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Abstract— In this paper, optimization problems arising in
model predictive control (MPC) and in distributed MPC are
solved by applying a fast gradient method to the dual of
the MPC optimization problem. Although the development of
fast gradient methods has improved the convergence rate of
gradient-based methods considerably, they are still sensitive to
ill-conditioning of the problem data. Since similar optimization
problems are solved several times in the MPC controller, the
optimization data can be preconditioned offline to improve the
convergence rate of the fast gradient method online. A natural
approach to precondition the dual problem is to minimize the
condition number of the Hessian matrix. However, in MPC
the Hessian matrix usually becomes positive semi-definite only,
i.e., the condition number is infinite and cannot be minimized.
In this paper, we show how to optimally precondition the
optimization data by solving a semidefinite program, where op-
timally refers to the preconditioning that minimizes an explicit
iteration complexity bound. Although the iteration bounds can
be crude, numerical examples show that the preconditioning
can significantly reduce the number of iterations needed to
achieve a prespecified accuracy of the solution.

I. INTRODUCTION

Gradient-based optimization methods are known to have

iterations of low complexity, but also to have slow con-

vergence rate properties [10]. The development of fast (or

accelerated) gradient methods has improved the theoretical

convergence rate significantly compared to traditional gradi-

ent methods, with approximately unaltered complexity within

each iteration, see [9] for the first presented fast gradient

method and [10], [1], [16] for extensions and generalizations.

When minimizing convex differentiable functions with a

Lipschitz continuous gradient using gradient methods, a

quadratic upper bound to the minimized function with the

same curvature in all directions is minimized in every itera-

tion. For ill-conditioned problems, the quadratic upper bound

does not well approximate the function to be minimized. This

leads to deteriorated performance of gradient-based methods

when applied to such problems.

In this paper, we apply the fast gradient method presented

in [5] to solve the Lagrange dual problem to model predictive

control (MPC) optimization problems. If the underlying sys-

tem consists of sparsely interconnected subsystems, the al-

gorithm can be implemented in distributed fashion to enable

distributed MPC (DMPC), as in [5]. In MPC and DMPC,

similar optimization problems are solved several times. This

implies that the problem data can be preconditioned to

achieve a more well-conditioned problem with consequent

improved convergence rate of the fast gradient method. The

objective of the preconditioning differs if applied in an

MPC or in an DMPC context. In MPC, the total number

of flops should be minimized, while in DMPC, the number

of iterations should be minimized while keeping the com-

munication pattern of the distributed controller intact. Since

the minimized function is approximated with a quadratic

upper bound with the same curvature in all directions in

gradient methods, a natural way to precondition the data

is to minimize the condition number of the Hessian of the

minimized function. However, if there are more constraints

than variables, which is often the case for MPC-problems,

the dual problem has positive semi-definite Hessian matrix

only. This implies that the condition number is not defined,

and cannot be minimized.

In this paper, we instead precondition the optimization data

by minimizing a bound on the number of iterations needed

to guarantee a prespecified accuracy of the solution. To

compute such bounds, quantifiable convergence rate results

are needed. The convergence rate of fast gradient methods

when applied to the dual problem depends on the Lipschitz

constant of the dual gradient, which is known [5], and on the

norm of the optimal dual variables. Thus, by quantifying the

norm of the optimal dual variables and its dependence on the

initial condition, iteration complexity bounds that guarantee

a prespecified accuracy of the solution can be computed.

Computation of the bounds is complicated by the fact that

dual variables are not constrained to be in a compact set

a priori. For the case where only equality constraints are

dualized, iteration complexity bounds are provided in [14]

that are based on a result in [3]. These bounds are reported

to be conservative [14]. In [4] and [11] similar approaches

are taken to compute iteration complexity bounds when only

inequality constraints are dualized. In [13], an accelerated

gradient method is applied to the primal problem for input

constrained MPC. An iteration bound is obtained by bound-

ing the difference between the initial iterate and the optimal

control trajectory. In this paper, the iteration complexity

bounds from [4] are generalized to include also when the

equality constraints are dualized. Using these bounds, we

show how to precondition the optimization data optimally



by solving a semi-definite program, where optimally refers

to the preconditioners that minimize the iteration complexity

bound. The provided numerical example shows, although the

bounds can be crude, that the preconditioning can decrease

significantly the number of iteration needed to achieve a

prespecified accuracy of the solution.

II. PROBLEM SETUP AND PRELIMINARIES

The following MPC optimization problem with initial

condition x̄ ∈ R
n is considered

VN (x̄) := min
x,u

1

2

N−1∑

t=0

(xT
t Qxt + uT

t Rut) +
1

2
xT
NQNxN

s.t. (xt, ut) ∈ X × U , t = 0, . . . , N − 1
xt+1 = Axt +But, t = 0, . . . , N − 1
xN ∈ Xf , x0 = x̄

(1)

where xt ∈ R
n, ut ∈ R

m, x = [xT
1 , . . . , x

T
N ]T and u =

[uT
0 , . . . , u

T
N−1]

T . The cost matrices are assumed to satisfy

Q ≻ 0, QN ≻ 0 and R ≻ 0 and the constraint sets are

assumed to be polytopes defined by

X = {x ∈ R
n | Cxx ≤ dx}, Xf = {x ∈ R

n | Cfx ≤ df},
U = {u ∈ R

m | Cuu ≤ du},
where Cx ∈ R

nx×n, Cu ∈ R
nu×m and Cf ∈ R

nf×n. We

also assume that X , Xf and U are compact and contain zero

in their respective interiors which implies that dx, df , du >
0. By stacking all decision variables into one vector, y =
[x0, . . . , xN , u0, . . . , uN−1] and introducing the cost

JN (y) =
1

2
yTHy

where H ∈ R(n+m)N+n×(n+m)N+n is chosen accordingly,

the optimization problem (1) can more compactly be written

as

VN (x̄) := min
y

JN (y)

s.t. Ay = bx̄
Cy ≤ d

(2)

where matrices A ∈ R
nN×(n+m)N+n, b ∈ R

nN×n, C ∈
R

(nx+nu)N+nf×(n+m)N+n and d ∈ R
(nx+nu)N+nf are built

according to the introduced vector y. Dual variables λ ∈
R

nN for the equality constraints and µ ∈ R
(nx+nu)N+nf

≥0

for the inequality constraints are introduced. Under the

assumption that Slater’s condition holds, the following dual

problem is obtained (cf. [2])

max
λ,µ≥0

min
y

1

2
yTHy + λT (Ay − bx̄) + µT (Cy − d).

The dual problem can be rewritten as (cf. [5])

max
λ,µ≥0

−1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−λTbx̄−µTd.

(3)

The dual function is defined as the maximand in (3), i.e.,

DN (x̄,λ,µ) = −1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd

and satisfies the properties stated in the following proposition

(cf. [5]).

Proposition 1: The gradient of the dual function

∇DN is Lipschitz continuous with constant L =
‖[ATCT ]TH−1[ATCT ]‖. The gradient w.r.t. λ and µ

are given by

∇λDN (x̄,λ,µ) = −AH−1(ATλ+CTµ)− bx̄,

∇λDN (x̄,λ,µ) = −CH−1(ATλ+CTµ)− d

respectively.

These properties are such that an accelerated gradient

method [10], [1], [16], [5] can be used to solve the dual

problem. Below, a cold-starting variant, i.e., with λ0 = 0
and µ0 = 0, of the algorithm in [5] is presented.

Algorithm 1: Accelerated gradient algorithm

Initialize λ0 = λ−1 = 0, µ0 = µ−1 = 0 and y−1 = 0.

For k ≥ 0

yk = −H−1(ATλk +CTµk)

ỹk = yk +
k − 1

k + 2
(yk − yk−1)

λk+1 = λk +
k − 1

k + 2
(λk − λk−1) +

1

L

(
Aỹk − bx̄

)

µk+1 = max

{
0,µk +

k − 1

k + 2
(µk − µk−1)+

+
1

L

(
Cỹk − d

)}

The set of optimal dual variables is denoted by

M∗(x̄) = {λ,µ | DN (x̄,λ,µ) ≥ VN (x̄)}.

The set of initial conditions for which (2) is feasible is

denoted by XN . The optimal solution to (2) with initial

condition x̄ ∈ XN is denoted by y∗(x̄). Next, we state the

convergence rate properties of Algorithm 1.

Proposition 2: Suppose that x̄ ∈ XN . For every

(λ∗,µ∗) ∈ M∗(x̄), Algorithm 1 has the following conver-

gence rate properties:

1) For all k ≥ 1 the dual function converges as

DN (x̄,λ∗,µ∗)−DN (x̄,λk,µk) ≤ 2L

(k + 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

(4)

2) The primal variable rate of convergence is

‖yk − y∗(x̄)‖2 ≤ 4L

σ(H)(k + 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

, ∀k ≥ 1

(5)

where σ(H) denotes the smallest eigenvalue to H.

Proof. Argument 1 is proven in [1], [16], [5] and argument

2 is proven in [5]. �

To compute lower iteration bounds for the cold starting

case, i.e., with λ0 = 0 and µ0 = 0, to guarantee a

prespecified dual function value or primal variable accuracy

is the objective of this paper. We will show how to compute



bounds that hold for every x̄ ∈ βXN with β ∈ (0, 1) and

where βXN is defined as

βXN := {x̄ ∈ R
n | 1

β
x̄ ∈ XN}.

Since the set XN is convex and 0 ∈ XN (cf. [12]) we have

that βXN ⊆ XN and that 0 ∈ βXN . Before we proceed with

the presentation we introduce

P := bT (AH−1AT )−1b

which characterizes the optimal solution with equality con-

straints only and satisfies

1

2
x̄TP x̄ = max

λ
DN (x̄,λ, 0) ≤ VN (x̄). (6)

We also make the following definition.

Definition 1: The scalar κ ≥ 1 is defined as the smallest

scalar such that for every x̄ ∈ XN we have

VN (x̄) ≤ κ

2
x̄TP x̄. (7)

Remark 1: The exact value of κ can be found by solving

a mixed integer linear program (MILP), since minimizing κ
subject to (7) can be cast as a bilevel optimization problem

with convex inner problem and indefinite outer cost, see [6,

Theorem 2]. The iterations in the MILP solver can be stopped

before convergence to obtain an upper bound to the κ value.

Finally, we make the following assumption.

Assumption 1: We assume that A has full row rank.

A. Notation

The Euclidean norm and the induced Euclidean norm are

denoted by ‖ · ‖ and 〈x, y〉 = xT y. Further, σ̄(H) and σ(H)
are the largest and smallest singular value of H respectively.

Finally, the i:th element in a vector is denoted by [·]i.

III. LAGRANGE MULTIPLIER NORM BOUNDS

The only unknown quantity in the bounds in Proposition

2 is the norm of the optimal dual variables. The topic of this

section is to show how such norms can be computed for any

initial condition x̄ ∈ βXN with β ∈ (0, 1). The following

result is a straightforward generalization of the result in [8,

Lemma 1].

Lemma 1: Assume that there exists a vector ȳ(x̄) such

that Cȳ(x̄) < d and Aȳ(x̄) = bx̄. Then for every

(λ∗,µ∗) ∈ M∗(x̄) we have that µ∗ satisfies

‖µ∗‖ ≤ 1

γ(ȳ(x̄))
(JN (ȳ(x̄))− VN (x̄))

where γ(ȳ(x̄)) := min1≤j≤(nx+nu)N+nf
−[Cȳ(x̄)− d]j .

Proof. For every (λ∗,µ∗) ∈ M∗(x̄) we have

VN (x̄) = inf
y

JN (y) + (λ∗)T (Ay − bx̄) + (µ∗)T (Cy − d)

≤ JN (ȳ(x̄)) + (λ∗)T (Aȳ(x̄)− bx̄)+

+ (µ∗)T (Cȳ(x̄)− d)

≤ JN (ȳ(x̄))− γ(ȳ(x̄))(µ∗)T1

= JN (ȳ(x̄))− γ(ȳ(x̄))‖µ∗‖1
≤ JN (ȳ(x̄))− γ(ȳ(x̄))‖µ∗‖.

Rearranging the terms gives the result. �

By constructing a strictly feasible vector ȳ(x̄) in Lemma 1,

referred to as a Slater vector, a bound on the norm of the

optimal Lagrange multipliers associated with the inequality

constraints can be computed. Next, a straightforward gener-

alization to [4, Lemma 2] is presented where it was shown

how a Slater vector to (2) for every initial state x̄ ∈ βXN can

be constructed. Before the lemma is presented we introduce

dmin := minj [d]j > 0.

Lemma 2: For every x̄ ∈ βXN with β ∈ (0, 1), a Slater

vector to the optimization problem (2) is given by ȳ(x̄) =
βy∗(x̄/β). Further, γ(ȳ(x̄)) ≥ (1− β)dmin.

Proof. We first note that

Aȳ(x̄) = βAy∗(
x̄

β
) = βb

x̄

β
= bx̄

which implies that the equality constraints are satisfied.

Further,

Cȳ(x̄) = βCy∗(
x̄

β
) ≤ βd = d− (1− β)d.

Hence, −(Cȳ(x̄) − d) ≥ (1 − β)d which by definition of

the function γ and dmin gives the result. �

Next, we present a theorem that, using Lemma 1 and

Lemma 2, shows how a bound on the norm of the optimal

dual variables can be computed. Before we present the

theorem, we introduce the matrices

Φ := AH−1AT , Ψ := (AH−1AT )−1AH−1CT . (8)

From Assumption 1 we know that A has full row rank.

Further, H is positive definite. Hence, Φ = AH−1AT is

invertible and Ψ exists.

Theorem 1: For every x̄ ∈ βXN we have for every

(λ∗,µ∗) ∈ M∗(x̄) that
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤
∥∥∥∥
[
Ψ
I

]∥∥∥∥
κ− 1

2(1− β)dmin
x̄TP x̄+ ‖Φ−1bx̄‖. (9)

Proof. Using the Slater vector ȳ(x̄) = βy∗(x̄/β) we get

JN (ȳ(¯̄x)) = JN (βy∗(
x̄

β
)) = β2 1

2
y∗(

x̄

β
)THy∗(

x̄

β
)

= β2VN (
x̄

β
) ≤ β2κ

2

[
x̄

β

]T
P

[
x̄

β

]
=

κ

2
x̄TP x̄

where the inequality comes from Definition 1. Further, KKT

conditions to (2) and Proposition 1 gives that for every

(λ∗,µ∗) ∈ M∗(x̄) we have

−AH−1(ATλ∗ +CTµ∗) = bx̄.

This implies that

λ∗ = −(AH−1AT )−1(AH−1CTµ∗ + bx̄)

= −Ψµ∗ − Φ−1bx̄



where the last equality comes from the definitions of Φ and

Ψ in (8). This gives
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ =

∥∥∥∥
[
−Ψ
I

]
µ∗ +

[
−Φ−1bx̄

0

]∥∥∥∥

≤
∥∥∥∥
[
Ψ
I

]∥∥∥∥ ‖µ
∗‖+ ‖Φ−1bx̄‖

≤
∥∥∥∥
[
Ψ
I

]∥∥∥∥
1

γ(ȳ(x̄))
(JN (ȳ(x̄)− VN (x̄)) + ‖Φ−1bx̄‖

≤
∥∥∥∥
[
Ψ
I

]∥∥∥∥
κ− 1

2(1− β)dmin
x̄TP x̄+ ‖Φ−1bx̄‖

where the second inequality comes from Lemma 1 and the

final inequality from Lemma 2, Definition 1 and (6). This

completes the proof. �

In the following section, the bound on the optimal dual

variables is used, together with the convergence rate results in

Proposition 2, to compute lower iteration bounds to achieve

a prespecified dual function value and primal variable accu-

racy.

IV. ALGORITHM ITERATION BOUNDS

Lower iteration bounds to achieve prespecified dual func-

tion value and primal variable tolerances are presented in

this section. We consider bounds for the cold starting case,

i.e., when λ0 = 0 and µ0 = 0.

A. Iteration bound to guarantee dual ǫ-solution

First, a lower iteration bound to achieve a prespecified dual

function value accuracy is presented. As in [4], a relative

tolerance is used to avoid that a scaling of the Q and R
matrices affects the bound.

Theorem 2: Suppose that Algorithm 1 is initialized with

λ0 = 0 and µ0 = 0. Then for every x̄ ∈ βXN with β ∈
(0, 1) we have

VN (x̄)−D(x̄,λk,µk) ≤ ǫdVN (x̄) (10)

for every k ≥ kd(x̄) where

kd(x̄) = 2

√
L

ǫd

(
(κ− 1)

√
x̄TP x̄

2(1− β)
ν + ρ

)
− 1 (11)

and ρ = ‖Φ−1bP−1/2‖ and ν = ‖[ΨT IT ]T ‖/dmin.

Proof. Inequality (10) is equivalent to

DN (x̄,λ∗,µ∗)−DN (x̄,λk,µk) ≤ ǫdDN (x̄,λ∗,µ∗)

for any (λ∗,µ∗) ∈ M∗(x̄). From Proposition 2 and (6) we

conclude that (10) holds if

2L

(k + 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

≤ ǫd
1

2
x̄TP x̄. (12)

Insertion of the bound in Theorem 1 into (12) and rearrang-

ing the terms gives

kd(x̄) = 2

√
L

ǫd

(
(κ− 1)

√
x̄TP x̄

2(1− β)
ν +

‖Φ−1bx̄‖√
x̄TP x̄

)
− 1.

We have

‖Φ−1bx̄‖√
x̄TP x̄

≤ ρ ⇐⇒ ‖Φ−1bx̄‖2
‖P 1/2x̄‖2 ≤ ρ2

⇐⇒ x̄TbTΦ−2bx̄ ≤ ρ2x̄TP x̄.

Since 0 ∈ int(βXN ) this holds for every x̄ ∈ βXN if and

only if ρ is such that

bTΦ−2b � ρ2P ⇐⇒ P−1/2bTΦ−2bP−1/2 � ρ2I

⇐⇒ ‖Φ−1bP−1/2‖ � ρ. (13)

Choosing ρ such that the last step in (13) holds with equality

completes the proof. �

Remark 2: As in [4], the lower iteration bound is not

affected by scaling the cost matrices by a factor a > 0.

This is true since for cost matrices Qa = aQ and Ra = aR
we get La = 1

aL, Pa = aP , ρa =
√
aρ, and νa = ν. By

insertion into (11) the factor a is cancelled.

Remark 3: It is desirable to compute a lower iteration

bound for all x̄ ∈ βXN . By maximizing kd(x̄) subject to

x̄ ∈ βXN this can be obtained. Since it is often difficult to

describe the set x̄ ∈ βXN an over estimator to the lower

iteration bound is found by maximizing kd(x̄) subject to

x̄ ∈ βX . The only x̄-dependency in the iteration bound is√
x̄TP x̄ which affects the bound affinely. By maximizing

x̄TP x̄ over βX , which is a quadratic convex maximization

problem, the maximizing x̄ can be found. Such problems are

NP-complete but can be rewritten as MILPs as shown in [6,

Lemma 2]. There are efficient MILP solvers that, in every

iteration, produce upper and lower bounds to the optimal

value. An upper bound to the optimal value is enough to

compute an iteration bound, hence the MILP solver can be

stopped when sufficient accuracy has been reached.

B. Primal variable iteration bound

In this section, a bound on the number of iterations

needed to guarantee a prespecified distance between the

algorithm primal variables and the optimal primal variables

is presented.

Theorem 3: Suppose that Algorithm 1 is initialized with

λ0 = 0 and µ0 = 0. Then for every x̄ ∈ βXN we have

‖yk − y∗(x̄)‖ ≤ ǫp (14)

for every k ≥ kp(x̄) where

kp(x̄) =
2

ǫp

√
L

σ(H)

(∥∥∥∥
[
Ψ
I

]∥∥∥∥
(κ− 1)x̄TP x̄

2(1− β)dmin
+ ‖Φ−1bx̄‖

)
−1.

Proof. From Proposition 2 we have that (14) holds if

2

k + 1

√
L

σ(H)

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤ ǫp

Insertion of the bound in Theorem 1 and rearranging gives

the result. �



V. OPTIMAL PRECONDITIONING

In this section, we show how to precondition the problem

data such that the iteration complexity bound in Theorem 2

is minimized. We precondition the equality constraints with

an invertible matrix E such that EAy = Ebx̄ and the

inequality constraints with a diagonal matrix F with positive

diagonal elements such that FCy ≤ Fd. To keep the sparse

structure of the equality constraints, E should satisfy E ∈ E
where E defines the sparsity structure. The set E should be

chosen such that if E ∈ E then also ETE ∈ E . This holds,

e.g., for diagonal matrices, for block-diagonal matrices, and

for matrices that become block-diagonal after left multiplica-

tion of a specific permutation matrix and right multiplication

of its transpose. In the following lemma we show that the

optimal preconditioner for the inequality constraint has the

form F = tD−1 where t > 0 and D := diag(d).

Lemma 3: The optimal preconditioner for the inequality

constraints satisfies F = tD−1 for some t > 0 and for

any fixed Lipschitz constant L > 0 to ∇DN , where optimal

refers to the preconditioners that minimize the iteration

bound in Theorem 2.

Proof. Since F and D are diagonal matrices with positive

elements, F can be represented as F = GD−1 where G is

a diagonal matrix with positive elements. The variables in

the iteration bound in Theorem 2 that are affected by the

preconditioning are ρ, ν and L. For preconditioners E and

F = GD−1, ρ satisfies

ρ = ‖(EAH−1ATET )−1EbP−1/2‖
= ‖E−T (AH−1AT )−1E−1EbP−1/2‖
= ‖E−TΦ−1bP−1/2‖ (15)

and ν satisfies

ν =

∥∥∥∥
[
(EAH−1ATET )−1EAH−1CTD−TGT

I

]∥∥∥∥ /dmin

=

∥∥∥∥
[
E−T (AH−1AT )−1E−1EAH−1CTD−TGT

I

]∥∥∥∥
minj [GD−1d]j

=

∥∥∥∥
[
E−TΨD−TGT

I

]∥∥∥∥ /λmin(G). (16)

where Φ and Ψ are defined in (8). Further, the Lipschitz

constant to ∇DN is bounded by L for all feasible E and

F = GD−1, i.e., they must satisfy (see Proposition 1)

L ≥
∥∥∥∥∥

[
EA

GD−1C

]
H−1

[
EA

GD−1C

]T∥∥∥∥∥ . (17)

Next, we show that the optimal F satisfies F = tD−1 where

t > 0, i.e., that the optimal G = tI . We represent G as

G = tI + G̃ where G̃ is diagonal and G̃ � 0. This implies

that (16) is equivalent to ν being the smallest scalar such

that

GD−1ΨTE−1E−TΨD−TGT + I � ν2t2I

which in turn is equivalent to ν being the smallest scalar

such that

(ν2t2 − 1)I � E−TΨD−TGTGD−1ΨTE−1

= E−TΨD−T (t2I + 2G̃t+ G̃T G̃)D−1ΨTE−1.

Hence, for given t > 0, G̃ = 0 gives the smallest ν
independent of E. Further, the Lipschitz constant constraint

(17) is equivalent to

LI � H−1/2[ATET ,CTD−TGT ]×
× [ATET ,CTD−TGT ]TH−1/2

which in turn is equivalent to

LH � ATETEA+CTD−TGTGD−1C

= ATETEA+CTD−T (t2I + 2G̃t+ G̃T G̃)D−1C.

We introduce X(G̃) = LH − CTD−T (t2I + 2G̃t +
G̃T G̃)D−1C which satisfies X(G̃1) ≺ X(G̃2) if G̃1 ≻
G̃2 � 0. We also define the set of feasible preconditioners

for the equality constraints

Σ(G̃) = {E ∈ E | ATETEA � X(G̃)}.
For E ∈ Σ(0) we have ATETEA � X(0) and for E ∈
Σ(G̃) with G̃ ≻ 0 we have ATETEA � X(G̃) ≺ X(0),
which implies Σ(G̃) ⊂ Σ(0) for every G̃ ≻ 0. Hence, by

setting G̃ = 0 the variable ν is as small as possible and the

set of feasible E is as large as possible. This implies that

if G̃ = 0 then E gets maximal freedom in minimizing (15)

and (16) while respecting the constraint (17). This concludes

the proof. �

Before we state the theorem about how to compute the

optimal preconditioner we define Px := maxx∈X

√
xTPx.

This implies maxx∈βX

√
xTPx = βPx.

Theorem 4: The preconditioners E and F that minimize

the iteration bound in Theorem 2 for fixed β ∈ (0, 1) are

found by solving the following semidefinite program

min
(κ− 1)βPx

2(1− β)
ν + ρ

s.t.

[
Z θΦ−1b

θbTΦ−T P

]
� 0 (18)

[
Z φΨD−T

φD−1ΨT (1− s)I

]
� 0 (19)

[
sI φD−1C

φCTD−T LH−ATZA

]
� 0 (20)

[
ν 1
1 φ

]
� 0 (21)

[
ρ 1
1 θ

]
� 0 (22)

Z ≻ 0, Z ∈ E
ρ > 0, θ > 0, φ > 0, ν > 0, s > 0

where Z = ETE, s = φ2

t2 , F = tD−1, and L is the maximal

Lipschitz constant to ∇DN . Further, the optimal value is the

same for any choice of L > 0.



Proof. The variables in the iteration bound in Theorem 2

that are affected by the preconditioning are ρ, ν and L.

Variables ρ and ν are given by (15) and (16) respectively

when preconditioning is used, and the constraint imposed by

L is given in (17) in the preconditioning case. We will show

that the posed semidefinite program implies (15), (16), and

(17) and that it finds the preconditioners that minimize the

iteration bound in Theorem 2.

Schur complement of (22) gives ρ ≥ 1/θ. Further, Schur

complement gives that (18) and Z ≻ 0 implies

bTΦ−TZ−1Φ−1b � 1

θ2
P � ρ2P.

Hence

‖E−TΦ−1bP−1/2‖ ≤ ρ (23)

and (15) is implied by choosing the smallest ρ such that (23)

holds. Schur complement of (21) gives ν ≥ 1/φ and Schur

complement of (19) gives

D−1ΨTZ−1ΨD−T � 1

φ2
(1− s)I � (ν2 − 1

t2
)I.

This is equivalent to

tD−1ΨTZ−1ΨD−T t+ I � ν2t2I = ν2d2minI

which in turn is equivalent to
∥∥∥∥
[
E−TΨD−T t

I

]∥∥∥∥
1

dmin
� ν. (24)

By choosing the smallest ν such that (24) holds, (16) is

satisfied since by Lemma 3, G = tI is optimal and since

λmin(G) = dmin. Further, since s > 0 Schur complement of

(20) gives

LH � ATZA+CTD−T φ2

s
D−1C

= ATZA+CTD−T t2D−1C

which is equivalent to

L ≥ ‖H−1/2[ATET ,CTD−T t][ATET ,CTD−T t]TH−1/2‖
which in turn is equivalent to

L ≥
∥∥∥∥∥

[
EA

tD−1C

]
H−1

[
EA

tD−1C

]T∥∥∥∥∥ . (25)

This implies that the Lipschitz constant constraint (17) holds.

Next we show that the cost

min
(κ− 1)βPx

2(1− β)
ν + ρ (26)

implies that (25) holds with equality which implies that the

iteration bound (11) is minimized. Since t = dmin the bound

(24) is equivalent to
∥∥∥∥
[
E−TΨD−T

1/t

]∥∥∥∥ � ν.

Further, (23) depends on E−1. This implies that ρ and ν
are decreasing when E and t are increasing, while the r.h.s.

of (25) is increasing with E and t. Hence, the optimal

preconditioners must have equality in (25). Further, since

(25) holds with equality, the Lipschitz constant L in (11) is

fixed and (26) minimizes the iteration bound (11).

It remains to show that the iteration bound (11) is inde-

pendent of the choice of L > 0. The iteration bound (11)

depends on
√
Lρ and

√
Lν and the only hard constraints

are (25) and the constraints on positive definiteness. We

introduce the set of feasible preconditioners for fixed L as

follows

Θ(L) = {t > 0, E ∈ E | E ≻ 0 and (25) holds}.

Since E is only a sparsity constraint we get for any L1 > 0
and L2 > 0 that

√
L2Θ(L1) =

√
L1Θ(L2). Hence every

pair (t2, E2) ∈ Θ(L2) can be described as (t2, E2) =√
L2(t1, E1) where (t1, E1) ∈ Θ(L1) and L1 = 1. We

denote by ρ1 and ν1 the bounds (23) and (24) using t1 and E1

and by ρ2 and ν2 the bound (23) and (24) using t2 and E2.

We see from (23) that using E2 =
√
L2E1 and t2 =

√
L2t1

gives ρ2 = ρ1/
√
L2 and from (24) we conclude that ν2 =

ν1/
√
L2. Since the iteration bound depends on

√
Lρ and√

Lν we get
√
L2ρ2 =

√
L2ρ1/

√
L2 = 1ρ1 =

√
L1ρ1 and√

L2ν2 =
√
L2ν1/

√
L2 = 1ν1 =

√
L1ν1. Hence, the choice

of L does not influence the iteration bound. This completes

the proof. �

Remark 4: The matrix Z ∈ E is symmetric and positive

definite and can hence be decomposed as Z = UΣUT ,

where U is unitary and Σ is diagonal with positive diagonal

elements. This decomposition, together with the requirement

on the sparsity, i.e., that E ∈ E and ETE ∈ E , implies

that by choosing preconditioner E = UΣ1/2UT we get

E ∈ E and ETE = UΣ1/2UTUΣ1/2UT = UΣUT = Z.

The preconditioning matrix F is readily computed by setting

F = φ√
s
D−1.

Remark 5: Denoting the dual function for the precondi-

tioned problem DN,pc(x̄,λ,µ) and keeping the notation for

the original unconditioned problem DN (x̄,λ,µ), gives that

DN (x̄,λ,µ) = DN,pc(x̄, E
−1λ, F−1µ).

Denoting primal variables computed from unconditioned

problem in Algorithm 1 by y(x̄,λ,µ) and primal variables

computed from preconditioned problem in Algorithm 1 by

ypc(x̄,λ,µ), gives that

y(x̄,λ,µ) = ypc(x̄, E
−1λ, F−1µ).

This implies that for a certain dual accuracy of the precon-

ditioned problem, the same accuracy of the primal solution

is obtained as if the original unconditioned problem is used.

Hence, the accuracy of the primal solution for a specific dual

optimality tolerance is unaffected by the preconditioning.

However, the set of optimal dual variables is linearly trans-

formed between the original and preconditioned problems.

VI. NUMERICAL EXAMPLE

The efficiency of the preconditioning and the conservatism

of the iteration bound are evaluated by applying the opti-

mization algorithm on a DMPC problem where the dynamics



TABLE I

EXPERIMENTAL RESULTS FOR ALGORITHM 1 WITH MPC-, DMPC-,

AND WITHOUT PRECONDITIONING. THE NUMBER OF ALGORITHM

ITERATIONS AND ITERATION COMPLEXITY BOUNDS ARE PRESENTED.

ǫv β precond # iters iter bound
avg. max.

0.005 0.25 DMPC 13.92 49 487
0.005 0.25 MPC 56.76 119 1536
0.005 0.25 no 149.51 252 5087

0.005 0.50 DMPC 32.24 71 1333
0.005 0.50 MPC 71.06 120 3399
0.005 0.50 no 155.77 262 12463

0.005 0.75 DMPC 38.08 167 3877
0.005 0.75 MPC 81.28 242 8986
0.005 0.75 no 159.84 330 34585

0.005 0.90 DMPC 41.70 232 11505
0.005 0.90 MPC 87.20 340 25905
0.005 0.90 no 164.84 370 100967

matrix is randomly generated and has sparse structure. The

system is unstable since the largest eigenvalue of the dy-

namics matrix is 1.1. The system has 3 sub-systems with

5 states and 1 input each, i.e., in total 15 states and 3

inputs. The state and input variables are upper and lower

bounded by random numbers in the intervals [0.5 1.5] and

[−0.15 − 0.05] respectively. The cost matrices are diagonal

and each diagonal element is randomly chosen from the

interval [1 100]. The control horizon is N = 6. We use

two different preconditionings, one MPC preconditioning

and one DMPC preconditioning. The objective of the MPC

preconditioning is to reduce the total number of flops. We

use a diagonal matrix for preconditioning of the equality

constraints, E, which implies that the number of flops per

iteration is unchanged after preconditioning. For the DMPC

preconditioning, the objective is to minimize the number of

iterations while keeping the communication structure of the

distributed controller. Thus, the E matrix is restricted to

accompany this request. All simulations are performed in

MATLAB and the semidefinite program for the precondi-

tioning is solved through YALMIP [7] using SeDuMi [15].

In Table I we compare the number of iterations needed

to achieve a prespecified dual accuracy for the randomly

generated DMPC problem for different preconditionings.

We also compare the actual number of iterations with the

iteration bounds to evaluate the conservatism of the bounds.

The first column specifies the relative duality tolerance and

the second column specifies the set from which the initial

conditions are chosen where β is the scaling factor, i.e.,

initial conditions are chosen from βXN . The third column

specifies which preconditioning that is used, DMPC for

DMPC preconditioning and MPC for MPC preconditioning,

or if no preconditioning is used. The fourth and fifth columns

present average and max number of iterations while the sixth

column presents the iteration bound. The data in Table I

is obtained by solving the DMPC optimization problem for

10000 randomly generated initial conditions.

In Table I we see that, although the iteration bounds can

be crude, the MPC preconditioning reduces the number of

iterations needed while keeping the number of flops per

iteration constant, and the DMPC preconditioning reduces

the number of iterations significantly while keeping the

communication structure of the distributed controller intact.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a method to precondition the

optimization data for MPC and DMPC optimization prob-

lems when the dual to the optimization problem is solved

using a fast gradient method. The preconditioning relies on

minimizing an explicit iteration bound to achieve a pre-

specified dual accuracy. Although the bounds can be crude,

numerical examples suggest that the number of iterations can

be reduced significantly by using the proposed method.
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