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Abstract— We consider robust output feedback distributed
model predictive control (DMPC). The proposed controller
is based on the results in [8] in which nominal stability
and feasibility was proven for a DMPC-formulation without
terminal constraint set or terminal cost in the optimization.
We extend these results to show robust stability under state
feedback as well as output feedback when dynamics and
measurements are affected by bounded noise. The provided
numerical example suggests that the region of attraction with-
out terminal constraint set may be significantly larger than if
a terminal constraint set is used.

I. INTRODUCTION

In the model predictive control (MPC) literature nominal

stability of the closed loop system is a well studied subject

and is usually proven using a terminal constraint set, a

terminal cost and a terminal controller, see [13] for a survey

of such methods. Also robustness properties in MPC has

received increased attention. In [13] different approaches

from the literature to achieve robustness are presented. The

survey shows three main approaches to guarantee robustness

in MPC: to exploit the inherent robustness in nominal MPC,

to design the MPC-controller to deal with any possible

realization of the disturbance, or to introduce feedback in the

design that compensates for the disturbances. Within the first

category, it was shown in [9] that linear systems with convex

constraints are inherently robust to small disturbances. This

is due to the fact that the value function of the optimization

problem is continuous [2], [9]. To address both robust

feasibility and robust stability, a tube-based model predictive

controller for linear systems was presented in [14]. This

was extended to tube-based output feedback model predictive

control in [12]. These tube-based MPC controllers also rely

on a terminal cost and terminal constraints to show stability.

It was pointed out in [8] that terminal costs, terminal

constraint sets, and terminal controllers usually involve all

decision variables and are therefore not directly applicable

for distributed model predictive control formulations where

a centralized optimization problem is solved in distributed

fashion. This is circumvented in [3] where stability is proven

by setting a terminal point constraint in the origin, which

is not desirable for performance and region of attraction

reasons. In [8] a DMPC controller based on an optimization

problem without terminal constraint set or terminal cost

is proposed. Nominal stability for this is shown based on

a controllability assumption on the optimal stage costs.

Another formulation that solves a centralized MPC prob-

lem in distributed fashion can be found in [15] but no

stability guarantees are given. In the DMPC literature some

formulations do not solve a centralized problem but local

optimization problems that take neighboring interaction into

account, [4], [18], [10]. In [4], [18] stability (and robustness

in the latter case) is guaranteed by letting the subsystems

solve local optimization problems sequentially and pass the

local solutions downstream to be used in the remaining local

optimizations. In [10] stability is shown by setting explicit

stabilizing constraints in the optimization. In the case of

output feedback, there are quite few contributions in the

DMPC literature. One exception is [19] in which nominal

stability is proven using a decentralized estimator and local

optimizations with full model data.

In this paper we extend the DMPC formulation presented

in [8] to guarantee robustness to small disturbances using a

constraint tightening approach and the inherent robustness of

linear MPC. In [8] stability is shown without the use of a

terminal constraint set which in many applications increases

the region of attraction since there are no constraints on

the end point. Using ideas from [12] we also propose

an output feedback DMPC controller that is shown to be

robustly stable and robustly feasible for small disturbances.

Stability is shown by containing the estimation error within

a positively robust invariant set and view the estimation error

as a (bounded) disturbance. The inherent robustness of linear

MPC is then used to show robust stability. To cope with the

output feedback case, we restrict our treatment to systems

with input couplings only since this allows for decentralized

observer design. Such system descriptions arise, for instance,

when flow between subsystems is controlled. The flow might

be power in an electric network [1], water in hydro power

valley [16] or intermediate products in a supply chain [5].

The paper is organized as follows. In Section II we

formulate the problem and present useful results from [8]. In

Section III we show robust stability and robust feasibility in

the state feedback case. These results are used in Section IV

to show robust stability and feasibility in the output feedback

case. A numerical example is provided in Section V and the

paper is concluded in Section VI.



II. SETUP AND PRELIMINARIES

We consider linear dynamical systems where each subsys-

tem i ∈ {1, . . . ,M} is described by

xi
t+1 = Aiix

i
t +

∑

j∈Ni

Biju
j
t + wi

t xi
0 = x̄i

yit = Cix
i
t + ξit

where xi
t ∈ R

ni , ui
t ∈ R

mi , wi
t ∈ R

ni , yit ∈ R
pi , ξit ∈ R

pi ,

and Ni is the neighboring interaction defined by

Ni = {j ∈ {1, . . . ,M} | Bij 6= 0}.

We assume that the system has some sparsity structure,

i.e., that some Bij = 0. We introduce the global variables

x = [(x1)T , . . . , (xM )T ]T , u = [(u1)T , . . . , (uM )T ]T , w =
[(w1)T , . . . , (wM )T ]T , y = [(y1)T , . . . , (yM )T ]T and ξ =
[(ξ1)T , . . . , (ξM )T ]T where x ∈ R

n, u ∈ R
m, w ∈ R

n,

y ∈ R
p and ξ ∈ R

p. This gives the following global system

xt+1 = Axt +But + wt x0 = x̄ (1)

yt = Cxt + ξt (2)

where the matrices A and C are block-diagonal and B is

sparse. We assume hereafter that the pair (A,B) is stabiliz-

able and the pair (A,C) is detectable. The local control and

state variables as well as the disturbances are constrained,

i.e., ui ∈ Ui, x
i ∈ Xi, w

i ∈ Wi and ξi ∈ Ξi where

Xi = {xi ∈ R
ni | F x

i x
i ≤ gxi },

Ui = {ui ∈ R
mi | Fu

i u
i ≤ gui },

Wi = {wi ∈ R
ni | Fw

i wi ≤ gwi },

Ξi = {ξi ∈ R
pi | F ξ

i ξ
i ≤ gξi }

where F x
i ∈ R

nf
xi

×ni , gxi ∈ R
nf

xi , Fu
i ∈ R

nf
ui

×mi , gui ∈

R
nf

ui , Fw
i ∈ R

nf
wi

×ni , gwi ∈ R
nf

wi , F ξ
i ∈ R

nf
ξi

×pi
and

gξi ∈ R
nf

ξi . We denote the total number of inequalities in Xi

and Ui for all i = 1, . . . ,M by q, i.e., q =
∑

i(nf
xi
+nf

ui
).

The global constraint sets X ,U ,W and Ξ are defined as

the set product of their respective local constraint sets. By

introducing the predicted state and control vectors

z = [zT0 , . . . , z
T
N−1]

T v = [vT0 , . . . , v
T
N−1]

T (3)

we formulate the following optimization problem which was

used in the DMPC formulation in [8]

VN (x) := min
z,v

JN (z,v)

s.t. zτ ∈ X , τ = 0, . . . , N − 1,
vτ ∈ U , τ = 0, . . . , N − 1,
zτ+1 = Azτ +Bvτ , τ = 0, . . . , N − 2,
z0 = x.

(4)

We denote the optimal state and control at time step τ for (4)

by z∗τ (x) and v∗τ (x) respectively. The cost in (4) is assumed

quadratic and separable

JN (z,v) :=

N−1∑

τ=0

ℓ(zτ , vτ ) =

N−1∑

τ=0

M∑

i=1

ℓi(z
i
τ , v

i
τ )

=

N−1∑

τ=0

M∑

i=1

(
1

2
(ziτ )

TQiz
i
τ +

1

2
(viτ )

TRiv
i
τ

)

where Qi ≻ 0 and Ri ≻ 0. Problem (4) can be solved

efficiently in distributed fashion using the method developed

in [7] which was also used in [8]. A short description of

the optimization algorithm is given below. By introducing

the vector χ = [zT ,vT ]T the optimization problem (4) can

more compactly be written as

VN (x̄) := min
χ

1
2χ

THχ

s.t. Aχ = bx
Fχ ≤ g

where H and F are block-diagonal and A has the same

structure as B in (1). We introduce dual variables µ ∈ R
Nq
≥0

for the inequality constraints and λ ∈ R
n(N−1) for the

equality constraints. As shown in [7] the dual problem can

be written as

max
λ,µ≥0

−

1

2
(AT

λ+ F
T
µ)TH−1(AT

λ+ F
T
µ)− λ

T
bx− µ

T
g.

(5)

The dual function was in [7] shown to have Lips-

chitz continuous gradient with Lipschitz constant L =
‖[AT FT ]TH−1[AT FT ]‖ and can hence be maximized

using accelerated gradient methods. The algorithm from [7]

is presented here

χk = −H−1

(
FTµk +ATλk

)
(6)

χ̄k = χk +
k − 1

k + 2
(χk − χk−1) (7)

λk+1 = λk +
k − 1

k + 2
(λk − λk−1) +

1

L

(
Aχ̄k − bx

)
(8)

µk+1 = max

[
0,µk +

k − 1

k + 2
(µk − µk−1) +

1

L

(
Fχ̄k − g

) ]

(9)

where k denotes the iteration number. Due to the structure

of the matrices A,F and H the algorithm can be imple-

mented in distributed fashion where communication between

subsystems i and j takes place if j ∈ Ni or i ∈ Nj ,

see [7] fordetails. Further results from [7] shows that the

algorithm converges as O( 1
k2 ) in dual function value. This

is a significant enhancement compared to if the classical

gradient method was used which converges as O( 1k ).
In [8] feasibility, stability and performance of the closed

loop system when solving (4), which has neither terminal

cost nor terminal constraints, using (6)-(9) was established.

Since (6)-(9) gives a primal feasible solution only in the

limit of iterations, an adaptive constraint tightening approach

was used to ensure feasibility, stability, and performance

with finite number of algorithm iterations. However, in this

paper we state all results as if the optimal solution to (6)-

(9) is found in each iteration. The generalization to allow

for early termination using the stopping condition in [8]

is straightforward but requires quite some notation to be

introduced. We introduce

XN := {x ∈ R
n | VN (x) < ∞ and Az∗N−1(x) ∈ X}.



We also define the infinite horizon steerable set

X∞ := {x ∈ R
n | V∞(x) < ∞}

and ℓ∗(x) := 1
2x

TQx and the following definition:

Definition 1: The constant ΦN is the smallest constant

such that the optimal solution {z∗τ (x)}
N−1
τ=0 , {v∗τ (x)}

N−1
τ=0 to

(4) for every x ∈ XN satisfies

ℓ∗(z∗N−1(x)) ≤ ΦN ℓ(x, v∗0(x)) (10)

for the chosen control horizon N .

We introduce the optimal feedback control law νN (x) :=
v∗0(x) and define the nominal and actual next states

x̄t+1 := Axt +BνN (xt)

xt+1 := Axt +BνN (xt) + wt

where wt ∈ W . We define κ = ‖Q−1/2ATQAQ−1/2‖2 and

state the following result from [8, Corollary 1].

Theorem 1: Suppose that α ≤ 1− κΦN . Then

VN (x) ≥ VN (Ax+BνN (x)) + αℓ(x, νN (x))

holds for every x ∈ XN .

Throughout the remainder of the paper we assume that

α > 0 and N are chosen in accordance with Theorem 1.

Assumption 1: We assume that the disturbance sets W,Ξ
are bounded and that 0 ∈ intW , 0 ∈ intΞ . Further we

assume that Bni
∞(rx) ⊂ Xi, B

mi
∞ (ru) ⊂ Ui for some rx, ru >

0 where Bn
∞(r) is defined in (11).

A. Notation

The norm ball is defined as

Bn
l (r) := {x ∈ R

n | ‖x‖l ≤ r}. (11)

The ⊕ denotes the Minkowski sum defined by X1 ⊕ X2 ,

{x1+x2 | x1 ∈ X1, x2 ∈ X2} and ⊖ denotes the Pontryagin

difference defined by

X1 ⊖X2 , {x | {x} ⊕ X2 ⊆ X1}. (12)

Finally hX (θ) is the support function which is defined as

hX (θ) , supx∈X θTx.

Remark 1: For polytopic sets X1 = {x ∈ R
n | X1x ≤

y1}, X2 = {x ∈ R
n | X2x ≤ y2} we have from [11,

Theorem 2.3] that

X1 ⊖X2 = {x ∈ R
n | [X1]jx ≤ [y1]j−hX2

([X1]
T
j ),

j = 1, . . . , p}

where X1 has p rows, [X1]j is the j:th row of X1 and [y1]j
is the j:th element of y1. Thus, X1 ⊖ X2 and X1 can be

described using the same number of linear inequalities.

III. ROBUST STATE FEEDBACK DMPC

In this section we consider the state feedback problem,

i.e., with C = I and ξ = 0 in (2). We will see that by

tightening the constraints in the optimization problem we

can guarantee robust stability and robust feasibility. We start

by investigating robust feasibility.

A. One-step robust feasibility

To guarantee that the system is one-step robustly feasible,

a constraint tightening approach is used. We introduce the

sets Xi⊖Wi for i = 1, . . . ,M which can be computed as in

Remark 1. Since the number of constraints that describes

Xi ⊖ Wi is the same as the number of constraints that

describes Xi, these tightened constraint sets can be used in

the optimization without increasing the complexity. Defining

the corresponding global constraint set X ⊖ W as the set

product of the local sets, we get the following optimization

problem with tightened constraints

VN (x) := min
z,v

JN (z,v)

s.t. zτ ∈ X ⊖W , τ = 0, . . . , N − 1,
vτ ∈ U , τ = 0, . . . , N − 1,
zτ+1 = Azτ +Bvτ , τ = 0, . . . , N − 2,
z(0) = x.

(13)

The state constraint set is changed in (13) compared to in

(4). Thus, we get a different control law νN , infinite horizon

steerable set X∞, set XN , and value function VN . To avoid

introducing new notation we use the same notation but the

quantities are in this section based on optimization problem

(13) instead of (4). The following proposition shows one-step

robust feasibility.

Proposition 1: For any xt ∈ XN we have that xt+1 ∈ X
for any disturbance wt ∈ W .

Proof. From the problem formulation we have that x̄t+1 ∈
X ⊖W . From [11, Theorem 2.1] we know that (X ⊖W)⊕
W ⊆ X . Further, xt+1 = x̄t+1 +wt ∈ (X ⊖W)⊕W ⊆ X .

This concludes the proof. �

This shows that if the optimization problem is feasible, we

get one-step robust feasibility.

B. Robust stability

For systems with linear dynamics, quadratic cost and

polytopic constraints we know that the value function is

continuous [9], [2]. Thus, for every x ∈ XN ⊖W we have

for some finite βw ≥ 0 that

max
w∈W

VN (x+ w)− VN (x) ≤ βw (14)

since x + w ∈ XN for any x ∈ XN ⊖ W and w ∈ W .

This observation is used to prove inherent robustness of the

closed loop system to small disturbance sets W . To show

robust stability we need to introduce some sets. The first is

the following ellipsoid

E(γ) := {x ∈ R
n | (α− ǫ)ℓ∗(x) ≤ γ} (15)

where ǫ > 0 is small and α > ǫ is from Theorem 1. The

second is the value function level sets

Ω(c) := {x ∈ R
n | VN (x) ≤ c}.

We also introduce the following recursive definition of the

maximal positively robust invariant set

Xrf = {x ∈ XN | {Ax+BνN (x)} ⊕W ⊆ Xrf}.



Before we state the theorem about asymptotic convergence,

we need the following assumption.

Assumption 2: We assume that the disturbance set W
is small enough to guarantee Ω(δ) ⊂ Xrf where δ =
2maxx∈E(βw) VN (x).

Theorem 2: Suppose that Assumption 2 holds. Then for

any initial condition x0 ∈ Xrf , the closed loop sys-

tem is asymptotically converging to Ω(δ), where δ =
2maxx∈E(βw) VN (x). Further, xt ∈ X for all t ≥ 0.

Proof. For any xt ∈ Xrf\E(βw) we have

VN (xt) ≥ VN (x̄t+1) + αℓ(xt, νN (xt))+

+ max
w∈W

VN (x̄t+1 + wt)− max
w∈W

VN (x̄t+1 + wt)

≥ max
w∈W

VN (x̄t+1 + wt) + αℓ∗(xt)− βw

≥ VN (xt+1) + ǫℓ∗(xt) ≥ VN (xt+1) +
ǫβw

α− ǫ

where the first inequality comes from Theorem 1 since xt ∈
Xrf\E(βw) ⊆ XN . The second inequality is by definition of

ℓ∗ and from (14) since by definition of Xrf and of ⊖ we have

x̄t+1 ∈ Xrf⊖W ⊆ XN⊖W . The third and fourth inequalities

are from (15) since xt /∈ E(βw). By definition of δ we have

E(βw) ⊆ Ω(δ/2) which implies Xrf\Ω(δ/2) ⊆ Xrf\E(βw).
This implies that for any xt ∈ Xrf\Ω(δ/2) we have

VN (xt) ≥ VN (xt+1) +
ǫβw

α− ǫ
. (16)

By definition of Xrf we have xt+1 ∈ Xrf which implies that

the preceeding argument can be applied recursively. Thus,

for any initial state x0 ∈ Xrf\Ω(δ/2) there is a finite time

t = t0 such that xt0 ∈ Ω(δ/2). Note that if x0 ∈ Ω(δ/2) we

get t0 = 0.

The system state can leave Ω(δ/2) ones entered. However,

the departure from this set is bounded. We have that

δ

2
= max

x∈Ω(δ2)
VN (x) ≥ max

x∈Ω(δ2)
ℓ∗(x) ≥ max

x∈E(βw)
ℓ∗(x) =

βw

α− ǫ
.

This gives that for every xt ∈ Ω(δ/2) we have

max
w∈W

VN (x̄t+1 + wt) ≤ VN (xt)− αℓ(xt, νN (xt)) + βw

≤ VN (xt) + βw

≤
δ

2
+ βw ≤

δ

2
(1 + α− ǫ) ≤ δ.

Thus, for xt ∈ Ω(δ/2) we have xt+1 ∈ Ω(δ) for any w ∈ W .

Since by Assumption 2 we have Ω(δ) ⊂ Xrf get from (16)

that system never leaves Ω(δ).

To show that xt ∈ X for all t ≥ 0 we note due to the

definition of Xrf that x̄t+1 ∈ Xrf ⊖W for any t ≥ 1. This

implies that xt+1 = x̄t+1+wt ∈ (Xrf⊖W)⊕W ⊆ Xrf ⊆ X
for any t ≥ 1.

This completes the proof. �

In the following section we will see that the result pre-

sented in this section can be used to prove robust stability

and robust feasibility for output feedback DMPC.

IV. OUTPUT FEEDBACK DMPC

We will use the result presented in the previous section

to prove feasibility and stability properties in the output

feedback setting. We start by designing the observer.

A. Observer Design

A crucial part for keeping the resulting output feedback

controller simple is that the observer design can be performed

in decentralized fashion. With the assumed structure on

the dynamics, i.e., block-diagonal A-matrix, we can design

local observers for each subsystem. In each subsystem the

following observer is used

x̂i
t+1 = Aiix̂

i
t +

∑

j∈Ni

(
Biju

j
t

)
+Ki(y

i
t − Cix̂

i
t).

The information, besides the local information, needed to

update the local estimates are the control action from neigh-

boring nodes. This information is available in node i from the

optimization algorithm communications. The local observers

together form the following global observer

x̂t+1 = Ax̂t +But +K(yt − Cx̂t) (17)

where K = blkdiag(K1, . . . ,KM ). The error dynamics for

the observer is purely local. We introduce the local error

variables as x̃i = xi − x̂i and get the following local error

dynamics

x̃i
t+1 = Aiix

i
t +

∑

j∈Ni

(
Biju

j
t

)
+ wi

t−

−Aiix̂
i
t −

∑

j∈Ni

(
Biju

j
t

)
−Ki(y

i
t − Cix̂

i
t)

= (Aii −KiCi)x̃
i
t −Kiξ

i
t + wi

t.

This shows that the poles of the observer dynamics can be

placed arbitrarily using a block-diagonal observer gain K.

For given Ki such that ρ(Aii − KiCi) < 1 there exists

a robust invariant set for the estimation error [11]. In [17]

it was shown how an invariant outer approximation of the

minimal robust invariant set can be computed. The minimal

robust invariant set is (cf. [17])

Ri =

∞⊕

j=0

F j
i

where F j
i := (Aii −KiCi)

j [−KiΞi ⊕Wi ]. In the approxi-

mation only a finite number of terms in the Minkowski sum

is used and the resulting set sum is scaled to guarantee a

certain accuracy of the approximation. The approximation is

Rǫe
i =

1

1− κi

si⊕

j=0

F j
i

where si and κi can, for given accuracy ǫe, be computed

without performing the Minkowski summation (cf. [17]). The

approximation is also robust invariant and satisfies (cf. [17])

Ri ⊆ Rǫe
i ⊆ Ri ⊕ Bni

∞(ǫe).



From the definition of a robust invariant set we get that if

x̃i
0 ∈ Rǫe

i we have x̃i
t ∈ Rǫe

i for all t ≥ 0 and any disturbance

sequences {ξit}
∞
t=0, {wi

t}
∞
t=0. We define the global robust

invariant set as R = R1 × . . .×RM and the approximation

Rǫe accordingly. We get

R ⊆ Rǫe ⊆ R⊕ Bn
∞(ǫe)

since Bn
∞(ǫe) = Bn1

∞ (ǫe)× . . .× BnM
∞ (ǫe).

B. One-step robust feasibility

The feedback in the output feedback case is based on the

estimated current state x̂t. The objective of this section is

to show how the original constraints need to be tightened to

guarantee feasibility of the next state xt+1 and the estimated

next state x̂t+1 for any disturbances w ∈ W , ξ ∈ Ξ . We

rewrite the observer dynamics (17) as

x̂t+1 = Ax̂t +But + ŵt, ŵt = K(Cx̃t + ξt) (18)

and introduce the following set Wo = KCRǫe⊕KΞ and the

corresponding local sets Wo,i = KiCiR
ǫe
i ⊕KiΞi . We will

see that the following optimization problem gives one-step

robust feasibility when the initial condition is the estimated

state:

VN (x̂) := min
z,v

JN (z,v)

s.t. zτ ∈ X ⊖Wo ⊖Rǫe , τ = 0, . . . , N − 1,
vτ ∈ U , τ = 0, . . . , N − 1,
zτ+1 = Azτ +Bvτ , τ = 0, . . . , N − 2,
z0 = x̂.

(19)

Remark 2: The tightened state constraint set X ⊖ Wo ⊖
Rǫe is the product of the corresponding tightened local

constraint sets Xi ⊖ Wo,i ⊖ Rǫe
i which can be computed

efficiently by noting that

X ǫ
i ⊖Wo,i ⊖Rǫe

i = Xi ⊖KiCiR
ǫe
i ⊖KiΞi ⊖Rǫe

i

= X ǫ
i

(
si

⊖
j=0

(
KiCi

1− κi
F j

i )⊖KiΞi

si

⊖
j=0

(
1

1 − κi

F j
i )

)

= (Xǫ
i ⊖

KiCi

1− κi
F0

i )

(
si

⊖
j=1

(
KiCi

1− κi
F j

i )⊖KiΞi ⊖Rǫe
i

)

where [11, Theorem 2.1] is used in all steps. This implies

that the local tightened constraint set can be computed by

taking the Pontryagin difference ⊖ recursively set by set.

The number of inequalities that describes the final tightened

constraint set is the same as in Xi due to Remark 1. This way,

an explicit description of Rǫe
i , which can be very expensive

to compute, is avoided.

The new optimization problem with tightened constraints

gives a new feedback control law νN , infinite horizon steer-

able set X∞, set XN and value function VN . The notation

is kept from previous sections, but the respective definitions

refer in this section to optimization problem (19). Also, the

definition of the recursively feasible set is different, we define

Xrf = {x̂ ∈ XN | ({Ax̂+BνN (x̂)} ⊕ Rǫe)⊕Wo ⊆ X
rf}.

We also define the one-step nominal prediction

x̄t+1 := Ax̂t +BνN (x̂t).

The following proposition shows that when using optimiza-

tion problem (19) one-step robust feasibility in plant state x
and estimated state x̂ is achieved regardless of disturbances

w ∈ W , ξ ∈ Ξ .

Proposition 2: Suppose that x̃t ∈ Rǫe and x̂t ∈ XN . Then

x̂t+1 ∈ X ⊖Rǫe and xt+1 ∈ X .

Proof. From the problem formulation we have that x̄t+1 ∈
X ⊖ Rǫe ⊖Wo. Further x̂t+1 = x̄t+1 + ŵt ∈ (X ⊖ Rǫe ⊖
Wo)⊕Wo ⊆ X ⊖Rǫe . Since x̃t ∈ Rǫe we have x̃t+1 ∈ Rǫe

and xt+1 = x̂t+1 + x̃t+1 ∈ X ⊖ Rǫe ⊕ Rǫe ⊆ X . This

concludes the proof. �

C. Robust stability

The estimation is affected by additive noise ŵt which

satisfies ŵt ∈ Wo for all t ≥ 0 if the estimation error

x̃t ∈ Rǫe for all t ≥ 0. From the discussion in Section

III we conclude that for every x ∈ XN ⊖Wo we have with

finite βwo
≥ 0 that

max
ŵ∈Wo

VN (x+ ŵ)− VN (x) ≤ βwo
.

In the following theorem we show that the estimated state x̂t

and plant state xt converges to robust invariant sets. Before

we state the theorem, the following assumption is needed.

Assumption 3: We assume that the disturbance sets W and

Ξ are small enough to guarantee Ω(δ) ⊂ Xrf where δ =
2maxx∈E(βw0

) VN (x).
Theorem 3: Suppose that Assumption 3 holds and that

x̃0 = x0− x̂0 ∈ Rǫ. Then for any x̂0 ∈ Xrf the state estima-

tion x̂t converges to Ω(δ) where δ = 2maxx∈E(βwo )
VN (x)

and the plant state xt converges to Ω(δ)⊕Rǫ. Further xt ∈ X
for all t ≥ 1.

Proof. Since x̃0 ∈ Rǫ we have x̃t ∈ Rǫ for all t ≥ 0.

This implies that the disturbance to the estimated state (18)

satisfies ŵt ∈ Wo for all t ≥ 0. Convergence of the

estimated state x̂t to Ω(δ) is then given by Theorem 2 since

the situation for x̂t is analogous to the situation for xt in

Theorem 2. Further, Theorem 2 also gives together with the

definition of Xrf that x̂t ∈ Xrf ⊖Rǫe for all t ≥ 1.

Convergence of the plant state xt = x̂t+ x̃t to Ω(δ)⊕Rǫe

follows directly from the estimated state x̂t convergence to

Ω(δ) and since x̃t ∈ Rǫe for all t ≥ 0. That xt ∈ X for all

t ≥ 1 follows directly from xt = x̂t + x̃t ∈ (Xrf ⊖Rǫe) ⊕
Rǫe ⊆ Xrf ⊆ X .

This concludes the proof. �

V. NUMERICAL EXAMPLE

We evaluate the efficiency of the proposed output feedback

controller by applying it to a randomly generated system. The

system is composed of six subsystems with five states, one

control signal, and one output each. The measurement and

system noise are bounded and within the following sets

Ξi = {ξi ∈ R | |ξi| ≤ 0.01},
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Fig. 1. Region within which all state trajectories are confined for N = 15

in the output feedback case. Guaranteed upper and lower bounds for the all
state variables are −0.11 ≤ x ≤ 2.

Wi = {wi ∈ R
5 | ‖wi‖∞ ≤ 0.01}

and the state and control constraint sets are

Ui = {ui ∈ R | |ui| ≤ 0.1},

Xi = {xi ∈ R
5 | − 0.11 ≤ [xi]j ≤ 2, j = 1, . . . , 5}.

The observer gain is chosen as Kalman gain computed

using unit noise variances. The tightened constraint set

X ǫ
i ⊖KiCiR

ǫe
i ⊖KiΞi ⊖ Rǫe

i is computed using accuracy

ǫe = 0.0001 in Rǫe
i . The resulting set has upper bounds

on all state variables in the range [1.895, 1.959] and lower

bounds on the state variables in the range [−0.069,−0.005].
The nominal next state must satisfy these constraints to

ensure that the estimated and true states satisfy the original

constraints defined by Xi. State and control costs are chosen,

Q = I , R = I .

Numerical simulations suggest that for α = 0.5 we get

N = 15 in Theorem 1 and for α = 0.2 we get N = 6.

In Figure 1 the largest and smallest state values for each

time step are plotted. The initial state vector comes from

a uniform distribution and is scaled such that the largest

element in the vector equals the original upper bound, i.e.,

2 and the smallest element in the vector equals the original

lower bound, i.e., -0.11.

We also analyze the size of the region of attraction and

compare it to standard MPC where the terminal set is chosen

as the maximal positive invariant set for the LQ-feedback

computed using Q = I , R = I (see [6]). The system is

initialized with 40000 different initial conditions and each

element in the initial state vector is chosen from a uniform

distribution in the interval [−0.11 2], i.e., in the original

constraint set. We have made two comparisons, the first is

with α = 0.2 which gives N = 6. Using N = 6 our

controller managed to steer 98.9% of the initial conditions to

the origin while respecting all constraints. The corresponding

number in standard MPC with terminal constraint set and

N = 6, was that 21.9% of the initial conditions were

controlled to the origin. In the case for α = 0.5 which

gives N = 15 our controller managed to steer 98.9% of

the initial conditions to the origin. For standard MPC with

N = 15 the corresponding number was 52.8%. Note that the

same set of initial conditions was used for all controllers.

This shows that by not using a terminal constraint set, the

region of attraction can be increased significantly while the

computational burden is reduced.

VI. CONCLUSIONS

A robust distributed output feedback DMPC controller

is proposed where the nominal behavior is optimized and

the optimization problem has no terminal constraint set or

terminal cost. Nominal stability for such DMPC formulations

was proven in [8]. The results in [8] are in this paper

extended to show robust stability in the state feedback case

as well as the output feedback case. The provided numerical

example also suggests that the lack of terminal constraint set

can increase the region of attraction significantly.
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