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Abstract— Most distributed optimization methods used for
distributed model predictive control (DMPC) are gradient
based. Gradient based optimization algorithms are known to
have iterations of low complexity. However, the number of
iterations needed to achieve satisfactory accuracy might be
significant. This is not a desirable characteristic for distributed
optimization in distributed model predictive control. Rather,
the number of iterations should be kept low to reduce commu-
nication requirements, while the complexity within an iteration
can be significant. By incorporating Hessian information in
a distributed accelerated gradient method in a well-defined
manner, we are able to significantly reduce the number of
iterations needed to achieve satisfactory accuracy in the so-
lutions, compared to distributed methods that are strictly
gradient-based. Further, we provide convergence rate results
and iteration complexity bounds for the developed algorithm.

I. INTRODUCTION

Many distributed optimization algorithms are based on

gradient methods, see [3] and the references therein.

Gradient-based optimization methods have low computa-

tional complexity within each iteration. However, a limitation

of gradient-based methods is the slow convergence rate. For

functions with a Lipschitz continuous gradient, i.e., smooth

functions, classical gradient-based methods converge at a rate

of O( 1k ) as shown in [2], [17], where k is the iteration

number. This convergence rate is not optimal for gradient

methods. It was in [14] shown that a lower bound on

the convergence rate for gradient-based methods is O( 1
k2 ).

The first method that achieves this accelerated convergence

rate was presented by Nesterov in [15] for unconstrained

problems. This result has been extended and generalized in

several publications to handle constrained smooth problems

and smooth problems with an additional non-smooth term

[16], [18], [1], [21]. Recently the accelerated gradient meth-

ods has been generalized in [24] to allow for a step matrix

instead of a scalar step length with preserved convergence

rate guarantees.

In the DMPC literature, some distributed optimization

methods have been used to control sparsely interacting

dynamical systems. These include [13], [22], [6] in which

different reformulations of the classical gradient method with

suboptimal step sizes are used to solve the dual problem.

In [9] an accelerated gradient method is used to solve

the DMPC problem and the optimal step size is provided.

Further, in [8] iteration bounds for the method presented in

[9] are given. In [20] a quasi-Newton method is used to solve

the DMPC problem in a water distribution network. The

subproblems are solved in parallel, but a central coordinator

is needed for this approach.

In this paper we extend the results in [9] and [8] using the

generalized accelerated gradient algorithm presented in [24].

We present a distributed optimization algorithm applicable to

DMPC that use not only gradient information, as is common

in distributed optimization, but also Hessian information in

each iteration. This significantly improves convergence rate

compared to previous gradient-based distributed optimization

methods for DMPC as is demonstrated by a numerical

example. We also provide a bound on the number of it-

erations needed to guarantee a prespecified dual accuracy

and indicate how an iteration bound for the primal variables

can be computed. The latter bound is left out for space

considerations.

II. PROBLEM SETUP

The problem of controlling a linear dynamical system in

distributed fashion to the origin is considered. We assume

polytopic constraints and apply a distributed MPC controller

in which the following optimal control problem with initial

condition x̄ ∈ R
n is solved iteratively

VN (x̄) := min
x,u

1

2

N−1∑

t=0

(xT
t Qxt + uT

t Rut)

s.t. (xt, ut) ∈ X × U , t = 0, . . . , N − 1
xt+1 = Axt +But, t = 0, . . . , N − 2
x0 = x̄.

(1)

Note that no terminal constraint set or terminal cost is present

in the problem formulation. Stability and feasibility results

for distributed MPC without terminal constraint set and

terminal cost is presented in [10]. We introduce the following

state and control variable partitions

xt = [(x1
t )

T , . . . , (xM
t )T ]T , ut = [(u1

t )
T , . . . , (uM

t )T ]T

where xi
t ∈ R

ni and ui
t ∈ R

mi are referred to as local

variables and xt ∈ R
n, ut ∈ R

m are referred to as global

variables. The dynamics matrices A ∈ R
n×n and B ∈ R

n×m



are partitioned accordingly,

A =




A11 · · · A1M

...
. . .

...

AM1 · · · AMM


 , B =




B11 · · · B1M

...
. . .

...

BM1 · · · BMM




where Aij = R
ni×nj and Bij = R

ni×mj . These matrices are

assumed to have a sparse structure, i.e., that some Aij = 0
and Bij = 0. The neighboring interaction is defined by the

following sets

Ni =
{
j ∈ {1, . . . ,M} | Aij 6= 0 or Bij 6= 0},

Mi =
{
j ∈ {1, . . . ,M} | Aji 6= 0 or Bji 6= 0}

which gives the local dynamics

xi
t+1 =

∑

j∈Ni

(
Aijx

j
t +Biju

j
t

)
, xi

0 = x̄i

for i = 1, . . . ,M . The global constraint sets are assumed to

be products of local sets, i.e.,

X = X1 × . . .×XM , U = U1 × . . .× UM

where the local constraint sets Xi and Ui for i = 1, . . . ,M
are bounded polytopes containing zero in their respective

interiors. The local constraint sets can be represented as

Xi = {xi ∈ R
ni | Ci

xx
i ≤ dix},

Ui = {ui ∈ R
mi | Ci

uu
i ≤ diu}

where Ci
x ∈ R

nc
xi

×ni , Ci
u ∈ R

nc
ui

×mi , dix ∈ R
nc

xi

>0 and

diu ∈ R
nc

ui

>0 . We define the total number of inequalities in X
and U by nc =

∑
i(nc

xi
+nc

ui
). The quadratic cost function

in (1) is assumed separable, i.e., Q = blkdiag(Q1, . . . , QM )
and R = blkdiag(R1, . . . , RM ) where Qi ∈ R

ni×ni and

Ri ∈ R
mi×mi for i = 1, . . . ,M are symmetric positive

definite matrices. We create the stacked vectors

yi = [(xi
1)

T , . . . , (xi
N−1)

T , (ui
0)

T , . . . , (ui
N−1)

T ]T

for i = 1, . . . ,M and y = [yT
1 , . . . ,y

T
M ]T . This implies that

the optimization (1) problem can more compactly be written

as

VN (x̄) := min
y

1
2y

THy

s.t. Ay = bx̄
Cy ≤ d

(2)

where

H = blkdiag(H1, . . . ,HM ), x̄ = [x̄T
1 , . . . , x̄

T
M ]T ,

A = [AT
1 , . . . ,A

T
M ]T , b = [bT

1 , . . . ,b
T
M ]T ,

C = blkdiag(C1, . . . ,CM ), d = [dT
1 , . . . ,d

T
M ]T

and

Hi = blkdiag(Qi, . . . , Qi, Ri, . . . , Ri),

Ai = [Ai1, . . . ,AiM ],

Aij =




0 Bij

Aij
. . .

. . .

. . .
. . .

. . .

Aij 0 Bij



, j 6= i

Aii =




−I Bii

Aii
. . .

. . .

. . .
. . .

. . .

Aii −I Bii



,

bi = [bi1, . . . ,biM ],

bij = [−AT
ij , 0, . . . , 0]

T ,

Ci = blkdiag(Ci
x, . . . , C

i
x, C

i
u, . . . , C

i
u),

di = [(dix)
T , . . . , (dix)

T , (diu)
T , . . . , (diu)

T ]T

where Aij = 0 and bij = 0 if j /∈ Ni. We introduce dual

variables λ ∈ R
n(N−1) for the equality constraints and dual

variables µ ∈ R
Nnc

≥0 for the inequality constraints to get the

following dual problem

max
λ,µ≥0

min
y

1

2
yTHy + λT (Ay − bx̄) + µT (Cy − d). (3)

As shown in [9], the inner minimization problem can be

solved explicitly which gives the following dual problem

max
λ,µ≥0

−1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd. (4)

We define the dual function for initial condition x̄ as

DN (x̄,λ,µ) := −1

2
(ATλ+CTµ)TH−1(ATλ+CTµ)−

− λTbx̄− µTd (5)

which is concave and differentiable with gradient

∇DN (x̄,λ,µ) = −
[
A

C

]
H−1(ATλ+CTµ)−

[
bx̄
d

]
. (6)

A. Assumptions and definitions

We define by XN the set of initial conditions for which

(2) is feasible. We also define

P := bT (AH−1AT )−1b

which characterizes the optimal solution without inequality

constraints since

1

2
x̄TP x̄ = max

λ
DN (x̄,λ, 0) ≤ VN (x̄). (7)

We also introduce the following definition.

Definition 1: We define κ ≥ 1 as the smallest scalar such

that for every x̄ ∈ XN the following holds

VN (x̄) ≤ κ

2
x̄TP x̄.



Assumption 1: We assume that A has full row rank and

that ATA+CTC is invertible.

B. Notation

We use the following norm notation ‖x‖L =
√
xTLx and

‖x‖ =
√
xTx and inner product 〈x, y〉 = xT y. Also, [·]i

denotes the i:th element in a vector.

III. DISTRIBUTED ALGORITHM

In this section we show how the generalized accelerated

gradient method presented in [24] can be used in distributed

model predictive control. The generalized accelerated gradi-

ent method can be applied to problems of the form

min
x∈X

f(x)

where X is a closed, convex, and non-empty set and

f : R
n → R is convex and differentiable. Further, f should

satisfy

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (8)

for every x1, x2 ∈ R
n where L is a positive definite matrix.

The generalized accelerated gradient algorithm is defined by

the iterations

vk = xk +
k − 1

k + 2
(xk − xk−1)

xk+1 = argmin
x∈X

[
f(vk) + 〈∇f(vk), x− vk〉+ 1

2
‖x− vk‖2L

]

where k is the iteration number. Straightforward verification

gives that these iterations can equivalently be written as

vk = xk +
k − 1

k + 2
(xk − xk−1) (9)

xk+1 = argmin
x∈X

(∥∥x− vk + L−1∇f(vk)
∥∥2
L

)
. (10)

We see that L−1 serves as a step matrix for the gradient. The

algorithm is a generalization of the algorithm in [1] with the

difference is that in [1], L is restricted to being a multiple

of the identity matrix.

Remark 1: The convergence of the algorithm depends

on the quadratic upper bound (8) to f . The tighter this

upper bound, the fewer iterations can be expected. For

L being a multiple of the identity matrix, the quadratic

part of the upper bound has the same curvature in every

direction, which typically leads to bad convergence rate for

ill-conditioned problems. For an appropriately chosen L-

matrix the quadratic upper bound to f becomes tighter and

a better convergence rate is expected.

In the following proposition we show how L should be

chosen to satisfy (8) for f = −DN . Before the result is

stated, we introduce the matrix

T := [ATCT ]TH−1[ATCT ]. (11)

Proposition 1: Every positive definite matrix L that satis-

fies L � T satisfies (8) for f = −DN where DN is defined

in (5).

Proof. We introduce g = [(bx̄)T d]T , z = [λTµT ]T and

D̃N (x̄, z) = −zTTz− gT z. For every z1, z2 ∈ R
N(n+nc)−n

the following holds

1

2
‖z1 − z2‖2L ≥ 1

2
‖z1 − z2‖2T

=
1

2
zT1 Tz1 +

1

2
zT2 Tz2 − zT1 Tz2

= −D̃N (x̄, z1)− gT z1 −
1

2
zT2 Tz2−

− 〈Tz2, z1 − z2〉
= −D̃N (x̄, z1)− gT z1 + D̃N (x̄, z2) + gT z2+

+
〈
∇D̃N (x̄, z2), z1 − z2

〉
+ gT (z1 − z2)

= −D̃N (x̄, z1) +DN (x̄, z2)+

+
〈
∇D̃N (x̄, z2), z1 − z2

〉
.

Since D̃N (x̄, z) = DN (x̄,λ,µ) if z = [λTµT ]T and since

DN is concave we have that f = −DN is convex and

satisfies (8). This concludes the proof. �

We have shown that the generalized accelerated gradient

method can be applied to solve the dual problem provided

that the matrix L satisfies L � T = [ATCT ]TH−1[ATCT ].
The following semidefinite program can be used to compute

such an L-matrix:

min
L∈L

tr(L) (12)

s.t. L � [ATCT ]TH−1[ATCT ]

L ≻ 0

where L defines some structural constraint on the L-matrix.

To apply the generalized accelerated gradient method,

defined by iterations (9)-(10), to solve the dual problem (4)

we introduce the dual variable iterations λk and µk where

k is the iteration number and λ̄
k
= λk + k−1

k+2 (λ
k − λk−1)

and µ̄k = µk + k−1
k+2 (µ

k − µk−1). We also define primal

variable iterations as yk = −H−1(ATλk + CTµk) and

ȳk = yk + k−1
k+2 (y

k − yk−1). By insertion into (6), the dual

function gradient becomes

∇DN (x̄, λ̄
k
, µ̄k) =

[
A

C

]
ȳk −

[
bx̄
d

]
.

By restricting the set of L matrices to be of the form L =
blkdiag(Lλ, Lµ) it can be verified that the iterations (9)-(10)

when applied to the dual problem (4) becomes

yk = −H−1(ATλk +CTµk) (13)

ȳk = yk +
k − 1

k + 2
(yk − yk−1) (14)

λ̄
k
= λk +

k − 1

k + 2
(λk − λk−1) (15)

λk+1 = λ̄
k
+ L−1

λ (Aȳk − bx̄) (16)

µ̄k = µk +
k − 1

k + 2
(µk − µk−1) (17)

µk+1 = argmin
µ≥0

(∥∥µ− µ̄k − L−1
µ (Cȳk − d)

∥∥2
Lµ

)
(18)



Remark 2: For diagonal Lµ the projection operation in

(18) becomes very cheap, namely a max-operation for each

element in µ. However, the number of iterations to achieve

satisfactory accuracy might be significant. For, non-diagonal

Lµ the projection operation is more computationally expen-

sive but for appropriately chosen L a reduced number of

iterations is expected. This is desirable in DMPC where

the number of iterations, i.e., the amount of communication,

should be kept as low as possible.

Remark 3: As opposed to classical gradient methods, fast

gradient methods suffer from error accumulation [5]. Thus,

the inner minimization problem must be solved accurately.

Therefore, (12) should be formulated such that the condition

number of the L-matrix does not become too large.

We introduce dual variable partitions λ = [λT
1 , . . . ,λ

T
M ]T

and µ = [µT
1 , . . . ,µ

T
M ]T according to the division of

the equality and inequality constraint matrices A and

C. By restricting the set of possible step matrices Lλ

to Lλ = blkdiag(L1
λ, . . . , L

M
λ ) and Lµ to Lµ =

blkdiag(L1
µ, . . . , L

M
µ ), where the partitioning corresponds to

the partitioning of A and C, and by noting that

yk
i = −H−1

i

(( ∑

j∈Mi

AT
jiλ

k
j

)
+CT

i µ
k
i

)

we get the following distributed algorithm.

Algorithm 1: Distributed algorithm

Initialize λ0
i = λ−1

i ,µ0
i = µ−1

i and y0
i = y−1

i

In every node, i, the following computations are performed

For k ≥ 0

1) Update primal variables according to

yk
i = −H−1

i

(( ∑

j∈Mi

AT
jiλ

k
j

)
+CT

i µ
k
i

)

ȳk
i = yk

i +
k − 1

k + 2
(yk

i − yk−1
i )

2) Send ȳk
i to each j ∈ Mi, receive ȳk

j from each j ∈ Ni

3) Update dual variables according to

λ̄
k
i = λk

i +
k − 1

k + 2
(λk

i − λk−1
i )

λk+1
i = λ̄

k
i + (Li

λ)
−1

( ∑

j∈Ni

(Aij ȳ
k
j − bij x̄j)

)

µ̄k
i = µk

i +
k − 1

k + 2
(µk

i − µk−1
i )

µk+1
i = argmin

µ≥0

∥∥µ− µ̄k
i − (Li

µ)
−1(Ciȳ

k
i − di)

∥∥2
Li

µ

4) Send λk+1
i to each j ∈ Ni, receive λk+1

j from each

j ∈ Mi

We introduce the set of optimal dual variables

M∗(x̄) =
{
λ ∈ R

nλ ,µ ∈ R
nµ

≥0

∣∣ DN (x̄,λ,µ) ≥ VN (x̄)
}

where nλ = n(N − 1) and nµ = Nnc. The convergence

rates for the dual function DN and the primal variables when

running Algorithm 1 are stated in the following theorem.

Theorem 1: Suppose that x̄ ∈ XN and let (λ∗,µ∗) ∈
M∗(x̄). Then Algorithm 1 has the following convergence

rate properties:

1) For k ≥ 1 the convergence rate for the dual function

is

DN (x̄,λ∗,µ∗)−DN (x̄,λk,µk) ≤
2

∥∥∥∥
[
λ∗

µ∗

]
−
[
λ0

µ0

]∥∥∥∥
2

L

(k + 1)2
.

(19)

2) Let y∗(x̄) be the unique optimal solution to (2) with

initial condition x̄. For k ≥ 1 the convergence rate is

‖yk − y∗(x̄)‖22 ≤
4

∥∥∥∥
[
λ∗

µ∗

]
−
[
λ0

µ0

]∥∥∥∥
2

L

σmin(H)(k + 1)2
(20)

where σmin(H) is the smallest eigenvalue to H.

Proof. Argument 1 is proven in [24] while argument 2 is a

straightforward generalization of [9, Theorem 1(2)]. �

IV. LAGRANGE MULTIPLIER NORM BOUNDS

From Theorem 1 we conclude that a bound on the norm of

the optimal dual variables is needed to bound the number of

iterations necessary to achieve a prespecified dual accuracy.

First, we state a result from [8] in which a bound on the

optimal dual variables is presented. Before the result is

presented we define dmin := mini[d]i, Φ := AH−1AT and

Ψ := Φ−1AH−1CT . The matrix Φ is invertible since H−1

has full rank and A has full row rank due to Assumption 1.

Lemma 1: For every x̄ ∈ βXN where β ∈ (0, 1) we have

that

max
(λ∗,µ∗)∈M∗(x̄)

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤ hβ(x̄) (21)

where

hβ(x̄) :=

∥∥∥∥
[
Ψ
I

]∥∥∥∥
κ− 1

2(1− β)dmin
x̄TP x̄+ ‖Φ−1bx̄‖

and κ is defined in Definition 1.

For the cold starting case, i.e., with λ0 = 0 and

µ0 = 0, the convergence rates (19) and (20) depend on

‖[(λ∗)T , (µ∗)T ]T ‖L. A bound on this can be obtained by

noting that ‖[(λ∗)T , (µ∗)T ]T ‖L ≤ ‖L‖‖[(λ∗)T , (µ∗)T ]T ‖
and using Lemma 1. However, this bound becomes quite

conservative and a tighter bound can be computed. To

achieve this, we introduce the following decomposition of

the dual variables, λ = λp + λn and µ = µp + µn, where
[
λp

µp

]
⊥ N

(
[AT CT ]

)
,

[
λn

µn

]
∈ N

(
[AT CT ]

)
(22)

and N denotes the null-space. We denote by Z an orthonor-

mal basis to the null-space of [AT CT ], i.e., [AT CT ]Z =
0 and ZTZ = I . Since the null-space to [AT CT ] is

perpendicular to the range of [AT CT ]T the decomposed

dual variables can be represented as
[
λp

µp

]
=

[
A

C

]
z̄p ,

[
λn

µn

]
= Zz̄n (23)



where z̄p and z̄n are new variables of smaller dimension.

The KKT conditions for the dual problem described by the

decomposed dual variables are presented next.

Proposition 2: The KKT conditions to (4) are

−AH−1(ATλ∗
p +CTµ∗

p) = bx̄ (24)

−CH−1(ATλ∗
p +CTµ∗

p) = d+ s (25)

s ≤ 0 , µ∗
p + µ∗

n ≥ 0 (26)

[(µ∗
p) + (µ∗

n)]i[s]i = 0 (27)

where λ∗
p, λ∗

n, µ∗
p and µ∗

n satisfy (22) and the optimal dual

variables λ∗,µ∗ satisfy λ∗ = λ∗
p +λ∗

n and µ∗ = µ∗
p +µ∗

n.

Proof. The result is immediate from the KKT conditions

[4, §5.5.3], the dual variable decomposition λ∗ = λ∗
p + λ∗

n,

µ∗ = µ∗
p+µ∗

n, and due to (22) which implies that ATλ∗
n+

CTµ∗
n = 0. �

Remark 4: The variables λ∗
p and µ∗

p satisfy the stationar-

ity conditions while λ∗
n and µ∗

n do not affect the stationarity

conditions but instead ensure dual feasibility and comple-

mentarity.

Before we present bounds on the decomposed dual vari-

ables, we define ζ as the smallest positive scalar such that
[
A

C

]T
L

[
A

C

]
� ζ

[
A

C

]T
T

[
A

C

]
. (28)

where T is defined in (11). Such finite ζ exists since by

Assumption 1 ATA+CTC is invertible and
[
A

C

]T
T

[
A

C

]
= (ATA+CTC)H−1(ATA+CTC)

which is positive definite since H−1 is positive definite. In

the following lemma, bounds for the decomposed optimal

dual variables are presented.

Lemma 2: Suppose that x̄ ∈ βXN and β ∈ (0, 1). Then

[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
≤ κζx̄TP x̄ (29)

and
[
λ∗
n

µ∗
n

]T
L

[
λ∗
n

µ∗
n

]
≤ ‖ZTLZ‖

(
(hβ(x̄))

2 − x̄TP x̄

‖L‖

)
(30)

hold for every λ∗
p, λ∗

n, µ∗
p and µ∗

n that satisfies (22) and the

KKT conditions (24)-(27).

Proof. To show (29) we have
[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
= z̄Tp

[
A

C

]T
L

[
A

C

]
z̄p

≤ ζz̄Tp

[
A

C

]T
T

[
A

C

]
z̄p

= ζ

[
λ∗
p

µ∗
p

]T
T

[
λ∗
p

µ∗
p

]

= ζ

[
λ∗ − λ∗

n

µ∗ − µ∗
n

]T [
A

C

]
H−1

[
A

C

]T [
λ∗ − λ∗

n

µ∗ − µ∗
n

]

= ζ

[
λ∗

µ∗

]T
T

[
λ∗

µ∗

]
(31)

where the first equality comes from (23), the first inequality

from (28), the second equality from (23) the third equality

holds since λ∗ = λ∗
p + λ∗

n and µ∗ = µ∗
p + µ∗

n and due

to (11) and the last equality is due to (22) which implies

ATλ∗
n +CTµ∗

n = 0.

Further, the KKT conditions for the dual problem (24)-

(25) give that

0 = T

[
λ∗
p

µ∗
p

]
+

[
bx̄

d+ s

]
= T

[
λ∗

µ∗

]
+

[
bx̄

d+ s

]
.

This implies that

0 = [(λ∗)T (µ∗)T ]

(
T

[
λ∗

µ∗

]
+

[
bx̄

d+ s

])

= [(λ∗)T (µ∗)T ]T

[
λ∗

µ∗

]
+ x̄TbTλ∗ + (s+ d)Tµ∗

= −VN (x̄) +
1

2
[(λ∗)T (µ∗)T ]T

[
λ∗

µ∗

]
(32)

where sTµ∗ = 0 from (27) is used in the final equality.

Using (31) and (32) we get
[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
≤ ζ

[
λ∗

µ∗

]T
T

[
λ∗

µ∗

]
= ζ2VN (x̄) ≤ ζκx̄TP x̄

where Definition 1 is used in the last inequality. This proves

(29).

Next we show that (30) holds. From (22) we have that

[(λ∗
p)

T (µ∗
p)

T ][(λ∗
n)

T (µ∗
n)

T ]T = 0, hence Pythagoras’

theorem implies that
∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

=

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

−
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

. (33)

Further,

‖L‖
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

≥
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

L

≥
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

T

= 2VN (x̄) ≥ x̄TP x̄

(34)

where the equality comes from (32) and the final inequality

comes from (7). By applying Lemma 1 and (34) to (33), we

get
∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

=

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

−
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

≤ (hβ(x̄))
2 − x̄TP x̄

‖L‖ .

(35)

Further, from (23) we have
[
λ∗
n

µ∗
n

]
= Zz̄n = Z(ZTZ)−1ZT

[
λ∗
n

µ∗
n

]
= ZZT

[
λ∗
n

µ∗
n

]

since ZTZ = I . This implies
[
λ∗
n

µ∗
n

]T
L

[
λ∗
n

µ∗
n

]
=

[
λ∗
n

µ∗
n

]T
ZZTLZZT

[
λ∗
n

µ∗
n

]

≤ ‖ZZTLZZT ‖
∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

≤ ‖ZTLZ‖
(
(hβ(x̄))

2 − x̄TP x̄

‖L‖

)

where the last equality holds since ZTZ = I and due to

(35). This concludes the proof. �



Using Lemma 2, we are now ready to state the following

theorem on dual variable bounds.

Theorem 2: Suppose that x̄ ∈ βXN and β ∈ (0, 1). Then

for every (λ∗,µ∗) ∈ M∗(x̄) we have

[
λ∗

µ∗

]T
L

[
λ∗

µ∗

]
≤
(√

‖ZTLZ‖
[
(hβ(x̄))

2 − x̄TP x̄

‖L‖

]
+

+
√
κζx̄TP x̄

)2

.

Proof. Using the triangle inequality we get

[
λ∗

µ∗

]T
L

[
λ∗

µ∗

]
=

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

L

≤
(∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
L

+

∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
L

)2

.

Insertion of the corresponding bounds in Lemma 2 gives the

result. �

Most conservatism in the dual variable bound comes from

the function hβ , which originates from the estimate of the

dual variable bound in Lemma 1. In Theorem 2 the function

hβ is multiplied by ‖ZTLZ‖. If L approximates T well,

it is anticipated that ‖ZTLZ‖ becomes small which gives

improved bounds compared to using ‖L‖hβ(x̄).

V. ITERATION BOUNDS

The dual variable bounds presented in the previous section

can be used to bound the number of iterations necessary to

guarantee a prespecified accuracy of the dual function value

and the primal variables. However, for space considerations

we omit the primal variable iteration bound result, which

is derived similarly to the dual function iteration bound. In

the following theorem we present an iteration bound for the

cold starting case. We have used a relative accuracy of the

optimization problem to avoid that a scaling of the cost-

matrices affects the iteration bound.

Theorem 3: Suppose that x̄ ∈ βXN and β ∈ (0, 1) and

that Algorithm 1 is cold-started, i.e., initialized with λ0 = 0,

µ0 = 0, and y0 = 0. Then the dual function satisfies

DN (x̄,λ∗,µ∗)−DN (x̄,λk,µk) ≤ ǫvDN (x̄,λ∗,µ∗) (36)

for every k ≥ kv(x̄) where

kv(x̄) =
2√
ǫv

(√
‖ZTLZ‖

[
hβ(x̄)2

x̄TP x̄
− 1

‖L‖

]
+
√

κζ

)
−1.

(37)

Proof. For the cold starting case we have λ0 = 0 and µ0 =
0. Due to Theorem 1 and since 1

2 x̄
TP x̄ ≤ DN (x̄,λ∗,µ∗)

we conclude that if k is such that

2

(k + 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

L

≤ ǫv
1

2
x̄TP x̄ (38)

then (36) holds. Insertion of the bound in Theorem 2 into

(38) and rearranging the terms gives the result. �

To compute a bound that holds for all x̄ ∈ βXN , (37) is

maximized subject to x̄ ∈ βXN . A more conservative bound

is obtained by removing 1/‖L‖ from (37) which gives the

following maximization problem

max
x̄∈βXN

2√
ǫv

(√
‖ZTLZ‖

(
ρ
√
x̄TP x̄+ γ

)
+
√
κζ

)
(39)

where

γ = ‖Φ−1bP−1/2‖, ρ =

∥∥∥∥
[
Ψ
I

]∥∥∥∥
κ− 1

2(1− β)dmin
.

An over-estimator to (39) can be computed by optimizing

over βX , which satisfies βXN ⊆ βX . This is beneficial

since XN might be difficult to express explicitly and X
is of lower complexity. The resulting optimization problem

depends affinely on
√
x̄TP x̄. Hence, the maximizing x̄ can

be computed by maximizing x̄TP x̄ over βX which is a

quadratic maximization problem over a polytopic set. Such

maximization problems are known to be NP-complete, but

can be rewritten as a mixed integer linear program (MILP)

as shown in [11, Lemma 2] for which efficient solvers exist.

In every iteration, MILP-software produce upper and lower

bounds to the optimal value. To compute an iteration bound,

an upper bound to the objective is enough. This implies

that the MILP optimization can be stopped when sufficient

accuracy has been achieved.

VI. NUMERICAL EXAMPLE

We evaluate the efficiency of the proposed distributed

optimization algorithm and the conservatism of the iteration

bound by applying it to a dynamical system with sparse

structure that is randomly generated. The largest eigenvalue

of the dynamics matrix is 1.1, i.e., the system is unstable. The

system has 3 subsystems with 5 states and 1 input each, i.e.,

15 states and 3 inputs in all. The state and input variables are

bounded from above and below by random numbers in the

interval [0.5 1.5] and [−0.15 − 0.05] respectively. The cost

matrices Q and R are diagonal and each diagonal element

is randomly chosen from the interval [1 100] and the control

horizon is chosen to N = 6. A full specification of the

problem is found in [7, Supplement A.1].

The problem is solved using three different methods:

Algorithm 1 with a block-diagonal L-matrix, the fast gradient

method (FGM) in [9] which is optimal w.r.t. what can be

achieved using gradient methods, and the classical gradient

method (GM) that is traditionally used with dual decom-

position. All simulations are performed in MATLAB and

the semidefinite programs are solved through YALMIP [12]

using SeDuMi [19] for the preconditioning and SDPNAL

[23] (which is more memory-efficient than SeDuMi) for the

L-matrix.

In Table I the number of iterations needed to achieve

a prespecified dual accuracy using Algorithm 1, the fast

gradient method (FGM), and a gradient method (GM) are

compared. We also compare the iteration complexity bounds

presented in Theorem 3 and the one presented [8] which was

developed for the case where L is a multiple of the identity



TABLE I

EVALUATION OF ALGORITHM 1 BY COMPARISON TO THE FAST

GRADIENT METHOD (FGM) AND THE GRADIENT METHOD (GM). THE

NUMBER OF ALGORITHM ITERATIONS AND ITERATION COMPLEXITY

BOUNDS FROM THEOREM 3 AND [8] ARE PRESENTED.

Alg. ǫv β # iters iter bound
avg. max. Thm 3 [8]

Alg. 1 0.005 0.25 6.15 11 574 5096
Alg. 1 0.005 0.50 7.02 13 1352 12483
Alg. 1 0.005 0.75 7.35 13 3686 34647
Alg. 1 0.005 0.90 7.48 13 10688 101136

FGM 0.005 0.25 149.51 252 - -
FGM 0.005 0.50 155.78 262 - -
FGM 0.005 0.75 159.84 330 - -
FGM 0.005 0.90 164.84 370 - -

GM 0.005 0.25 3235.10 4741 - -
GM 0.005 0.50 3637.64 5107 - -
GM 0.005 0.75 3783.02 6051 - -
GM 0.005 0.90 3848.55 6540 - -

matrix. The first column in Table I specifies the algorithm

used. The second column specifies the duality tolerance and

the third column specifies the set from which the initial

conditions are chosen where β is the scaling factor, i.e.,

initial conditions are chosen from βXN . The fourth and fifth

columns present average and max number of iterations while

the sixth and seventh columns specify the iteration bounds.

The comparison is obtained by solving the optimization

problem for 10000 randomly generated initial conditions.

From Table I we conclude two things. The first is that

Algorithm 1 significantly outperforms previous methods to

solve DMPC optimization problems in distributed fashion,

i.e., fast gradient methods and gradient methods. This is

accomplished because second order information is incorpo-

rated into the distributed algorithm. The second conclusion

is that the iteration bound presented in Theorem 3 is quite

conservative. However, it is much less conservative than the

bound in [8] for the presented algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a distributed optimization algorithm

for distributed MPC that reduces significantly the number

of iterations compared to distributed optimization algorithms

where only gradient information is used. The reason for

this improved iteration complexity is that we have shown

how to incorporate Hessian information into the distributed

algorithm. Further, we have presented an iteration complexity

bound for the proposed algorithm. A future work direction

is to use the iteration complexity bound to optimally pre-

condition the problem data, where optimally refers to the

preconditioning that minimizes the provided iteration bound.
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24:509–517, 1988.

[17] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic

Course (Applied Optimization). Springer Netherlands, 1 edition, 2003.
[18] Y. Nesterov. Smooth minimization of non-smooth functions. Math.

Program., 103(1):127–152, May 2005.
[19] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones. Optimization Methods and Software, 11–
12:625–653, 1999.

[20] P. Trnka, J. Pekar, and V. Havlena. Application of distributed MPC
to Barcelona water distribution network. In Proceedings of the 18th

IFAC World Congress, Milan, Italy, 2011.
[21] P. Tseng. On accelerated proximal gradient methods for convex-

concave optimization. Technical report, Department of Mathematics,
University of Washington, 2008.

[22] Y. Wakasa, M. Arakawa, K. Tanaka, and T. Akashi. Decentralized
model predictive control via dual decomposition. In Proceedings of

the 47th IEEE Conference on Decision and Control, pages 381 – 386,
Cancun, Mexico, December 2008.

[23] X-Y. Zhao, D. Sun, and K-C. Toh. A Newton-cg augmented La-
grangian method for semidefinite programming. SIAM J. on Opti-

mization, 20(4):1737–1765, January 2010.
[24] W. Zuo and Z. Lin. A generalized accelerated proximal gradient ap-

proach for total-variation-based image restoration. IEEE Transactions

on Image Processing, 20(10):2748 –2759, October 2011.


