f
is a quadratic+h where h specifies the stated assumptions.

Examples of functions that satisfy the assumptions on h in

Proposition 3 include linear functions, indicator functions

of closed convex constraint sets with non-empty interior,

and the 1-norm. However, indicator functions for affine sub-

spaces do not satisfy the the assumptions of Proposition 3

since their interiors are empty (except for the trivial sub-

space R
n). In the following proposition we present another

result from [7] that shows how Theorem 1 can be improved

in that case.

Proposition 4: Assume that f(x) = 1
2x

THx+ζTx+h(x)
with H ∈ S

n
+ and ζ ∈ R

n, and that h = IBx=b. Further

assume xTHx > 0 whenever x 6= 0 and Bx = 0, i.e. that

H is positive definite on the null-space of B. Then (15) holds

for all L ∈ S
m
+ such that L � EAK11A

TET where
[
K11 K12

K21 K22

]
=

[
H BT

B 0

]−1

. (16)

Further, for any matrix L 6� EAK11E
TAT there exist µ, ν ∈

R
m such that (15) does not hold.

The preceding results provide guidance on how to choose

the preconditioner E. Theorem 1 and Proposition 3 state that

the (in many cases) best quadratic approximation of the form

(15) to dE is

dE(µ) ≤ dE(ν) + 〈∇dE(ν), µ− ν〉+ 1
2‖µ− ν‖2

L
(17)

where L = EAH−1ATET (or L = EAK11A
TET ).

However, in Algorithm 1, the function dE (with E scaled

such that ‖EAH−1ATET ‖2 = 1) is approximated by the

r.h.s. of the inequality

dE(µ) ≤ dE(ν) + 〈∇dE(ν), µ− ν〉+ 1
2‖µ− ν‖22. (18)

Thus, to get a close fit between the preconditioned dual

function (17) and the first order approximation used in

the algorithm, namely (18), E should be chosen such that

EAMATET = I , where M is either M = H−1 or

M = K11 depending on the structure of the considered

problem (see Proposition 3 and Proposition 4). However, in

most cases this choice is either infeasible (if A does not

have full row rank, or if M is rank deficient) or it leads

to too expensive prox-evaluations in the algorithm. To get as

close fit between EAMATET and I as possible, we propose

to choose E to minimize the ratio between the largest and

smallest non-zero eigenvalues of EAMATET subject to

structural constraints on E. For M = H−1 and A having

full row rank, all eigenvalues of EAH−1ATET are positive,

and the problem becomes to minimize the condition number

minimize
λmax(EAH

−1ATET )

λmin(EAH−1ATET )
(19)

subject to E ∈ E , where E is a structure imposing set.

(For many problems, the prox-operation is separable in each

element, then a suitable structure in E is to allow for diagonal

preconditioners since they does not increase the complexity

when evaluating the prox-operator.) Problems of the form

(19) can be posed a semi-definite programs and can therefore

be readily solved for small to medium scaled problems,

see [3, Section 3.1]. For cases where EAMATET is rank

deficient (i.e. if M = K11, and/or A has full column rank),

finding E that minimizes the ratio between the largest and

smallest non-zero eigenvalues can also be posed as a semi-

definite program by minimizing the condition number of

QPQT , where Q ∈ R
q×n has rank q and satisfies AMAT =

QTQ, and P = ETE. This can be seen by letting T =
EQT ∈ R

n×q , which implies that TTT = EAMATET .

Further, the non-zero eigenvalues of TTT coincide with the

non-zero eigenvalues of TTT = QPQT , which is positive

definite since P is positive definite and Q has full row rank.

Thus, minimizing the condition number of TTT = QPQT

is equivalent to minimizing the ratio between the largest and

smallest non-zero eigenvalues of TTT = EAMATET . How

to minimize the condition number of TTT = QPQT using

semi-definite programming is shown in [3, Section 3.1].

The proposed preconditioners require the solution of a

semi-definite program, which can be time consuming to find

and restricted to small to medium scale problems. In the

contexts of code generation and model predictive control,

this is a viable approach since the computation time needed

to compute a preconditioner is often irrelevant.

V. RELATION TO OTHER METHODS

In this paper, the optimization problem (4) is precondi-

tioned such that the dual function dE closely resembles the

approximation used in Algorithm 2, namely the right hand



side of

dE(µ) ≤ dE(ν) + 〈∇dE(ν), µ− ν〉+ 1
2‖µ− ν‖22.

In [6], [7], a dual approach is taken in which no precondi-

tioning is used, i.e. the function d remains the same, but the

approximation of d used in the algorithm is instead the right

hand side of

d(µ) ≤ d(ν) + 〈∇d(ν), µ− ν〉+ 1
2‖µ− ν‖2

L
.

Thus, in this paper, the function d is reshaped to fit the

quadratic approximation used in the algorithms, while in

[6], [7], the quadratic upper bound used in the algorithm

is reshaped to fit the dual function d. In this section, we

will show that the generalized fast dual proximal gradient

method in [6], [7] is equivalent to the preconditioned fast

dual gradient method in Algorithm 2. Before we state the

equivalence, we introduce the generalized prox-operator

proxLg (y) := argmin
x

{
g(x) + 1

2‖x− y‖2
L

}

and present the algorithm from [6], [7], which in [6], [7] is

shown to converge for any L � AH−1AT .

Algorithm 3:

Generalized fast dual proximal gradient method

Set: µ0 = µ−1 ∈ R
m, β0 = 0

For k ≥ 0

νk = µk + βk(µk − µk−1)
xk = argminx

{
f(x) + (νk)TAx

}

µk = proxLg∗
(
νk + L

−1Axk
)

Proposition 5: Assume that the sequence {νk, xk, µk}
is generated by Algorithm 2 and that E is such that

L = ‖EAH−1ATET ‖2 = 1. Further assume the se-

quence {ν̂k, x̂k, µ̂k} is generated by Algorithm 3 with L =
E−1E−T . Then, if additionally, µ0 = E−T µ̂0 and µ−1 =
E−T µ̂−1, we get νk = E−T ν̂k, xk = x̂k, and µk = E−T µ̂k

for all k ≥ 0.

Proof. Since µ0 = E−T µ̂0 and µ−1 = E−T µ̂−1, we have

that ν1 = E−T ν̂1. Further,

(ν1)TEAx = (ν̂1)TE−TEAx = (ν̂1)TAx

which implies that x1 = x̂1. Finally,

µ1 = proxg∗
E

(
ν1 − EAx1

)
=

= argmin
v

{
1
2‖v − ν1 + EAx1‖22 + g∗E(v)

}

= argmin
v

{
1
2‖E

T (v − ν1 + EAx̂1)‖2
L
+ g∗(ET v)

}

= argmin
v

{
1
2‖E

T v − ν̂1 + ETEAx̂1‖2
L
+ g∗(ET v)

}

= E−T argmin
ṽ

{
1
2‖ṽ − ν̂1 + L

−1Ax̂1‖2
L
+ g∗(ṽ)

}

= E−TproxLg∗
(
ν̂1 − L

−1Ax̂1
)
= E−T µ̂1.

Recursive application of these arguments gives the result. �

This result implies that the generalized fast dual proximal

gradient methods developed in [6], [7] can be interpreted as

a fast dual proximal gradient method applied to a precondi-

tioned problem.

VI. NUMERICAL EXAMPLE

The proposed preconditioning methods are evaluated by

applying them to the AFTI-16 aircraft model in [9], [2]. As

in [2], the continuous time model from [9] is sampled using

zero-order hold every 0.05 s. The system has four states x =
(x1, x2, x3, x4), two outputs y = (y1, y2), two inputs u =
(u1, u2), and obeys the following dynamics

x+ =

[
0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

]
x+

[−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

]
u,

y = [ 0 1 0 0
0 0 0 1 ]x

where x+ denotes the state in the next time step. The

dynamics, input, and output matrices are denoted by Φ, Γ,

C respectively, i.e. we have x+ = Φx + Γu, y = Cx. The

system is unstable, the magnitude of the largest eigenvalue

of the dynamics matrix is 1.313. The outputs are the attack

and pitch angles, while the inputs are the elevator and

flaperon angles. The inputs are physically constrained to

satisfy |ui| ≤ 25◦, i = 1, 2. The outputs are soft constrained

to satisfy −s1 − 0.5 ≤ y1 ≤ 0.5 + s2 and −s3 − 100 ≤
y2 ≤ 100 + s4 respectively, where s = (s1, s2, s3, s4) ≥ 0
are slack variables. The cost in each time step is

ℓ(x, u, s) =
1

2

(
(x− xr)

TQ(x− xr) + uTRu+ sTSs
)

where Q = CTQyC + Qx, where Qy = 102I and Qx =
diag(10−4, 0, 10−3, 0), xr is such that yr = Cxr where yr
is the output reference that can vary in each step, R = 10−2I ,

and S = 106I . This gives condition number 1010 of the full

cost matrix. Further, the terminal cost is Q, and the control

and prediction horizon is N = 10. The numerical data is

obtained by following a reference trajectory on the output.

The objective is to change the pitch angle from 0◦ to 10◦ and

then back to 0◦ while the angle of attack satisfies the output

constraints −0.5◦ ≤ y1 ≤ 0.5◦. The constraints on the angle

of attack limits the rate on how fast the pitch angle can be

changed.

The optimization problem can compactly be written as

minimize 1
2z
THz + ξTr z

subject to Bz = bx̄
d ≤ Cz ≤ d̄

(20)

where ξr varies with the reference, and x̄ is (a measurement

of) the current state. We will consider two different splittings

to make the MPC problem (20) fit the format in (4). In the

first splitting, we set f , g, and A in (4) to be

f(x) := 1
2x

THx+ ξTr x+ IBx=bx̄(x)

g(y) := Id≤y≤d̄(y) (21)

A := C

This splitting has also been used in [16] in the context of

fast dual gradient methods, and in [14], [8] in the context

of the alternating direction method of multipliers (ADMM).

For this splitting, we compare the performance of the fast

dual proximal gradient method when applied to the precon-

ditioned problem (where the preconditioner E minimizes the



TABLE I

MATLAB COMPARISON WITH AND WITHOUT PRECONDITIONING.

exec time (ms) nbr iters
Alg./Split. Precond avg. max avg. max

Alg. 2/(22) y 2.3 12.1 21.7 102
Alg. 2/(22) n 4713.9 28411 50845 308210
Alg. 2/(21) y 1.2 5.8 20.0 105
Alg. 2/(21) n 98.5 673.0 1835.8 12686

TABLE II

C COMPARISON TO STATE-OF-THE-ART SOLVERS.

exec time (ms)
Alg./Split Precond avg. max

Alg. 2/(22) y 0.079 0.232
Alg. 2/(21) y 0.061 0.196
FORCES - 0.347 0.592
MOSEK - 4.9 5.4

condition number of ECH−1CTET ) with the performance

of the algorithm when applied to the non-preconditioned

problem. In the second splitting, we set f , g, and A in (4)

to be

f(x) := 1
2x

THx+ ξTr z + Id≤Cx≤d̄(x)

g(y) := Iy=bx̄(y) (22)

A := B

which has been used in [17]. Also here, we compare the

algorithm performance when applied to the preconditioned

problem (where the preconditioner E minimizes the condi-

tion number of EBH−1BTET ) with the performance when

solving the original problem. In the second splitting, we

have no structural constraints on E, since proxg∗
E

can be

computed explicitly with the same computational cost for

any structure of E. Thus we choose E to minimize the

condition number of EBH−1BTET , i.e., E is chosen to

satisfy EBH−1BTET = I .

In Table I, the proposed preconditioning is evaluated by

comparing it to the original, not preconditioned, case. In this

example, improvements of two to three orders of magnitude

(depending on which splitting that is used) are achieved

when solving the preconditioned problems compared to

when solving the original, not preconditioned, problems.

In Table II, C implementations of Algorithm 2 that solve

the preconditioned problems using splitting (21) and (22)

respectively are compared to other C solvers. The table

reveals that the first order methods are two to three times

faster than the code-generator FORCES [5], which uses an

interior point method that is tailored to the specific structure

that arise in MPC optimization problems. Table II also shows

that the C implementations of Algorithm 2 significantly

outperform the C solver MOSEK, which does not have the

advantage of generating problem specific code before the

problems are solved.

VII. CONCLUSIONS

We have proposed a preconditioning method for fast

dual proximal gradient methods that is suitable for solving

optimization problems arising in model predictive control.

Our numerical evaluation shows that by preconditioning the

problem to be solved, the algorithm performance can be

improved with up to two to three orders of magnitude,

compared to when no preconditioning is used. The numerical

evaluation further shows that a C implementation of the fast

dual gradient method when solving the preconditioned prob-

lem can perform better than state of the art code generators

for MPC problems.
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