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Abstract— The performance of Douglas-Rachford splitting
and the alternating direction method of multipliers (ADMM)
(i.e. Douglas-Rachford splitting on the dual problem) is sensitive
to conditioning of the problem data. For a restricted class of
problems that enjoy a linear rate of convergence, we show in
this paper how to precondition the optimization data to optimize
a bound on that rate. We also generalize the preconditioning
methods to problems that do not satisfy all assumptions
needed to guarantee a linear convergence. The efficiency of the
proposed preconditioning is confirmed in a numerical example,
where improvements of more than one order of magnitude are
observed compared to when no preconditioning is used.

I. INTRODUCTION

Optimization problems of the form

minimize f(x) + g(y)
subject to Ax = y

(1)

where x ∈ R
n is the variable and f and g are convex,

arise in numerous applications ranging from compressed

sensing [6] and statistical estimation [17] to model predictive

control [24] and image restoration. There exist a variety of

algorithms for solving convex problems of the form (1),

many of which are treated in the monograph [22]. The

methods include primal and dual forward-backward splitting

methods [8] and their accelerated variants [3], the Arrow-

Hurwicz method [1], Douglas Rachford splitting [10] and

Peaceman-Rachford splitting [23], the alternating direction

method of multipliers (ADMM) [16], [13], [5] (which is

Douglas-Rachford splitting applied to the dual problem [12],

[11]), and linearized ADMM [7].

In this paper, we focus on Douglas-Rachford splitting,

Peaceman-Rachford splitting and ADMM. These methods

are well known to converge sub-linearly under very general

assumptions, see e.g. [11]. However, the convergence time

can vary greatly depending on conditioning of the problem

data and on the algorithm parameters. Yet, very little is

known on how to precondition the data and how to select

algorithm parameters to achieve a well performing algorithm

in the general case. In the context of finding a zero of two

maximal monotone operators, it is in [19] shown that when

one of the operators is Lipschitz continuous and strongly

monotone, the Douglas-Rachford algorithm converges with

a linear rate. Also, it is shown how to select the algorithm

parameter to optimize the bound on this linear rate. In the

case of applying Douglas-Rachford splitting to the dual of (1)

(i.e. applying ADMM to (1)) with f or g strongly convex and

smooth, the bound on the linear rate from [19] is improved

in [9], and another parameter selection is provided.
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For a more restricted class of problems, another im-

provement of the linear convergence rate bound for ADMM

is provided in [14]. They consider problems where f is

quadratic and strongly convex, i.e. f(x) = 1
2x

THx + ξTx
with H positive definite, and g is the indicator function for

the constraint set Y = {y ∈ R
m | y ≤ b}. They show how

to choose the algorithm parameter and how to individually

scale the equality constraints Ax = y such that the linear

convergence rate factor in the bound is optimized.

In this paper, we further improve on the linear convergence

rate bound for the Douglas-Rachford splitting from [19],

and for Peaceman-Rachford splitting. We also show that

Peaceman-Rachford has a faster theoretical linear rate than

Douglas-Rachford, in the case of f being strongly convex

and smooth. These results are translated to the ADMM

case by applying Douglas-Rachford splitting and Peaceman-

Rachford splitting to the dual problem. The tight strong con-

vexity and smoothness characterizations of the dual problem

in [15], are in this paper utilized to improve the bound

on the convergence rate of ADMM compared to [9]. Our

convergence results also generalize the results in [14] to

handle any smooth and strongly convex f and any proper,

closed, and convex g.

The obtained bounds on the linear rates for Douglas-

Rachford splitting, Peaceman-Rachford splitting and ADMM

depend on the problem scaling and on algorithm parameters.

We show how to select these to optimize the respective

bounds. We also propose scaling and parameter selection

procedures for problems where some of the assumptions

needed to achieve a linear convergence rate are not met.

These extensions significantly enlarge the class of problems

for which the scaling and parameter selection procedures can

be successfully applied. A numerical example is provided

that shows the efficiency of the proposed scaling. For the

considered problem, the execution time is decreased with

about one order of magnitude compared to when no scaling

is used.

II. PRELIMINARIES AND NOTATION

A. Notation

We denote by R the set of real numbers, Rn the set of

real column-vectors of length n, and R
m×n the set of real

matrices with m rows and n columns. Further R := R∪{∞}
denotes the extended real line. We use 〈·, ·〉 as the inner

product in the Euclidean space, i.e. 〈x, y〉 = xT y. Further

‖ · ‖ denotes the standard Euclidean norm, while ‖x‖M =√
xTMx denotes the ‖ ·‖M -norm when M ∈ R

n×n is posi-

tive definite, but is also used for the ‖ · ‖M -semi norm when

M ∈ R
n×n is merely positive semi-definite. We denote by



IX and Ig(·)≤c the indicator functions for the sets X and

Y = {y ∈ dom(g) | g(y) ≤ c} respectively. The conjugate

function to f is denoted by f∗(y) , supx{〈y, x〉 − f(x)}.

Finally, the class of closed, proper, and convex functions

f : R
n → R is denoted by Γ0(R

n).

B. Preliminaries

In this section, we introduce some definitions and prelim-

inary results to be referenced later. We will introduce these

concepts on the Euclidean space R
n, but most definitions

and results hold for general Hilbert spaces. The definitions

and results stated below are standard and can be found, e.g.

in [26], [2], [20]. Nonstandard results are given short proofs.

Definition 1: A set-valued operator (or operator)

A : R
n ⇒ R

n maps each element in R
n to a set in R

n.

Definition 2: A single-valued operator (or mapping) is an

operator A that is single-valued everywhere on R
n, i.e. A(x)

is a singleton for all x ∈ R
n. This is denoted by A : R

n →
R

n.

Definition 3: The graph of a set-valued operator

A : R
n ⇒ R

n is defined as

gph(A) := {(x, u) | u ∈ A(x)} .
Any set-valued operator is (uniquely) described by its graph.

Definition 4: An operator A : R
n ⇒ R

n is monotone if

〈u− v, x− y〉 ≥ 0

for all (x, u) ∈ gph(A) and (y, v) ∈ gph(A).
Definition 5: An operator A : R

n ⇒ R
n is σ-strongly

monotone if

〈u− v, x− y〉 ≥ σ‖x− y‖2

for all (x, u) ∈ gph(A) and (y, v) ∈ gph(A).
Definition 6: A monotone operator A : R

n ⇒ R
n is

maximal monotone if gph(A) is not a proper subset of the

graph of any other monotone operator Â : R
n ⇒ R

n.

Example 1: The subdifferential ∂f of a function f ∈
Γ0(R

n) is maximally monotone. (The reverse statement is,

however, not true.)

Definition 7: A (single-valued) mapping A : R
n → R

n

is β-Lipschitz continuous if

‖A(x)−A(y)‖ ≤ β‖x− y‖.

If β = 1 then A is nonexpansive and if β ∈ (0, 1) then A
contractive.

Definition 8: A function f ∈ Γ0(R
n) is β-strongly convex

if

f(x) ≥ f(y) + 〈u, x− y〉+ β
2 ‖x− y‖2

hold for all x, y ∈ R
n and all u ∈ ∂f(y).

Definition 9: A general (nonconvex), closed, function

f : R
n → R is β-smooth if it is differentiable and

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ β
2 ‖x− y‖2 (2)

holds for all x, y ∈ R
n.

Remark 1: If in addition f is convex, i.e. f ∈ Γ0(R
n),

β-smoothness is defined as that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2 ‖x− y‖2

holds for all x, y ∈ R
n.

In the following proposition, which is proven in [26,

Example 12.59, Proposition 12.60], some dual properties are

stated.

Proposition 1: Suppose that f ∈ Γ0(R
n). Then the fol-

lowing are equivalent:

(i) f is β-strongly convex

(ii) ∂f is β-strongly monotone

(iii) f∗ is 1
β

-smooth

(iv) ∇f∗ is 1
β

-Lipschitz continuous

Corollary 1: The converse statement (i.e., with f and f∗

interchanged) also holds for f ∈ Γ0(R
n) since f = (f∗)∗,

see [25, Theorem 12.2].

Remark 2: The equivalence between (iii) and (iv) in

Proposition 1 holds also for general (not necessarily convex)

smooth functions f : R
n → R.

Definition 10: The resolvent of a maximal monotone op-

erator A : R
n ⇒ R

n is defined as

RA := (I +A)−1.
Definition 11: The proximal operator of a function f ∈

Γ0(R
n) is given by

proxγf(y) := argmin
x

{

f(x) + 1
2γ ‖x− y‖2

}

.

The proximal operator is a special case of the resolvent.

Specifically, if A = γ∂f for some f ∈ Γ0(R
n), we have

Rγ∂f = proxγf .

Definition 12: The function fγ is defined as fγ := γf +
1
2‖ · ‖2, where γ > 0.

Proposition 2: Assume that f ∈ Γ0(R
n), then

proxγf(y) = ∇f∗
γ (y), where fγ is defined in Definition 12.

Proof. We have

proxγf = argmin
x

{

f(x) + 1
2γ ‖x− y‖2

}

= argmax
x

{
〈y, x〉 − γf(x)− 1

2‖x‖
2
}

= argmax
x

{〈y, x〉 − fγ(x)} = ∂f∗
γ (y)

where the last step is due to [25, Theorem 23.5]. Further,

since fγ is 1-strongly convex, Proposition 1 implies that f∗
γ

is smooth, hence differentiable. �

Proposition 3: Assume that f ∈ Γ0(R
n) is β-strongly

convex. Then proxγf : R
n → R

n is 1
1+γβ

-contractive.

Proof. Since f is β-strongly convex, fγ is (1+γβ)-strongly

convex. Apply Propositions 2 and 1 to get the result. �

Proposition 4: Assume that f ∈ Γ0(R
n) is β-smooth.

Then proxγf : R
n → R

n is 1
1+γβ

-strongly monotone.

Proof. Since f is β-smooth, fγ is (1 + γβ)-smooth. Apply

Propositions 2 and 1 to get the result. �



Definition 13: The reflected proximal operator (also re-

ferred to as Cayley operator) to f ∈ Γ0(R
n) is defined as

Cγf := 2proxγf − I.

III. PROBLEM FORMULATION

We consider convex composite optimization problems of

the form

minimize f(x) + g(Ax) (3)

that satisfy the following assumptions:

Assumption 1:

(i) The function f : R
n → R is such that f − 1

2‖ · ‖2H
is convex and 1

2‖ · ‖2M − f is convex.

(ii) The function g ∈ Γ0(R
n).

(iii) The matrix A ∈ R
m → R

n has full row rank.

Remark 3: That f− 1
2‖·‖2H is convex is equivalent to that

f satisfies

f(x) ≥ f(y) + 〈u, x− y〉+ 1
2‖x− y‖2H (4)

for all x, y ∈ R
n and u ∈ ∂f(y), i.e., that f is 1-strongly

convex w.r.t. a space with inner product 〈x, y〉 = xT y and

norm ‖x‖H . This implies that f is λmin(H)-strongly convex

w.r.t. the Euclidean space. That 1
2‖·‖2M−f is convex implies

that f satisfies

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ 1
2‖x− y‖2M (5)

for all x, y ∈ R
n, i.e., that f is 1-smooth w.r.t. a space

with inner product 〈x, y〉 = xT y and norm ‖x‖M . This

implies that f is λmax(M)-smooth w.r.t. the Euclidean space.

If f(x) = 1
2x

THx+hTx, then f− 1
2‖·‖2H and 1

2‖·‖2H−f are

convex, and the upper and lower bounds (4) and (5) coincide.

The (negative) Fenchel dual problem to (3) is given by

minimize d(µ) + g∗(µ) (6)

where

d(µ) := f∗(−ATµ). (7)

The problem (3) can be solved either directly, or via

its dual (6). In this paper, we will solve (3) by apply-

ing generalized Douglas-Rachford splitting to the primal

problem (3), and by applying generalized Douglas-Rachford

splitting to the dual problem (6) (which is equivalent to

applying ADMM to the primal (3)). Under the assumptions

stated in Assumption 1, we show linear convergence of the

generalized Douglas-Rachford algorithm when applied to the

primal problem (3) and to the dual problem (6). We also

show how to scale the problem data and select algorithm

parameters to optimize the obtained linear convergence rate

bound.

IV. GENERALIZED DOUGLAS RACHFORD SPLITTING

The generalized Douglas Rachford algorithm can be ap-

plied to solve problems of the form (3). It is most compu-

tationally efficient in the case where A = I , which is why

we restrict ourselves to this case. The generalized Douglas-

Rachford algorithm is given by the iteration

zk+1 = ((1 − θ)I + θCγgCγf )z
k (8)

where Cγf = 2proxγf − I is the reflected proximal operator

in Definition 13 and θ ∈ (0, 1]. The iteration (8) is a

θ-averaged iteration of CγgCγf , i.e., it goes a fraction

θ of the distance to the point CγgCγfz
k from the cur-

rent point zk. Since Cγg and Cγf (and hence CγgCγf )

are nonexpansive in the general case [2, Corollary 23.10],

the generalized Douglas-Rachford algorithm converges sub-

linearly to a fixed point of CγgCγf for θ ∈ (0, 1) (since θ-

averaged iterations of nonexpansive operators converge sub-

linearly to a fixed-point of the nonexpansive operator [2,

Corollary 5.14]). Special cases of (8) are obtained by letting

θ = 1
2 , which gives the standard Douglas-Rachford algorithm

[10], and by letting θ = 1, which gives the Peaceman-

Rachford algorithm [23]. That is, the Peaceman-Rachford

algorithm is a non-averaged iteration of CγgCγf and cannot

be guaranteed to converge in the general case.

A more explicit formulation of the generalized Douglas-

Rachford algorithm is given by the iterations

xk = argmin
x

{

f(x) + 1
2γ ‖x− zk‖2

}

yk = argmin
y

{

g(y) + 1
2γ ‖y − 2xk + zk‖2

}

zk+1 = zk + 2θ(yk − xk)

where xk is known to converge to an optimal solution

of (3) (if it exists) and zk (which is the same as zk in

(8)) converges sub-linearly to a fixed-point of CγgCγf (if

it exists), see [2, Corollary 27.7]. The convergence of the

generalized Douglas-Rachford algorithm is for some problem

classes linear. We will show that Assumption 1 defines one

such class. To show this, we first show that Cγf is contractive

under Assumption 1.

Proposition 5: Suppose that Assumption 1 holds. Further,

let L = λmax(M), σ = λmin(H), and κ = L/σ, and let the

algorithm parameter γ = 1√
σL

. Then Cγf is β-contractive

with β =
√
κ−1√
κ+1

.

A proof to this proposition is found in Appendix I.

Based on this contraction result, we establish a linear rate

of convergence for generalized Douglas-Rachford splitting

in the following proposition. This proposition is proven in

Appendix II.

Proposition 6: Suppose that Assumption 1 holds. Then

for γ = 1/
√

λmax(M)λmin(H) the generalized Dou-

glas Rachford algorithm (8) converges linearly with rate√
κ+1−2θ√

κ+1
, i.e.

‖zk+1 − z̄‖ ≤
(√

κ+1−2θ√
κ+1

)k

‖z0 − z̄‖



where κ = λmax(M)
λmin(H) and z̄ is a fixed-point of (8).

The bound on the linear convergence rate for the gen-

eralized Douglas-Rachford algorithm that is established in

Proposition 6, is a decreasing function of θ. Thus, the larger θ
is, the better the bound becomes. This implies that Peaceman-

Rachford splitting ((8) with θ = 1) has a better theoretical

rate
√
κ−1√
κ+1

than standard Douglas-Rachford ((8) with θ = 1
2 ),

which has rate
√
κ√

κ+1
, when Assumption 1 holds.

From the convergence rate result in Proposition 6, we

also conclude that the bound on the linear convergence rate

of the generalized Douglas-Rachford algorithm is improved

by improving the conditioning of f i.e. by reducing κ =
λmax(M)/λmin(H). This can be achieved in different ways.

One option is to choose a space on which κ is small

and to apply the algorithm on that space. For instance if

f(x) = 1
2x

THx, then κ = 1 on a space equipped with inner

product 〈x, y〉H = xTHy and induced norm ‖·‖ =
√

〈·, ·〉H ,

while κ on R
n is

λmax(H)
λmin(H) . Another option is to perform

the generalized Douglas Rachford iterations in the Euclidean

space, and to perform a linear change of variables that

minimizes κ for the new problem. In this paper we have

chosen to focus on the latter approach.

A. Preconditioning

To improve the conditioning of the problem to be solved

by the generalized Douglas-Rachford algorithm, we perform

a linear change of variables Dq = x, where D ∈ R
n×n is

invertible, and define the functions

fD(q) := f(Dq)

gD(q) := g(Dq).

Then, we apply generalized Douglas-Rachford splitting to

minimize fD(x) + gD(x)

to get

qk = argmin
q

{

fD(q) + 1
2γ ‖q − vk‖2

}

rk = argmin
r

{

gD(r) + 1
2γ ‖r − 2qk + vk‖2

}

vk+1 = vk + θ(rk − qk).

The smoothness and strong convexity properties of fD are

given by the following proposition.

Proposition 7: Suppose that Assumption 1 holds. Then

fD is λmin(DHD)-strongly convex and λmax(DMD)-
smooth.

Proof. Assumption 1 implies that (4) holds. By letting Dq =
x and Dr = y, we get D∂f(y) = D∂f(Dr) = ∂fD(r), and

from (4) we get

f(x) ≥ f(y) + 〈u, x− y〉+ 1
2‖x− y‖2H

= f(Dr) + 〈D−1w,D(q − r)〉 + 1
2‖Dr −Dq‖2H

= fD(r) + 〈w, q − r〉+ 1
2‖r − q‖2DTHD.

Since f(x) = fD(q), this implies that fD is λmin(DHD)-
strongly convex. The smoothness claim is proven similarly

by using the smoothness definition in Remark 1 instead of

the strong convexity definition in Definition 8. �

Ideally, the matrix D should be chosen to minimize

the ratio λmax(D
TMD)/λmin(D

THD). However, the prox-

operator for the qk-update (and similarly for the rk update)

is evaluated as

qk = argmin
q

{

fD(q) + 1
2γ ‖q − vk‖2

}

= D−1 argmin
x

{

f(x) + 1
2γ ‖D

−1x− vk‖2
}

= D−1 argmin
x

{

f(x) + 1
2γ ‖x−Dvk‖2(DDT )−1

}

.

Often f or g is separable down to the component. For

such problems, choosing D non-diagonal would increase the

computational burden in each iteration. Thus, the objective is

to minimize the ratio λmax(D
TMD)/λmin(D

THD) using

a diagonal preconditioner D. The reader is referred to [15,

Section 6], for methods to minimize such a ratio and for

heuristics to reduce the same.

V. ADMM

ADMM is Douglas-Rachford splitting applied to the dual

problem (6), i.e. generalized Douglas Rachford splitting with

θ = 1
2 . Under- and over-relaxed ADMM is obtained by

applying generalized Douglas-Rachford splitting to the dual,

where θ < 1
2 gives under-relaxation and θ > 1

2 gives

over-relaxation, [11]. The linear convergence result of the

generalized Douglas-Rachford algorithm in Proposition 6 is

based on strong convexity and smoothness assumptions on

the primal function f . In the following proposition, we show

similar properties for the dual function d, defined in (7),

under Assumption 1.

Proposition 8: Suppose that Assumption 1 holds. Then

convexity of f−‖·‖2H implies that d, defined in (7), satisfies

d(µ) ≤ d(ν) + 〈∇d(ν), µ − ν〉+ 1
2‖µ− ν‖2AH−1AT (9)

for all µ, ν ∈ R
m. Further, convexity of ‖ · ‖2M − f implies

that

d(µ) ≥ d(ν) + 〈∇d(ν), µ− ν〉 + 1
2‖µ− ν‖2AM−1AT (10)

holds for all µ, ν ∈ R
m.

Proof. The first claim follows from [15, Proposition 29]. The

second claim follows from [15, Proposition 29] by using [15,

Remark 19] instead of [15, Proposition 18]. �

The result implies that d is λmax(AH
−1AT )-smooth and,

if in addition A has full row rank (as in Assumption 1),

λmin(AM
−1AT )-strongly convex. Thus, when applying gen-

eralized Douglas-Rachford splitting to the dual problem (6)

(or equivalently applying ADMM to the primal), Proposi-

tion 6 shows a linear convergence of the algorithm. Propo-

sition 6 further suggests that the convergence is faster for

smaller ratios λmax(AH
−1AT )/λmin(AM

−1AT ) and with

maximal over-relaxation (i.e. θ = 1). Next, we will show

how to precondition the problem data to improve the ratio

λmax(AH
−1AT )/λmin(AM

−1AT ).



A. Preconditioning

Similarly to in the primal Douglas-Rachford case, we

precondition the problem data by performing a linear change

of variables ET ν = µ, with invertible E ∈ R
m×m, to get

dE(ν) := d(ET ν)

g∗E(ν) := g∗(ET ν).

Then we apply generalized Douglas-Rachford splitting to

minimize dE(ν) + g∗E(ν) (11)

which is the dual of

minimize f(x) + g(y)
subject to EAx = Ey.

(12)

Proposition 8 implies that dE is λmax(EAH−1ATET )-
smooth and λmin(EAM−1ATET )-strongly convex. Thus,

to optimize the linear convergence rate bound, the ra-

tio λmax(EAH−1ATET )/λmin(EAM−1ATET ) should be

minimized. As in the primal Douglas-Rachford case, this

minimization is subject to structural constraints on E. Typi-

cally, if f or g is separable, the prox-operations in ADMM

are kept simple if E is diagonal. Again, the reader is

referred to [15, Section 6] for different methods to find

diagonal and non-diagonal E that reduce or minimize the

ratio λmax(EAH−1ATET )/λmin(EAM−1ATET ).

VI. EXTENSIONS

In this section, we discuss how to compute preconditioners

and select the γ-parameter when some of the assumption in

Assumption 1 are not met. We discuss loss of smoothness

in the objective, and loss of rank condition on the matrix

A. Loss of strong convexity in the objective can be treated

similarly to the loss of smoothness, but is omitted due to

space considerations.

The extensions will be presented for ADMM, since it

efficiently solves more general problems than Douglas-

Rachford splitting on the primal. Also, ADMM, or Douglas-

Rachford splitting on the dual, for the case of A = I is

equivalent to Douglas-Rachford splitting on the primal (but

the preconditioners relate to each other as D = E−1).

A. Loss of smoothness

In this section, we assume that Assumption 1 holds, but

that ‖ · ‖2M − f is not convex, i.e. that f is not smooth. This

occurs for instance when solving problems of the form

minimize 1
2x

THx+ hTx+ f̂(x)
︸ ︷︷ ︸

f(x)

+g(Ax)

where H ∈ R
n×n is positive definite, h ∈ R

n, A ∈ R
m×n

with rank m and f̂ ∈ Γ0(R
n). Proposition 8 states that

the lack of smoothness in f implies that d is not strongly

convex. Thus, when solving such problems using ADMM,

or Douglas-Rachford splitting on the dual, we loose strong

convexity in the objective. However, from Proposition 8 we

still have

d(µ) ≤ d(ν)+〈∇d(ν), µ−ν〉+ 1
2‖µ−ν‖EAH−1ATET . (13)

In [15, Proposition 31], it is shown that for many choices

of f̂ (such as the 1-norm or the indicator function of a

constraint set with non-empty interior) (13) is tight in some

full-dimensional subset of R
m. Here, we use the heuristic

to make d as round as possible in that subset, and to

choose γ optimally according to the shape of d inside

the subset. That is, we propose to select an E that mini-

mizes λmax(EAH−1ATET )/λmin(EAH−1ATET ), and to

set γ = 1/
√

λmax(EAH−1ATET )λmin(EAH−1ATET )
(in accordance with Proposition 6).

For f̂(x) = IBx=b(x), where B ∈ R
p×n has full row

rank, it is shown in [15, Proposition 33] that the bound in

(13) is not tight (note that the interior of the set defined by

Bx = b is empty). In this case, it is shown that d satisfies

d(µ) = d(ν) + 〈∇d(ν), µ− ν〉+ 1
2‖µ− ν‖EAK11ATET ,

where
[
K11 K12

K21 K22

]

=

[
H BT

B 0

]−1

.

This suggests that we should select E to minimize

the condition number of EAK11A
TET . However, the

matrix EAK11A
TET does not have full rank. Thus,

we instead propose to select E that minimizes the ratio

λmax(EAK11A
TET )/λmin>0(EAK11A

TET ), where

λmin>0 denotes the smallest non-zero eigenvalue,

and (in accordance with Proposition 6) choose

γ = 1/
√

λmax(EAK11ATET )λmin>0(EAK11ATET ).
Minimization of the pseudo condition number λmax/λmin>0

can be posed as a convex optimization problem and be

solved exactly, see [15, Section 6] which also contains

heuristics to reduce the pseudo condition number.

B. Loss of rank-condition in A

In this section, we consider the case where A ∈ R
m×n

does not have full row rank. This is common, e.g., when

solving problems of the form

minimize f(x)
subject to Ax ≤ d

where there are more constraints than variables. Letting

Ax = y and g(y) = Iy≤d(y) results in an inexpensive

prox-operation for g, which might not be the case if splitting

according to x = y and g(y) = IAy≤d(y). Even if A does

not have full row-rank, the results in Proposition 8 still

hold. However, EAH−1ATET and EAM−1ATET does

not have full rank, which means that we cannot minimize the

ratio λmax(EAH−1ATET )/λmin(EAM−1ATET ). Again,

we propose to choose E that minimizes the ratio be-

tween the largest and smallest nonzero eigenvalues, i.e. that

minimize λmax(EAH−1ATET )/λmin>0(EAM−1ATET ),
where, again, λmin>0 denotes the smallest non-zero eigen-

value. Also, similarly to before, we propose to select γ as

γ = 1/
√

λmax(EAH−1ATET )λmin>0(EAM−1ATET ).



VII. NUMERICAL EXAMPLE

In this section, we evaluate the preconditioning by apply-

ing ADMM to the (small-scale) aircraft control problem from

[18], [4]. As in [4], the continuous time model from [18] is

sampled using zero-order hold every 0.05 s. The system has

four states x = (x1, x2, x3, x4), two outputs y = (y1, y2),
two inputs u = (u1, u2), and obeys the following dynamics

x+ =

[
0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

]

x+

[−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

]

u,

y = [ 0 1 0 0
0 0 0 1 ]x

where x+ denotes the state in the next time step. The system

is unstable, the magnitude of the largest eigenvalue of the

dynamics matrix is 1.313. The outputs are the attack and

pitch angles, while the inputs are the elevator and flaperon

angles. The inputs are physically constrained to satisfy |ui| ≤
25◦, i = 1, 2. The outputs are soft constrained to satisfy

−s1 − 0.5 ≤ y1 ≤ 0.5 + s2 and −s3 − 100 ≤ y2 ≤ 100 +
s4 respectively, where s = (s1, s2, s3, s4) ≥ 0 are slack

variables. The cost in each time step is

ℓ(x, u, s) =
1

2

(
(x− xr)

TQ(x− xr) + uTRu+ sTSs
)

where xr is a reference, Q = diag(10−4, 102, 10−3, 102),
R = 10−2I , and S = 106I . This gives a condition number

of 1010 of the full cost matrix. Further, the terminal cost

is Q, and the control and prediction horizon is N = 10.

The numerical data in Figure 1 is obtained by following a

reference trajectory on the output. The objective is to change

the pitch angle from 0◦ to 10◦ and then back to 0◦ while

the angle of attack satisfies the output constraints −0.5◦ ≤
y1 ≤ 0.5◦. The constraints on the angle of attack limits the

rate on how fast the pitch angle can be changed. The full

optimization problem can be written on the form

minimize 1
2z

THz + rTt z + IBz=bxt
(z)

︸ ︷︷ ︸

f(z)

+ Id≤y≤d̄(z
′)

︸ ︷︷ ︸

g(z′)

subject to Cz = z′

where xt and rt may change from one sampling instant to

the next.

This is exactly the optimization problem formulation

discussed in the end of Section VI-A. In Figure 1, the

performance of the ADMM algorithm for different values

of γ and for different preconditioning is presented. Since the

numerical example treated here is a model predictive control

application, we can spend much computational effort offline

to compute a preconditioner that will be used in all samples

in the online controller. We compute a preconditioner E that

minimizes the condition number of ECH−1CTET (mini-

mization of the (pseudo) condition number of ECK11C
TET

gives about the same performance and is therefore omitted).

In Figure 1, the performance of ADMM with and without

preconditioning is shown. The figure also compares Douglas-

Rachford applied on the dual (i.e. ADMM) and Peaceman-

Rachford applied on the dual, (i.e. ADMM with over-

relaxation θ = 1), when using preconditioning. In this partic-

ular example, improvements of about one order of magnitude

Fig. 1. Average number of iterations for different γ-values, with and
without preconditioning, and for different relaxation θ.
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are achieved when using preconditioning compared to when

no preconditioning is used. Figure 1 also shows that ADMM

with over-relaxation performs better than standard ADMM

with no relaxation. The empirically best average iteration

count for over-relaxed ADMM when using preconditioning

is 15.9 iterations, for standard ADMM it is 24.9 iterations,

and for standard ADMM without preconditioning, (which

is the algorithm proposed in [21]), is 446.1 iterations. The

proposed γ-parameter selection is denoted by γ⋆ in Figure 1

(E or C is scaled to get γ⋆ = 1 for all examples). Figure 1

shows that γ⋆ does not coincide with the empirically found

best γ, but still gives gives a reasonable choice of γ in all

cases.

VIII. CONCLUSIONS

We have presented methods to scale the problem data

and select algorithm parameters for Douglas-Rachford split-

ting, Peaceman-Rachford splitting and ADMM. A numerical

example is provided in which the scaling improves the

performance of the ADMM algorithm with about one order

of magnitude compared to when no scaling is used.
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Numérique, 9:41–76, 1975.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical

learning: data mining, inference and prediction. Springer, 2nd edition,
2009.

[18] P. Kapasouris, M. Athans, and G. Stein. Design of feedback control
systems for unstable plants with saturating actuators. In Proceedings

of the IFAC Symposium on Nonlinear Control System Design, pages
302–307. Pergamon Press, 1990.

[19] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–
979, 1979.

[20] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic

Course. Springer Netherlands, 1st edition, 2003.

[21] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for
optimal control. IEEE Transactions on Control Systems Technology,
21(6):2432–2442, 2013.

[22] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends

in Optimization, 1(3):123–231, 2014.

[23] D. W. Peaceman and H. H. Rachford. The numerical solution of
parabolic and elliptic differential equations. Journal of the Society for

Industrial and Applied Mathematics, 3(1):28–41, 1955.

[24] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory
and Design. Nob Hill Publishing, Madison, WI, 2009.

[25] R. T. Rockafellar. Convex Analysis, volume 28. Princeton Univercity
Press, Princeton, NJ, 1970.

[26] R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer,
Berlin, 1998.

APPENDIX I

PROOF OF PROPOSITION 5

Proof. Define f̂ = 2f∗
γ − 1

2‖ · ‖2 (where fγ is defined in

Definition 12). Through Proposition 2, we get that ∇f̂ =
2∇f∗

γ − I = 2proxγf − I = Cγf . We get

〈∇f̂(y), x− y〉 = 〈2∇f∗
γ (y)− y, x− y〉

≤ 2(f∗
γ (x) − f∗

γ (y)− 1
2(γL+1)‖x− y‖2)

− (12‖x‖
2 − 1

2‖y‖
2 − 1

2‖x− y‖2)
= f̂(x) − f̂(y) + γL−1

2(γL+1)‖x− y‖2

where Proposition 4 and Proposition 1 are used in the

inequality. We also have

〈∇f̂(y), x− y〉 = 〈2∇f∗
γ (y)− y, x− y〉

≥ 2(f∗
γ (x)− f∗

γ (y)− 1
2(γσ+1)‖x− y‖2)

− (12‖x‖
2 − 1

2‖y‖
2 − 1

2‖x− y‖2)
= f̂(x)− f̂(y) + γσ−1

2(γσ+1)‖x− y‖2

where Proposition 3 and Proposition 1 are used in the

inequality. This implies that

γσ−1
2(γσ+1)‖x− y‖2 ≤ 〈∇f̂(y), x− y〉+ f̂(y)− f̂(x)

≤ γL−1
2(γL+1)‖x− y‖2

or equivalently (by negating the first inequality)

|〈∇f̂(y), x− y〉+ f̂(y)− f̂(x)|
≤ 1

2 max(γL−1
γL+1 ,

1−γσ
γσ+1 )‖x− y‖2. (14)

Since ∇f̂ = Cγf , Remark 2 and (14) imply that Cγf is

β-Lipschitz continuous, with

β = max
(

γL−1
1+γL

, 1−γσ
1+γσ

)

.

To minimize β, γ should be chosen such that the arguments

have equal magnitude, i.e. γL−1
1+γL

= 1−γσ
1+γσ

, which is obtained

by letting γ = 1√
σL

. This choice gives β = γL−1
1+γL

=
√
κ−1√
κ+1

<
1, which concludes the proof. �

APPENDIX II

PROOF OF PROPOSITION 6

Proof. By [2, Corollary 23.10] Cγg is nonexpansive and by

Proposition 5 Cγf is
√
κ−1√
κ+1

-contractive. Thus the composi-

tion CγgCγf is
√
κ−1√
κ+1

-contractive since

‖CγgCγfz1 − CγgCγfz2‖ ≤ ‖Cγfz1 − Cγfz2‖
≤

√
κ−1√
κ+1

‖z1 − z2‖. (15)

Now, let T = (1 − θ)I + θCγgCγf be the generalized

Douglas-Rachford operator in (8). Since z̄ = T z̄, we get

‖zk+1 − z̄‖ = ‖Tzk − T z̄‖
= ‖(1− θ)(zk − z̄) + θ(CγgCγfz

k − CγgCγf z̄)‖
≤ θ‖(CγgCγfz

k − CγgCγf z̄)‖ + (1− θ)‖zk − z̄‖
≤

(

θ
√
κ−1√
κ+1

+ (1− θ)
)

‖zk − z̄‖

=
√
κ+1−2θ√

κ+1
‖zk − z̄‖

where (15) is used in the second inequality. This concludes

the proof. �


