
Improving Fast Dual Ascent for MPC -

Part II: The Embedded Case ⋆

Pontus Giselsson ∗

∗ Electrical Engineering, Stanford University
(e-mail: pontusg@stanford.edu).

Abstract:
Recently, several authors have suggested the use of first order methods, such as fast dual ascent
and the alternating direction method of multipliers, for embedded model predictive control. The
main reason is that they can be implemented using simple arithmetic operations only. However,
a known limitation of gradient-based methods is that they are sensitive to ill-conditioning of the
problem data. In this paper, we present a fast dual gradient method for which the sensitivity to
ill-conditioning is greatly reduced. This is achieved by approximating the negative dual function
with a quadratic upper bound with different curvature in different directions in the algorithm, as
opposed to having the same curvature in all directions as in standard fast gradient methods. The
main contribution of this paper is a characterization of the set of matrices that can be used to
form such a quadratic upper bound to the negative dual function. We also describe how to choose
a matrix from this set to get an improved approximation of the dual function, especially if it
is ill-conditioned, compared to the approximation used in standard fast dual gradient methods.
This can give a significantly improved performance as illustrated by a numerical evaluation on
an ill-conditioned AFTI-16 aircraft model.

1. INTRODUCTION

Several authors including O’Donoghue et al. (2013); Jerez
et al. (2013); Richter et al. (2013); Patrinos and Bemporad
(2014) have recently proposed first order optimization
methods as appropriate for embedded model predictive
control. In O’Donoghue et al. (2013); Jerez et al. (2013),
the alternating direction method of multipliers (ADMM,
see Boyd et al. (2011)) were used and high computational
speeds were reported when implemented on embedded
hardware. In Richter et al. (2013); Patrinos and Bemporad
(2014), the optimal control problems arising in model pre-
dictive were solved using different formulations of fast dual
gradient methods. In Richter et al. (2013), the equality
constraints, i.e. the dynamic constraints, are dualized and
a diagonal cost and box constraints are assumed. The
resulting dual problem is solved using a fast gradient
method. In Patrinos and Bemporad (2014), the same split-
ting as in O’Donoghue et al. (2013); Jerez et al. (2013)
is used, but a fast gradient method is used to solve the
resulting problem as opposed to ADMM in O’Donoghue
et al. (2013); Jerez et al. (2013). In this paper, we will
show how to improve and generalize the fast dual gradient
methods presented in Richter et al. (2013); Patrinos and
Bemporad (2014).

⋆ During the preparation of this paper, the author was a member
of the LCCC Linnaeus Center at Lund University. Financial support
from the Swedish Research Council for the author’s Postdoctoral
studies at Stanford University is gratefully acknowledged. Further,
Eric Chu is gratefully acknowledged for constructive feedback and
Alexander Domahidi is gratefully acknowledged for suggesting the
AFTI-16 control problem as a benchmark and providing FORCES
code for the same.

Fast gradient methods as used in Richter et al. (2013);
Patrinos and Bemporad (2014) have been around since
the early 80’s when the seminal paper Nesterov (1983)
was published. However, fast gradient methods did not
render much attention before the mid 00’s, after which
an increasing interest has emerged. Several extensions and
generalizations of the fast gradient method have been
proposed, e.g. in Nesterov (2003, 2005). In Beck and
Teboulle (2009), the method was generalized to allow for
minimization of composite objective functions. Further,
a unified framework for fast gradient methods and their
generalizations were presented in Tseng (2008). To use
fast gradient methods for composite minimization, one
objective term should be convex and differentiable with
a Lipschitz continuous gradient, while the other should
be proper, closed, and convex. The former condition is
equivalent to the existence of a quadratic upper bound
to the function, with the same curvature in all directions.
The curvature is specified by the Lipschitz constant to the
gradient. In fast gradient methods, the quadratic upper
bound serves as an approximation of the function to be
minimized, since the bound is minimized in every iteration
of the algorithm. If the quadratic upper bound does
not well approximate the function to be minimized, slow
convergence properties are expected. By instead allowing
for a quadratic upper bound with different curvature in
different directions, as in generalized fast gradient methods
Zuo and Lin (2011), the bound can closer approximate the
function to be minimized. For an appropriate choice of
non-uniform quadratic upper bound, this can significantly
improve the performance of the algorithm.

In (Nesterov, 2005, Theorem 1), a Lipschitz constant to
the gradient of the dual function to strongly convex prob-
lems is presented. This result quantifies the curvature of

a uniform quadratic upper bound to the negative dual
function. This result was improved in (Richter et al., 2013,
Theorem 7) when the primal cost is restricted to being
quadratic. Using these quadratic upper bounds, with the
same curvature in all directions, as dual function approxi-
mation in a fast dual gradient method, may result in slow
convergence rates. Especially for ill-conditioned problems
where the upper bound does not well approximate the
negative dual function. In this paper, the main result is a
new characterization of the set of matrices that can be used
to describe quadratic upper bounds to the negative dual
function. This result generalizes and improves previous
results in Nesterov (2005); Richter et al. (2013). We also
show how to appropriately choose a matrix from this set
to get a quadratic upper bound that well approximates
the negative dual function. Since in the proposed method,
the dual function approximation is better that in standard
fast dual gradient methods used in Richter et al. (2013);
Patrinos and Bemporad (2014), better convergence rate
properties are expected.

In model predictive control, much offline computational
effort can be devoted to improve the online execution time
of the solver. This is done, e.g., in explicit MPC, see Bem-
porad et al. (2002), where the explicit parametric solution
is computed beforehand, and found through a look-up
table online. In this paper, the offline computational effort
is devoted to choose a matrix that describes the quadratic
upper bound to the negative dual function. The computed
matrix is the same in all samples in the controller and can
therefore be computed offline. The algorithm is evaluated
on a pitch control problem in an AFTI-16 aircraft that
has previously been studied in Kapasouris et al. (1990);
Bemporad et al. (1997). This is a challenging problem for
first order methods since it is very ill-conditioned. The nu-
merical evaluation shows that the method presented in this
paper outperforms other first-order methods presented in
O’Donoghue et al. (2013); Jerez et al. (2013); Richter et al.
(2013); Patrinos and Bemporad (2014) with one to three
orders of magnitude. Also, the numerical evaluation shows
that a C implementation of our algorithm outperform
FORCES, Domahidi et al. (2012), which is a C code-
generator for MPC problems using a tailored interior point
method, and the general commercial QP-solver MOSEK.

This paper extends the conference publication Giselsson
(2014b), and is the second of a series of two papers
on improving duality-based optimization in MPC, with
Giselsson (2014a) being the first.

2. PRELIMINARIES AND NOTATION

2.1 Notation

We denote by R, R
n, R

m×n, the sets of real numbers,
vectors, and matrices. Sn ⊆ R

n×n is the set of symmetric
matrices, and S

n
++ ⊆ S

n, [Sn+] ⊆ S
n, are the sets of

positive [semi] definite matrices. Further, L � M and
L ≻ M where L,M ∈ S

n denotes L −M ∈ S
n
+ and L −

M ∈ S
n
++ respectively. We also use notation 〈x, y〉 = xT y,

〈x, y〉H = xTHy, ‖x‖2 =
√
xTx, and ‖x‖H =

√
xTHx.

Finally, IX denotes the indicator function for the set X ,

i.e. IX (x) ,
{

0, x∈X
∞, else .

2.2 Preliminaries

In this section, we introduce generalizations of well used
concepts. We generalize the notion of strong convexity as
well as the notion of Lipschitz continuity of the gradient of
convex functions. We also define conjugate functions and
state a known result on dual properties of a function and
its conjugate.

For differentiable and convex functions f : R
n → R that

have a Lipschitz continuous gradient with constant L, we
have that

‖∇f(x1)−∇f(x2)‖2 ≤ L‖x1 − x2‖2 (1)

holds for all x1, x2 ∈ R
n. This is equivalent to that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
L

2
‖x1 − x2‖22 (2)

holds for all x1, x2 ∈ R
n (Nesterov, 2003, Theorem 2.1.5).

In this paper, we allow for a generalized version of the
quadratic upper bound (2) to f , namely that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (3)

holds for all x1, x2 ∈ R
n where L ∈ S

n
+. The bound (2) is

obtained by setting L = LI in (3).

Remark 1. For concave functions f , i.e. where −f is con-
vex, the Lipschitz condition (1) is equivalent to that the
following quadratic lower bound

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
L

2
‖x1 − x2‖22 (4)

holds for all x1, x2 ∈ R
n. The generalized counterpart

naturally becomes that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
1

2
‖x1 − x2‖2L (5)

holds for all x1, x2 ∈ R
n.

Next, we state a Lemma on equivalent characterizations
of the condition (3).

Lemma 2. Assume that f : R
n → R is convex and

differentiable. The condition that

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2L (6)

holds for some L ∈ S
n
+ and all x1, x2 ∈ R

n is equivalent to
that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≤ ‖x1 − x2‖2L. (7)

holds for all x1, x2 ∈ R
n.

Proof. To show the equivalence, we introduce the func-
tion g(x) := 1

2x
TLx− f(x). According to (Nesterov, 2003,

Theorem 2.1.3) and since g is differentiable, g : R
n → R

is convex if and only if ∇g is monotone. The function g is
convex if and only if

g(x1) ≥ g(x2) + 〈∇g(x2), x1 − x2〉 =

=
1

2
xT2 Lx2 − f(x2) + 〈Lx2 −∇f(x2), x1 − x2〉

= −f(x2)− 〈∇f(x2), x1 − x2〉 − 1
2‖x1 − x2‖2L + 1

2x
T
1 Lx1.

Noting that g(x1) = 1
2x

T
1 Lx1 − f(x1) gives the negated

version of (6).

Monotonicity of ∇g is equivalent to

0 ≤ 〈∇g(x1)−∇g(x2), x1 − x2〉
= 〈Lx1 −∇f(x1)− Lx2 +∇f(x2), x1 − x2〉
= ‖x1 − x2‖2L − 〈∇f(x1)−∇f(x2), x1 − x2〉.

Rearranging the terms gives (7). This concludes the proof.

Next, we state the corresponding result for concave func-
tions.

Corollary 3. Assume that f : R
n → R is concave and

differentiable. The condition that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉 −
1

2
‖x1 − x2‖2L (8)

holds for some L ∈ S
n
+ and all x1, x2 ∈ R

n is equivalent to
that

〈∇f(x1)−∇f(x2), x2 − x1〉 ≤ ‖x1 − x2‖2L. (9)

holds for all x1, x2 ∈ R
n.

Proof. The proof follows directly from −f being convex
and applying Lemma 2.

The standard definition of a differentiable and strongly
convex function f : R

n → R is that it satisfies

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
σ

2
‖x1 − x2‖22 (10)

for any x1, x2 ∈ R
n, where the modulus σ ∈ R++ describes

a lower bound on the curvature of the function. In this
paper, the definition (10) is generalized to allow for a
quadratic lower bound with different curvature in different
directions.

Definition 4. A differentiable function f : R
n → R is

strongly convex with matrix H if and only if

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H

holds for all x1, x2 ∈ R
n, where H ∈ S

n
++.

Remark 5. The traditional definition of strong convexity
(10) is obtained from Definition 4 by setting H = σI.

Lemma 6. Assume that f : R
n → R is differentiable and

strongly convex with matrix H . The condition that

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+
1

2
‖x1 − x2‖2H (11)

holds for all x1, x2 ∈ R
n is equivalent to that

〈∇f(x1)−∇f(x2), x1 − x2〉 ≥ ‖x1 − x2‖2H (12)

holds for all x1, x2 ∈ R
n.

Proof. To show the equivalence, we introduce the func-
tion g(x) := f(x) − 1

2x
THx and proceed similarly to in

the proof of Lemma (2). According to (Nesterov, 2003,
Theorem 2.1.3) and since g is differentiable, g : R

n → R

is convex if and only if ∇g is monotone. The function g is
convex if and only if

g(x1) ≥ g(x2) + 〈∇g(x2), x1 − x2〉 =

= f(x2)−
1

2
xT2Hx2 + 〈∇f(x2)−Hx2, x1 − x2〉

= f(x2) + 〈∇f(x2), x1 − x2〉+ 1
2‖x1 − x2‖2H − 1

2x
T
1Hx1.

Noting that g(x1) = f(x1)− 1
2x

T
1Hx1 gives (11).

Monotonicity of ∇g is equivalent to

0 ≤ 〈∇g(x1)−∇g(x2), x1 − x2〉
= 〈∇f(x1)−Hx1 −∇f(x2) + Lx2, x1 − x2〉
= 〈∇f(x1)−∇f(x2), x1 − x2〉 − ‖x1 − x2‖2H .

Rearranging the terms gives (12). This concludes the
proof.

The condition (11) is a quadratic lower bound on the
function value, while the condition (3) is a quadratic upper

bound on the function value. These two properties are
linked through the conjugate function

f⋆(y) , sup
x

{
yTx− f(x)

}
.

More precisely, we have the following result.

Proposition 7. Assume that f : R
n → R∪{∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Then the conjugate function f⋆

is convex and differentiable, and ∇f⋆(y) = x⋆(y), where
x⋆(y) = argmaxx

{
yTx− f(x)

}
. Further, ∇f⋆ is Lipschitz

continuous with constant L = 1
σ .

A straight-forward generalization is given by the chain-rule
and was proven in (Nesterov, 2005, Theorem 1) (which also
proves the less general Proposition 7).

Corollary 8. Assume that f : R
n → R ∪ {∞} is closed,

proper, and strongly convex with modulus σ on the relative
interior of its domain. Further, define g⋆(y) , f⋆(Ay).
Then g⋆ is convex and differentiable, and ∇g⋆(y) =
ATx⋆(Ay), where x⋆(Ay) = argmaxx

{
(Ay)Tx− f(x)

}
.

Further, ∇g⋆ is Lipschitz continuous with constant L =
‖A‖2

2

σ .

For the case when f(x) = 1
2x

THx + gTx, i.e. f is
a quadratic, a tighter Lipschitz constant to ∇g⋆(y) =
∇f⋆(Ay) was provided in (Richter et al., 2013, Theorem
7), namely L = ‖AH−1AT ‖2.

3. PROBLEM FORMULATION

We consider optimization problems of the form

minimize f(x) + h(x) + g(Bx)
subject to Ax = b

(13)

where x ∈ R
n, A ∈ R

m×n, B ∈ R
p×n, b ∈ R

m. We assume
that the following assumption holds throughout the paper:

Assumption 9.

(a) The function f : R
n → R is differentiable and

strongly convex with matrix H .
(b) The extended valued functions h : R

n → R∪{∞} and
g : R

n → R ∪ {∞}, are proper, closed, and convex.
(c) A ∈ R

m×n has full row rank.

Remark 10. Examples of functions that satisfy Assump-
tion 9(a) and 9(b) are f(x) = 1

2x
THx+gTx with H ∈ S

n
++

for Assumption 9(a), and g = IX , g = ‖ · ‖1, g = I⋆X ,
or g = 0 for Assumption 9(b). If Assumption 9(c) is
not satisfied, redundant equality constraints can, without
affecting the solution of (13), be removed to satisfy the
assumption.

The optimization problem (13) can equivalently be written
as

minimize f(x) + h(x) + g(y)
subject to Ax = b

Bx = y

(14)

We introduce dual variables λ ∈ R
m for the equality

constraints Ax = b and dual variables µ ∈ R
p for the

equality constraints Bx = y. This gives the following
Lagrange dual problem

sup
λ,µ

inf
x,y

{
f(x) + h(x) + λT (Ax − b) + g(y) + µT (Bx− y)

}

= sup
λ,µ

[
− sup

x

{
(−ATλ−BTµ)Tx− f(x)− h(x)

}

− bTλ− sup
y

{
µT y − g(y)

}]

= sup
λ,µ

{
−F ⋆(−ATλ−BTµ)− bTλ− g⋆(µ)

}
(15)

where F ⋆ is the conjugate function to F := f + h and g⋆

is the conjugate function to g. For ease of exposition, we
introduce ν = (λ, µ) ∈ R

m+p, C = [AT BT]T ∈ R
(m+p)×n,

and c = (b, 0) ∈ R
m+p and the following function

d(ν) := −F ⋆(−CT ν)− cT ν = −F ⋆(−ATλ−BTµ)− bTλ.
(16)

This implies that the dual problem (15) can be written as

maximize d(ν)− g⋆([0 I]ν). (17)

To evaluate the function d, an optimization problem is
solved. The minimand to this problem is denoted by

x⋆(ν) := argmin
x

{
F (x) + νTCx

}
(18)

= argmin
x

{
f(x) + h(x) + λTAx + µTBx

}
.

From Corollary 8 we get that the function d is concave and
differentiable with gradient

∇d(ν) = Cx⋆(ν)− c

and that ∇d is Lipschitz continuous with constant L =
‖C‖22/λmin(H), i.e., that

‖∇d(ν1)−∇d(ν2)‖2 ≤ L‖ν1 − ν2‖2 (19)

holds for all ν1, ν2 ∈ R
m+p. As stated in Remark 1, (19) is

equivalent to that the following quadratic lower bound to
the concave function d holds for all ν1, ν2 ∈ R

m+p

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
L

2
‖ν1 − ν2‖22.

In the following section we will show that the function d
satisfies the following tighter condition

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
1

2
‖ν1 − ν2‖2L (20)

for all ν1, ν2 ∈ R
m+p and L ∈ S

m+p
+ that satisfies L �

CH−1CT .

4. DUAL FUNCTION PROPERTIES

To show that the function d as defined in (16) satisfies
(20), we need the following lemma.

Lemma 11. Suppose that Assumption 9 holds. Then

‖x⋆(ν1)− x⋆(ν2)‖H ≤ ‖ν1 − ν2‖CH−1CT

holds for all ν1, ν2 ∈ R
m+p, where x⋆(ν) is defined in (18).

Proof. We first show that

〈∇f(x⋆(ν1))−∇f(x⋆(ν2)), x⋆(ν1)− x⋆(ν2)〉 ≤
〈CT (ν1 − ν2), x

⋆(ν2)− x⋆(ν1)〉. (21)

First order optimality conditions of (18) with ν1 and ν2
respectively are

0 ∈ ∇f(x⋆(ν1)) + ∂h(x⋆(ν1)) + CT ν1, (22)

0 ∈ ∇f(x⋆(ν2)) + ∂h(x⋆(ν2)) + CT ν2. (23)

We denote by ξ(x⋆(ν1)) ∈ ∂h(x⋆(ν1)) and ξ(x⋆(ν2)) ∈
∂h(x⋆(ν2)) the sub-gradients that give equalities in (22)
and (22) respectively. This gives

0 = ∇f(x⋆(ν1)) + ξ(x⋆(ν1)) + CT ν1, (24)

0 = ∇f(x⋆(ν2)) + ξ(x⋆(ν2)) + CT ν2. (25)

Taking the scalar product of (24) with x⋆(ν2) − x⋆(ν1)
and the scalar product of (25) with x⋆(ν1) − x⋆(ν2), and
summing gives

〈∇f(x⋆(ν1))−∇f(x⋆(ν2)), x⋆(ν1)− x⋆(ν2)〉+
+〈CT (ν1 − ν2), x

⋆(ν1)− x⋆(ν2)〉 =
= 〈ξ(x⋆(ν1))− ξ(x⋆(ν2)), x

⋆(ν2)− x⋆(ν1)〉 ≤ 0

where the inequality holds since sub-differentials of proper,
closed, and convex functions are (maximal) monotone
mappings, see (Rockafellar, 1970 §24). This implies that
(21) holds.

Further

‖x⋆(ν1)− x⋆(ν2)‖2H ≤
≤ 〈∇f(x⋆(ν1))−∇f(x⋆(ν2)), x⋆(ν1)− x⋆(ν2)〉
≤ 〈CT (ν1 − ν2), x

⋆(ν2)− x⋆(ν1)〉
= 〈H−1/2CT (ν1 − ν2), H

1/2(x⋆(ν2)− x⋆(ν1))〉
≤ ‖H−1/2CT (ν1 − ν2)‖2‖x⋆(ν2)− x⋆(ν1)‖H

where the first inequality comes from Lemma 6, the second
from (21), and the final inequality is due to Cauchy
Schwarz inequality. This implies that

‖x⋆(ν1)− x⋆(ν2)‖H ≤ ‖ν1 − ν2‖CH−1CT

which concludes the proof.

Now we are ready to state the main theorem of this section.

Theorem 12. The function d defined in (16) is concave,
differentiable and satisfies

d(ν1) ≥ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 −
1

2
‖ν1 − ν2‖2L (26)

for every ν1, ν2 ∈ R
m+p and L ∈ S

m+p
+ that satisfies

L � CH−1CT .

Proof. Concavity and differentiability is deduced from
Danskin’s Theorem, see (Bertsekas, 1999, Proposition B.25).

To show (26), we have for any ν1, ν2 ∈ R
m+p that

〈∇d(ν1)−∇d(ν2), ν2 − ν1〉 =
= 〈Cx⋆(ν1)− c− Cx⋆(ν2) + c, ν2 − ν1〉
= 〈x⋆(ν1)− x⋆(ν2), C

T (ν2 − ν1)〉
= 〈x⋆(ν1)− x⋆(ν2), H

−1CT (ν2 − ν1)〉H
≤ ‖x⋆(ν1)− x⋆(ν2)‖H‖H−1CT (ν2 − ν1)‖H
≤ ‖H−1CT (ν2 − ν1)‖2H
= (ν2 − ν1)

TCH−1CT (ν2 − ν1)

= ‖ν2 − ν1‖2CH−1CT

where the first inequality is due to Cauchy-Schwarz in-
equality and the second comes from Lemma 11. Applying
Corollary 3 gives the result.

Next, we show that if f is a strongly convex quadratic func-
tion and h satisfies certain conditions, then Theorem 12
gives the best possible bound of the form (26).

Proposition 13. Assume that f(x) = 1
2x

THx + ζTx with
H ∈ S

n
++ and ζ ∈ R

n and that there exists a set

X ⊆ R
n with non-empty interior on which h is linear, i.e.

h(x) = ξTXx+θX for all x ∈ X . Further, assume that there
exists ν̃ such that x⋆(ν̃) ∈ int(X). Then for any matrix
L 6� CH−1CT , there exist ν1 and ν2 such that (26) does
not hold.

Proof. Since x⋆(ν̃) ∈ int(X) we get for all νǫ ∈
Bm+p
ǫ (0), where the radius ǫ is small enough, that x⋆(ν̃)−

H−1CT νǫ ∈ X . Introducing xǫ = −H−1CT νǫ, we get from
the optimality conditions to (18) (that specifies x⋆(ν)) that

0 = Hx⋆(ν̃) + ζ + ξX + CT ν̃

= H(x⋆(ν̃) + xǫ) + ζ + ξX + CT (ν̃ + νǫ)

= H(x⋆(ν̃) + xǫ) + ζ + h′(x⋆(ν̃) + xǫ) + CT (ν̃ + νǫ)

where h′(x⋆(ν̃) ∈ ∂h(x⋆(ν̃) and x⋆(ν̃) + xǫ ∈ X is used in
the last step. This implies that x⋆(ν̃+νǫ) = x⋆(ν̃)+xǫ and
consequently that x⋆(ν̃ + νǫ) ∈ X for any νǫ ∈ Bm+p

ǫ (0).
Thus, for any ν ∈ ν̃ ⊕ Bm+p

ǫ (0) we get

d(ν) = min
x

1
2x

THx+ ζTx+ h(x) + νT (Cx − c)

= min
x

1
2x

THx+ ζTx+ ξTXx+ νT (Cx − c)

= − 1
2ν

TCH−1CT ν + ξT ν + θ

where ξ ∈ R
n and θ ∈ R collects the linear and constant

terms respectively. Since on the set ν̃ ⊕ Bm+p
ǫ (0), d is a

quadratic with Hessian CH−1CT , it is straight-forward to
verify that (26) holds with equality for all ν1, ν2 ∈ ν̃ ⊕
Bm+p
ǫ (0) if L = CH−1CT . Thus, since ν̃ ⊕ Bm+p

ǫ (0) has
non-empty interior, we can for any matrix L 6� CH−1CT

find ν1, ν2 ∈ ν̃ ⊕ Bm+p
ǫ (0) such that

‖ν1 − ν2‖CH−1CT ≥ ‖ν1 − ν2‖L.

This implies that for any L 6� CH−1CT there exist
ν1, ν2 ∈ ν̃ ⊕ Bm+p

ǫ (0) such that

d(ν1) = d(ν2) + 〈∇d(ν2), ν1 − ν2〉 − 1
2‖ν1 − ν2‖CH−1CT

≤ d(ν2) + 〈∇d(ν2), ν1 − ν2〉 − 1
2‖ν1 − ν2‖L

This concludes the proof.

Proposition 13 shows that the bound in Theorem 12 is
indeed the best obtainable bound of the form (26) if f
is a quadratic and h specifies the stated assumptions.
Examples of functions that satisfy the assumptions on
h in Proposition 13 include linear functions, indicator
functions of closed convex constraint sets with non-empty
interior, and the 1-norm. However, indicator functions for
affine subspaces do not satisfy the the assumptions of
Proposition 13 since their interiors are empty (except for
the trivial sub-space R

n). In the following proposition we
will present a result that shows how Theorem 26 can be
improved in that case.

Proposition 14. Assume that f(x) = 1
2x

THx + ζTx with
H ∈ S

n
++ and ζ ∈ R

n, and that h = IAx=b. Then (26) holds

for all L ∈ S
m+p
+ such that L � CH−1/2(I −M)H−1/2CT

where M = H−1/2AT (AH−1AT)−1AH−1/2. Further, for
any matrix L 6� CH−1/2(I − M)H−1/2CT there exist
ν1, ν2 ∈ R

m+p such that (26) does not hold.

Proof. We have

d(ν) = −F ⋆(−CT ν)− cT ν

= − sup
x

(
−νTCx− f(x)− h(x)

)
− cT ν

= inf
x

(
νTCx + 1

2x
THx+ ζTx+ IAx=b(x)

)
− cT ν

(27)

since F = f + h. The solution x⋆(ν) to the minimization
problem satisfies the following KKT-equations[

H AT

A 0

] [
x⋆(ν)
λ⋆(ν)

]
=

[
−CT ν − ζ

b

]
(28)

where λ⋆(ν) are dual variables corresponding to the equal-
ity constraints. We have

x⋆(ν) = −H−1(ATλ⋆(ν) + CT ν + ζ).

Inserting this into the second set of equations in (28) gives

−AH−1(ATλ⋆(ν) + CT ν + ζ) = b.

Since by assumption A has full row rank and H in positive
definite, AH−1AT is invertible. Introducing the notation
HA = AH−1AT , this implies that

λ⋆(ν) = −H−1
A (AH−1(CT ν + ζ) + b)

which in turn implies that

x⋆(ν) = H−1(ATH−1
A (AH−1(CT ν + ζ) + b)− CT ν − ζ)

= H−1(ATH−1
A AH−1 − I)(CT ν + ζ) +H−1ATH−1

A b

= −H−1/2(I −M)H−1/2(CT ν + ζ) +H−1ATH−1
A b.

Insertion of this into (27) gives after straight-forward
computations that

d(ν) = −1

2
νTCH−1/2(I −M)H−1/2CT ν + ξT ν + θ

where ξ ∈ R
m+p and θ ∈ R collect the linear and con-

stant terms respectively. This implies that d is a con-
cave quadratic function with negative Hessian CH−1(I −
M)H−1/2CT . For concave quadratic functions, it is
straight-forward to verify that (26) holds with equality for
all ν1, ν2 ∈ R

m+p if L is chosen as the negative Hessian,
i.e. L = CH−1/2(I −M)H−1/2CT . This further implies,
that for any L 6� CH−1/2(I − M)H−1/2CT there exist
ν1, ν2 ∈ R

m+p such that (26) does not hold. This concludes
the proof.

For the preceding result to hold, it is actually sufficient
to assume that f is strongly convex on the null-space of
A since this results in an unique solution of x⋆(ν). The
corresponding result is stated in the following proposition.

Proposition 15. Assume that f(x) = 1
2x

THx + ζTx with
H ∈ S

n
+ and ζ ∈ R

n, and that h = IAx=b. Further assume

xTHx > 0 whenever x 6= 0 and Ax = 0, i.e. that H is
positive definite on the null-space of A. Then (26) holds

for all L ∈ S
m+p
+ such that L � CK11C

T where
[
K11 K12

K21 K22

]
=

[
H AT

A 0

]−1

. (29)

Further, for any matrix L 6� CK11C
T there exist ν1, ν2 ∈

R
m+p such that (26) does not hold.

Proof. Since H is positive definite on the null-space of A,
the KKT-matrix in (28) is invertible and

[
K11 K12

K21 K22

]
exists,

see (Boyd and Vandenberghe, 2004, p. 523). Equation (29)
implies that the solution the the KKT-system (28) is given
by

[
x⋆(ν)
λ⋆(ν)

]
=

[
K11 K12

K21 K22

] [
−CT ν − ζ

b

]
.

That is, x⋆(ν) = −K11(C
T ν + ζ) + K12b. Inserting this

into (27) gives

d(ν) = −1

2
νTC(2K11 −K11HK11)C

T ν + ξT ν + θ

= −1

2
νTCK11C

T ν + ξT ν + θ

where again ξ ∈ R
m+p and θ ∈ R collect the linear and

constant terms, and where K11HK11 = K11 is used in
the second equality. This identity follows from the upper
left block of

[
K11 K12

K21 K22

] [
H AT

A 0

] [
K11 K12

K21 K22

]
=

[
K11 K12

K21 K22

]
and

usingKT
11A = K11A = AK11 = 0, where AK11 = 0 follows

from the lower left block of
[
H AT

A 0

] [
K11 K12

K21 K22

]
= [I 0

0 I]. This
implies that d is a concave and quadratic function with
negative Hessian CK11C

T , which implies that (26) holds
with equality for any ν1, ν2 ∈ R

m+p if L = CK11C
T . This

further implies, that for any L 6� CK11C
T there exist

ν1, ν2 ∈ R
m+p such that (26) does not hold. This concludes

the proof.

Remark 16. In the model predictive control context, the
preceding result implies that the quadratic cost matrix
associated with inputs should be positive definite, while
the quadratic cost matrix associated with the states need
only be positive semi-definite.

5. FAST DUAL GRADIENT METHODS

In this section, we will describe generalized fast gradient
methods and show how they can be applied to solve the
dual problem (15). Generalized fast gradient methods can
be applied to solve problems of the form

minimize ℓ(x) + ψ(x) (30)

where x ∈ R
n, ψ : R

n → R ∪ {∞} is proper, closed and
convex, ℓ : R

n → R is convex, differentiable, and satisfies

ℓ(x1) ≤ ℓ(x2) + 〈∇ℓ(x2), x1 − x2〉+ 1
2‖x1 − x2‖2L (31)

for all x1, x2 ∈ R
n and some L ∈ S

n
++. Before we state the

algorithm, we define the generalized prox operator

proxLψ(x) := argmin
y

{
ψ(y) + 1

2‖y − x‖2
L

}
(32)

and note that

proxLψ
(
x− L−1∇ℓ(x)

)
=

= argmin
y

{
1
2‖y − x+ L−1∇ℓ(x)‖2

L
+ ψ(y)

}

= argmin
y

{
ℓ(x) + 〈∇ℓ(x), y − x〉+ 1

2‖y − x‖2
L
+ ψ(y)

}
.

(33)

The generalized fast gradient method is stated below.

Algorithm 1.
Generalized fast gradient method

Set: y1 = x0 ∈ R
n, t1 = 1

For k ≥ 1

xk = proxLψ
(
yk − L−1∇ℓ(yk)

)

tk+1 =
1+

√
1+4(tk)2

2

yk+1 = xk +
(
tk−1
tk+1

)
(xk − xk−1)

The standard fast gradient method as presented in Beck
and Teboulle (2009) is obtained by setting L = LI
in Algorithm 1, where L is the Lipschitz constant to
∇ℓ. The main step of the fast gradient method is to
perform a prox-step, i.e., to minimize (33) which can be
seen as an approximation of the function ℓ + ψ. For the
standard fast gradient method, ℓ is approximated with
a quadratic upper bound that has the same curvature,
described by L, in all directions. If this quadratic upper
bound is a bad approximation of the function to be
minimized, slow convergence rate properties are expected.
The generalization to allow for a matrix L in the algorithm
allows for quadratic upper bounds with different curvature
in different directions. This enables for quadratic upper
bounds that much better approximate the function ℓ and
consequently gives improved convergence rate properties.

The generalized fast gradient method has a convergence
rate of (see Zuo and Lin (2011))

ℓψ(x
k)− ℓψ(x

⋆) ≤ 2‖x⋆ − x0‖2
L

(k + 1)2
(34)

where ℓψ := ℓ + ψ. The convergence rate of the standard
fast gradient method as given in Beck and Teboulle (2009),
is obtained by setting L = LI in (34).

The objective here is to apply the generalized fast gradient
method to solve the dual problem (15). By introducing
g̃(ν) = g⋆([0 I]ν), the dual problem (15) can be expressed
maxν d(ν) − g̃(ν), where d is defined in (16). As shown
in Theorem 12, the function −d satisfies the properties re-
quired to apply generalized fast gradient methods. Namely
that (31) holds for any L ∈ S

m+p
+ such that L � CH−1CT .

Further, since g is a closed, proper, and convex function
so is g⋆, see (Rockafellar, 1970, Theorem 12.2), and by
(Rockafellar, 1970, Theorem 5.7) so is g̃. This implies that
generalized fast gradient methods, i.e. Algorithm 1, can
be used to solve the dual problem (15). We set −d = ℓ
and g̃ = ψ, and restrict L = blkdiag(Lλ,Lµ) to get the
following algorithm.

Algorithm 2.
Generalized fast dual gradient method

Set: z1 = λ0 ∈ R
m, v1 = µ0 ∈ R

p, t1 = 1
For k ≥ 1

yk = argminx
{
f(x) + h(x) + (zk)TAx+ (vk)TBx

}

λk = zk + L−1
λ (Ayk − b)

µk = prox
Lµ

g⋆ (v
k + L−1

µ Byk)

tk+1 =
1+

√
1+4(tk)2

2

zk+1 = λk +
(
tk−1
tk+1

)
(λk − λk−1)

vk+1 = µk +
(
tk−1
tk+1

)
(µk − µk−1)

where yk is the primal variable at iteration k that is used
to help compute the gradient ∇d(νk) where νk = (zk, vk).
To arrive at the λk and µk iterations, we let ξk = (λk, µk),
and note that

ξk = proxL
g̃

(
νk + L−1∇d(νk)

)
(35)

= argmin
ν

{
1
2‖ν − νk − L−1∇d(νk)‖2

L
+ g⋆([0 I]ν)

}

=

[
argmin

z

{
1
2‖z − zk − L−1

λ ∇zd(ν
k)‖2

Lλ

}

argmin
v

{
1
2‖v − vk − L−1

µ ∇vd(ν
k)‖2

Lµ
+ g⋆(v)

}
]

=

[
zk + L−1

λ (Ayk − b)

prox
Lµ

g⋆ (v
k + L−1

µ Byk)

]
.

In the following proposition we state the convergence rate
properties of Algorithm 2.

Proposition 17. Suppose that Assumption 9 holds. If
L = blkdiag(Lλ,Lµ) ∈ S

m+p
++ is chosen such that L �

CH−1CT . Then Algorithm 2 converges with the rate

D(ν⋆)−D(νk) ≤
2
∥∥ν⋆ − ν0

∥∥2
L

(k + 1)2
, ∀k ≥ 1 (36)

where D = d− g̃ and k is the iteration number.

Proof. Algorithm 2 is Algorithm 1 applied to solve the
dual problem (15). The convergence rate of Algorithm 1 is
given by (34) provided that the function to be minimized
a sum of one convex, differentiable function that satisfies
(31) and one closed, proper, and convex function, see Zuo
and Lin (2011). The discussion preceding the presentation
of Algorithm 2 shows that the dual function to be opti-
mized satisfies these properties for any L ∈ S

m+p
++ that

satisfies L � CH−1CT . This concludes the proof.

Remark 18. If h = IAx=b, the requirement on L in Propo-
sition 17 changes according to the results presented in
Proposition 14 and Proposition 15.

Remark 19. By forming a specific running average of pre-
vious primal variables, it is possible to prove a O(1/k)
convergence rate for the distance to the primal variable op-
timum and a O(1/k2) convergence rate for the worst case
primal infeasibility, see Patrinos and Bemporad (2014).

For some choices of conjugate functions g⋆, prox
Lµ

g⋆ (x) can
be difficult to evaluate. For standard prox operators (given
by proxIg⋆(x)), Moreau decomposition (Rockafellar, 1970,
Theorem 31.5) states that

proxIg⋆(x) + proxIg(x) = x.

In the following proposition, we will generalize this result
to hold for the generalized prox-operator used here.

Proposition 20. Assume that g : R
n → R is a proper,

closed, and convex function. Then

proxLg⋆(x) + L−1proxL
−1

g (Lx) = x

for every x ∈ R
n and any L ∈ S

n
++.

Proof. Optimality conditions for the prox operator (32)
give that y = proxLg⋆(x) if and only if

0 ∈ ∂g⋆(y) + L(y − x)

Introducing v = L(x − y) gives v ∈ ∂g⋆(y) which is
equivalent to y ∈ ∂g(v) (Rockafellar, 1970, Corollary
23.5.1). Since y = x− L−1v we have

0 ∈ ∂g(v) + (L−1v − x)

which is the optimality condition for v = proxL
−1

g (Lx).
This concludes the proof.

Remark 21. If g = IX where IX is the indicator function,
then g⋆ is the support function. Evaluating the prox
operator (32) with g⋆ being a support function is difficult.
However, through Proposition 20, this can be rewritten
to only require the a projection operation onto the set
X . If X is a box constraint and L is diagonal, then the
projection becomes a max-operation and hence very cheap
to implement.

Remark 22. We are not restricted to have one auxiliary
term g only. We can have any number of auxiliary terms
gi that all decompose according to the computations in
(35), i.e., we get one prox-operation in the algorithm for
every auxiliary term gi.

6. CHOOSING THE L-MATRIX

From Theorem 12 and Proposition 15, we get that the L-
matrix used in the quadratic lower bound in the algorithm
should satisfy L � CPCT , where P = H−1 or P = K11

depending on if the assumptions in Theorem 12 or Proposi-
tion 15 are satisfied. To get as fast convergence as possible,
the approximation of the function d used in the algorithm
should as accurately as possible resemble the function d it-
self. In view of Theorem 12 and Proposition 15, we want L
to be a close as possible to CPCT . Letting L = (DTD)−1,
we propose to achieve this by minimizing the condition
number of DCPCTDT , subject to I � DCPCTDT . If
there are no structural constraints on L and if CPCT

has full rank, then minimizing the condition number of
DCPCTDT gives L = (DTD)−1 = CPCT . However,
this situation is quite uncommon. First, we often have
structural constraints on L that need to be taken into
account. The most common such structural constraint
is diagonal L, since for separable g, the complexity of
computing proxLg (x) is not increased compared to using
L = LI. Sometimes, block-diagonal L can be used, or in
rare cases, full matrices L. All these structural constraints
- diagonal, block-diagonal, and full - can be represented as
follows: let L be a set of pairs (i, j) for which Lij may be
non-zero, then

L = {L ∈ S
m+p
++ | L = (DTD)−1,

D ∈ R
(m+p)×(m+p) invertible,

Lij = [L−1]ij = [D−1]ij = 0 if (i, j) /∈ L}.
For instance, letting L = {(1, 1), (2, 2) . . . , (m + p,m +
p)} restricts L ∈ L to be diagonal. A second issue that
hinders the choice of L = CPCT , is that L is restricted
to be positive definite, while CPCT is positive definite
only if C has full row rank and if P is positive definite.
When CPCT is not positive definite, we instead propose
to minimize the ratio between the largest and smallest non-
zero eigenvalues (since the eigenvalues that are zero cannot
be changed). Letting λ1(DCPC

TDT) be the largest non-
zero eigenvalue of DCPCTDT and λr(DCPC

TDT) be
the smallest non-zero eigenvalue of DCPCTDT (where
if r = m + p all eigenvalues are non-zero), the proposed
optimization problems can be written as

D = arg min
(DTD)−1∈L

λ1(DCPC
TDT)

λr(DCPCTDT)
. (37)

Next we will show how to solve (37) in the following
three cases, which include all problem instances we will
encounter:

(C1) CPCT ∈ S
(m+p)
++

(C2) QCTCQT ∈ S
q
++ where P = QTQ and Q ∈ R

q×n

(C3) rank(QCTCQT) = rank(CPCT) < min(m+ p, q)

Before we present how to compute the optimal precondi-
tioner in each of the three cases, we state the following
lemma.

Lemma 23. For any matrix A ∈ R
m×n, the non-zero

eigenvalues of ATA equals the non-zero eigenvalues of
AAT .

Proof. Without loss of generality, we assume that m ≤ n
and that rank(A) = q ≤ m. Let A = UΣV T , be the
singular value decomposition of A, where U ∈ R

m×m and
V ∈ R

n×n are orthonormal, and

Σ =

s1
. . .

sq
0

 0

 ∈ R

m×n.

This implies that AAT = UΣV TV ΣTUT = U(ΣΣT)UT ,
or equivalently that (AAT)U = U(ΣΣT), and that
ATA = V ΣTUTUΣV T = V ΣTΣV T , or equivalently that
(ATA)V = V (ΣTΣ). That is, the eigenvalues to AAT are
given by the diagonal entries of ΣΣT and the eigenvalues to
ATA are given by the diagonal entries of ΣTΣ, i.e. the non-
zero eigenvalues of AAT and ATA coincide. This concludes
the proof.

6.1 Case 1

We consider Case 1, i.e. C1. This is the case considered
in Theorem 12 with P = H−1 and an additional rank
assumption on C.

Proposition 24. Assume that CPCT ∈ S
(m+p)
++ . Then a

matrixD with (DTD)−1 ∈ L that minimizes the ratio (37)
can be computed by solving the semi-definite program

minimize t
subject to tCPCT � L

CPCT � L
L ∈ L

(38)

where L = (DTD)−1. Further, L � CPCT .

Proof. Since CPCT has full rank, (37) is the condition
number. Thus, according to (Boyd et al., 1994, Section
3.1), (38) can be solved in order to minimize (37) . Further,
the second constraint implies that L � CPCT .

6.2 Case 2

Here, we show how to minimize (37) in the second case,
C2. This covers both Theorem 12 (with P = H−1)
and Proposition 15 (with P = K11) with the additional
assumption that C is not wide and has full column rank.

Proposition 25. Assume that QCTCQT ∈ S
q
++, where

P ∈ S
n
+ is factorized as P = QTQ, where Q ∈ R

q×n

has rank q. Then a matrix D with (DTD)−1 ∈ L that
minimizes the ratio (37) can be computed by solving the
semi-definite program

minimize −t
subject to QCTMCQT � I

QCTMCQT � tI
M ∈ L

(39)

where M = (DTD). Further L = (DTD)−1 � CPCT .

Proof. Since QCTMCQT has full rank, we get from
Lemma 23, we get that minimizing the condition num-
ber of QCTMCQT is equivalent to minimizing the ratio
between the largest and smallest non-zero eigenvalues of
DCPCTDT , i.e. equivalent to solving (37). From (Boyd
et al., 1994, Section 3.1), we get that (39) minimizes the
condition number of QCTMCQT i.e. it minimizes (37).
Further, the first inequality implies through Lemma 23
that DCPCTDTQ � I, which is equivalent to that L =
(DTD)−1 � CPCT . This concludes the proof.

6.3 Case 3

Here, we consider Case C3, which covers the cases not
included in Cases C1 and C2. This covers, e.g. the situation
in Proposition 15 with additional assumptions on the rank
of C.

Proposition 26. Assume that rank(QCTCQT) = r with
r < min(m + p, q) and that P ∈ S

n
+ is factorized as

P = QTQ, where Q ∈ R
q×n has rank q. Further, assume

that Φ ∈ R
q×r is an orthonormal basis for R(QCT). Then

a matrix D with (DTD)−1 ∈ L that minimizes the ratio
(37) can be computed by solving the semi-definite program

minimize −t
subject to QCTMCQT � I

ΦTQCTMCQTΦ � tI
M ∈ L

(40)

where M = (DTD). Further, L = (DTD)−1 � CPCT .

Proof. The first inequality in (40) is by Lemma 23 equiv-
alent to that DCPCTDT � I, i.e. λ1(DCPC

TDT) ≤ 1.

To lower bound the smallest nonnegative eigenvalue, we
need to search in directions perpendicular to the null-space
of QCTMCQT . We have that

N (QCTMCQT) = N (DCQT) = N (CQT) ⊥ R(QCT)

where the second equality holds since D is assumed invert-
ible. This implies that we need to search in directions that
span R(QCT). Now, we have that t ≤ λr(QC

TMCQT) if
and only if 0 ≤ xT (QCTMCQT−tI)x for all x ∈ R(QCT).
This, in turn, is equivalent to that

ΦT (QCTMCQT − tI)Φ ∈ S
r
+ (41)

where Φ ∈ R
q×r is an orthonormal basis to R(QCT).

Further, since Φ is an orthonormal basis, i.e. ΦTΦ = I,
(41) is equivalent to ΦTQCTMCQTΦ � tI. This chain
of equivalences shows that the second inequality in (40)
is equivalent to that λr(QC

TMCQT) ≥ t. Thus, by
maximizing t (or equivalently minimizing −t) the ratio

λ1(QC
TMCQT)/λr(QC

TMCQT) ≤ 1/t

is minimized. From Lemma 23 and the reasoning to the
proof of Case C2, we conclude that (40) solves (37).

Further, the first inequality implies through Lemma 23
that L = (DTD)−1 � CPCT . This concludes the proof.

Remark 27. Note that if rank(QCTCQT) = q, then Φ = I
is an orthonormal basis to R(QCT) and (40) reduces
to (39). Thus, (40) is a generalization of (39) to cover
also the positive semi-definite case. A similar generaliza-
tion that reduces to (38) in the positive definite case
would rely on searching in directions perpendicular to
N (DCPCTDT) = N (QCTDT) ⊥ R(DCQT) to lower
bound the smallest non-zero eigenvalue. This implies that
the search directions depend on the decision variables D,
which makes such a generalization more elaborate.

7. MODEL PREDICTIVE CONTROL

In this section, we pose some standard model predictive
control problems and show how they can be solved using
the methods presented in this paper. The resulting algo-
rithms will have simple arithmetic operations only which
allows for easier implementation in embedded systems. We
also show how to choose the L-matrix in each case.

Example 28. We consider MPC optimization problems of
the form

minimize

N−1∑

t=0

1
2

(
xTt Qxt + uTt Rut

)
+ 1

2x
T
NQfxN

subject to xt+1 = Φxt + Γut, t = 0, . . . , N − 1
xmin ≤ xt ≤ xmax, t = 0, . . . , N
umin ≤ ut ≤ umax, t = 0, . . . , N − 1
x0 = x̄

where x̄, xt ∈ R
nx , ut ∈ R

nu , Φ ∈ R
nx×nx , Γ ∈ R

nx×nu

and Q ∈ S
nx

++, R ∈ S
nu

++, Qf ∈ S
nx

++ are all diagonal.
Letting y = (x0, . . . , xN , u0, . . . , uN−1), this can be cast as

minimize 1
2y
THy

subject to Ay = bx̄
ymin ≤ y ≤ ymax

where H , A, b, ymin, and ymax are structured according to
y. We choose f(y) = 1

2y
THy, g = 0, and h = IY where IY

is the indicator function to

Y = {y ∈ R
(N+1)nx+Nnu | ymin ≤ y ≤ ymax}.

This implicitly implies that we introduce dual variables
λ for the equality constraints Ay = bx̄. The algorithm
becomes:

yk = argmin
y

{
1
2y

THy + IY(y) + zTAx
}

(42)

λk = zk + L−1
λ (Ayk − bx̄) (43)

tk+1 =
1+

√
1+4(tk)2

2 (44)

zk+1 = λk +
(
tk−1
tk+1

)
(λk − λk−1) (45)

where the first step (42) can be implemented as

yk = max
(
min

(
−H−1AT zk, ymax

)
, ymin

)
(46)

due to the structure of the problem. The preceding section
suggests that Lλ = (DTD)−1 � AH−1AT should be
chosen such that I ≈ DAH−1ATDT . Since A is sparse and
H−1 is diagonal due to the MPC problem formulation, D
can be chosen to get equality in I ≈ DAH−1ATDT , i.e.
we can choose Lλ = (DTD)−1 = AH−1AT . The algorithm
requires the computation of L−1

λ z, where z = Ayk − bx̄,
in each iteration. Since Lλ = AH−1A is sparse, this can
efficiently be implemented by offline storing the sparse
Cholesky factorization RTR = STLλS, where R is sparse

and upper triangular, and S is a permutation matrix. The
online computation of L−1

λ z then reduces to one forward
and one backward solve, which can be very efficiently
implemented.

The algorithm in this example is a generalization of the
algorithm in Richter et al. (2013), where the matrix L is
chosen as L = ‖AH−1AT ‖2I. In the numerical section we
will see that this generalization can significantly improve
the convergence rate.

Next, we present an algorithm that works for arbitrary
positive definite cost matrices, and arbitrary linear con-
straints.

Example 29. We consider MPC optimization problems of
the form

minimize

N−1∑

t=0

1

2

(
xTt Qxt + uTt Rut

)
+

1

2
xTNQfxN

subject to xt+1 = Φxt + Γut, t = 0, . . . , N − 1
dx ≤ Bxxt ≤ d̄x, t = 0, . . . , N − 1
du ≤ Buut ≤ d̄u, t = 0, . . . , N − 1
x0 = x̄, dN ≤ BNxN ≤ d̄N

where x̄, xt ∈ R
nx , ut ∈ R

nu , Φ ∈ R
nx×nx , Γ ∈ R

nx×nu ,
Bx ∈ R

px×nx , Bu ∈ R
pu×nx , BN ∈ R

pN×nx , dx, d̄x ∈ R
px ,

du, d̄u ∈ R
pu , dN , d̄N ∈ R

pN , Q ∈ S
nx

++,R ∈ S
nu

++,
and Qf ∈ S

nx

++. We let y = (x0, . . . , xN , u0, . . . , uN−1)

and define B = blkdiag(B̄x, BN , B̄u) where B̄x =
blkdiag(Bx, . . . , Bx) and B̄u = blkdiag(Bu, . . . , Bu). We
also introduce d = (dx, . . . , dx, dN , du, . . . , du) and d̄ =
(d̄x, . . . , d̄x, d̄N , d̄u, . . . , d̄u). This implies that all inequality
constraints are described by d ≤ By ≤ d̄. Using this
notation, the optimization problem can be rewritten as

minimize 1
2y
THy

subject to Ay = bx̄
By = v
d ≤ v ≤ d̄

We let f(y) = 1
2y

THy, h = IAy=bx̄, and g = IY where

Y = {y ∈ R
(N+1)nx+Nnu | d ≤ y ≤ d̄}. Since h is the

indicator function for the equality constraints Ay = bx̄,
we do not need to introduce dual variables for those
constraints. However, we introduce dual variables µ for
By = v. Letting HA = AH−1AT , the algorithm becomes

yk = H−1(ATH−1
A (AH−1BT vk + bx̄)−BT vk) (47)

µk = prox
Lµ

g⋆ (v
k + L−1

µ Byk) (48)

tk+1 =
1+

√
1+4(tk)2

2 (49)

vk+1 = µk +
(
tk−1
tk+1

)
(µk − µk−1) (50)

where the yk iterate follows from solving minx
{
f(x) +

IAx=bx̄(x) + (vk)TBx
}
. In an implementation, the yk-

update can be implemented as in (47). Then, for efficiency,
the matrix multiplications should be computed offline and
stored for online use. Depending on the sparsity of H , A,
and B, it might be more efficient to use the KKT-system
from which (47) is deduced, namely[

H AT

A 0

] [
yk

ξ

]
=

[
−BT vk
bx̄

]
.

Then, a sparse LDL-factorization of the KKT-matrix[
H AT

A 0

]
is computed offline for online use. The online

computational burden to compute the yk-update then
becomes one forward and one backward solve. Whichever
method that has the lower number of flops should be
chosen.

By restricting Lµ to be diagonal, the second step, i.e. (48),
can be implemented as

µk = min(vk+L−1
µ (Byk−d),max(vk+L−1

µ (Byk− d̄), 0)).
To get fast convergence, the diagonal Lµ should be com-
puted as in Section 6. Note that, in this example, the
matrix P used in Section 6 can be either P = K11,
where K11 is implicitly defined in (29), or P = H−1.
Since K11 � H−1, the latter choice is expected to give
a somewhat slower convergence.

The splitting method used here is the same as the one
used in Patrinos and Bemporad (2014). However, this is
more general since we allow for Lµ-matrices that are not
a multiple of the identity matrix. Also, the same splitting
is used in O’Donoghue et al. (2013); Jerez et al. (2013),
where ADMM (see Boyd et al. (2011)) is used to solve the
optimization problem.

8. NUMERICAL EXAMPLE

The proposed algorithms are evaluated by applying them
to the AFTI-16 aircraft model in Kapasouris et al. (1990);
Bemporad et al. (1997). This problem is also a tutorial ex-
ample in the MPC toolbox in MATLAB. As in Bemporad
et al. (1997) and the MPC toolbox tutorial, the continuous
time model from Kapasouris et al. (1990) is sampled using
zero-order hold every 0.05 s. The system has four states
x = (x1, x2, x3, x4), two outputs y = (y1, y2), two inputs
u = (u1, u2), and obeys the following dynamics

x+ =

[
0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

]
x+

[−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

]
u,

y = [0 1 0 0
0 0 0 1]x

where x+ denotes the state in the next time step. The
dynamics, input, and output matrices are denoted by Φ,
Γ, C respectively, i.e. we have x+ = Φx + Γu, y = Cx.
The system is unstable, the magnitude of the largest
eigenvalue of the dynamics matrix is 1.313. The outputs
are the attack and pitch angles, while the inputs are the
elevator and flaperon angles. The inputs are physically
constrained to satisfy |ui| ≤ 25◦, i = 1, 2. The outputs
are soft constrained to satisfy −s1 − 0.5 ≤ y1 ≤ 0.5 +
s2 and −s3 − 100 ≤ y2 ≤ 100 + s4 respectively, where
s = (s1, s2, s3, s4) ≥ 0 are slack variables. The cost in each
time step is

ℓ(x, u, s) =
1

2

(
(x − xr)

TQ(x− xr) + uTRu+ sTSs
)

where Q = CTQyC + Qx, where Qy = 102I and Qx =
diag(10−4, 0, 10−3, 0), xr is such that yr = Cxr where
yr is the output reference that can vary in each step,
R = 10−2I, and S = 106I. This gives condition number
1010 of the full cost matrix. Further, the terminal cost is
Q, and the control and prediction horizon is N = 10. The
numerical data in Tables 1 and 2 is obtained by following
a reference trajectory on the output. The objective is to
change the pitch angle from 0◦ to 10◦ and then back to 0◦

while the angle of attack satisfies the output constraints

−0.5◦ ≤ y1 ≤ 0.5◦. The constraints on the angle of attack
limits the rate on how fast the pitch angle can be changed.

In Table 1, the proposed algorithms are evaluated by com-
paring them to other first order methods recently proposed
in the literature for embedded model predictive control,
namely Richter et al. (2013); Patrinos and Bemporad
(2014); O’Donoghue et al. (2013); Jerez et al. (2013). In
Table 2, the execution time of a C implementation of Al-
gorithm 2 is compared to the execution time of FORCES,
Domahidi et al. (2012), which is a C code generator for
MPC-problems, and to the commercial solver MOSEK.

All algorithms in the comparison in Table 1 are imple-
mented in MATLAB, while the algorithms in Table 2 are
implemented in C. Further, all simulations are performed
on a Linux machine using a single core running at 2.9
GHz. To create an easily transferable and fair termina-
tion criterion, the optimal solution to each optimization
problem y⋆ is computed to high accuracy using an interior
point solver. Where applicable, the optimality condition is
‖yk − y⋆‖2/‖y⋆‖2 ≤ 0.005, where yk is the primal iterate
in the algorithm. This implies that a relative accuracy of
0.5% of the primal solution is required.

First, we discuss the results in Table 1. The algorithms
in Example 28, i.e. (42)-(45), and Example 29, i.e. (47)-
(50), have been applied to this problem. Due to the slack
variables, (46) cannot replace (42) for the yk update. How-
ever, the yk minimization is separable in the constraints
and each of the projections can be solved by a multi-
parametric program with two regions. This is almost as
computationally inexpensive as the yk update in (46).
Further, we use Lλ = AH−1AT . Algorithm (42)-(45)
is a generalization of Richter et al. (2013) that allows
for general matrices Lλ. The algorithm in Richter et al.
(2013) is obtained by setting Lλ = ‖AH−1AT ‖2I. The
numerical evaluation in Table 1 reveals that this general-
ization improves the execution time with more than three
orders of magnitude for this problem. The formulation
in Example 29, i.e. (47)-(50), directly covers this MPC
formulation with soft constraints. For this algorithm, we
compute Lµ as in Section 6 using both P = K11 and
P = H−1. The resulting algorithm is a generalization
of the algorithm in Patrinos and Bemporad (2014). The
algorithm in Patrinos and Bemporad (2014) is given by
setting Lµ = ‖BH−1BT ‖2I or Lµ = ‖BK11B

T ‖2I in the
iterations (47)-(50). Table 1 indicates that this general-
ization improves the algorithm by one to two orders of
magnitude compared to Patrinos and Bemporad (2014).
Further, (47)-(50) is based on the same splitting as the
method in O’Donoghue et al. (2013); Jerez et al. (2013).
The difference is that here, the problem is solved with a
generalized dual gradient method, while in O’Donoghue
et al. (2013); Jerez et al. (2013) it is solved using ADMM.
In ADMM, the ρ-parameter need to be chosen. However,
no exact guidelines are yet known for this choice, and the
performance of the algorithm often relies heavily on this
parameter. We compare our algorithm with ADMM using
the best ρ that we found, ρ = 3, and with one larger and
one smaller ρ. Table 1 reports that the execution time for
our method is one to two orders of magnitude smaller (or
more if the ρ-parameter in O’Donoghue et al. (2013); Jerez
et al. (2013) is chosen suboptimally) than the algorithm
proposed in O’Donoghue et al. (2013); Jerez et al. (2013).

Table 1. Comparison to other first-order methods, all implemented in MATLAB.

exec time (ms) nbr iters
Algorithm Parameters avg. max avg. max

(42)-(45) Lλ = AH−1AT 2.3 12.1 21.7 102
Richter et al. (2013) Lλ = ‖AH−1AT ‖2I 4713.9 28411 50845 308210
(47)-(50) Lµ comp. as in Sec.6 w. P = K11 1.4 7.1 23.5 128
(47)-(50) Lµ comp. as in Sec.6 w. P = H−1 1.2 5.8 20.0 105
Patrinos and Bemporad (2014) Lµ = ‖BK11B

T ‖2I 98.5 673.0 1835.9 12686
Patrinos and Bemporad (2014) Lµ = ‖BH−1BT ‖2I 98.9 679.4 1850.1 12783
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 0.3 193.9 920.6 3129.5 15037
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 3 29.7 142.2 457.3 2179
O’Donoghue et al. (2013); Jerez et al. (2013) ρ = 30 35.1 264.4 556.7 4194

Table 2. Comparison to state-of-the-art
solvers, all implemented in C.

exec time (ms)
Algorithm Parameters avg. max

(42)-(45) Lλ = AH−1AT 0.079 0.232
(47)-(50) Lµ as in Sec.6 w. P = H−1 0.061 0.196
FORCES - 0.347 0.592
MOSEK - 4.9 5.4

In Table 2, we compare different solvers implemented in
C. For the algorithms presented in this paper, we generate
C code that take the reference trajectory and the initial
state as inputs. Compared to the corresponding MATLAB
implementations in Table 1, the generated C code is more
than 20 times faster. These implementations are compared
to FORCES and MOSEK. FORCES, see Domahidi et al.
(2012), is an optimized interior point C code generator
for MPC problems. The structure of the MPC problem is
exploited to significantly reduce the computational time
when solving the KKT-system in each iteration. The
comparison also includes MOSEK, which is a general
commercial QP-solver that does not have the advantage of
generating code for this specific problem beforehand. The
numerical evaluation in Table 2 shows that our algorithms
and FORCES, for both of which C code is generated
for this specific problem instance, outperform the general
purpose commercial C solver MOSEK with more than one
order of magnitude. Further, Table 2 reveals that our two
algorithms perform similarly and that they are at least two
to three times faster than FORCES.

9. CONCLUSIONS

We have proposed a generalization of dual fast gradient
methods. This generalization allows the algorithm to, in
each iteration, minimize a quadratic upper bound to the
negative dual function with different curvature in different
directions. This is in contrast to the standard fast dual
gradient method where a quadratic upper bound to the
negative dual with the same curvature in all directions is
minimized in each iteration. This generalization is made
possible by the main contribution of this paper that
characterizes the set of matrices that can be used to
describe a quadratic upper bound to the negative dual
function. The numerical evaluation on an ill-conditioned
aircraft problem reveals that the proposed algorithms
outperform several other MPC problem solvers recently
proposed in the literature.

REFERENCES

A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sciences, 2(1):183–202, October 2009.

A. Bemporad, A. Casavola, and E. Mosca. Nonlinear
control of constrained linear systems via predictive ref-
erence management. IEEE Transactions on Automatic
Control, 42(3):340–349, 1997.

A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos.
The explicit linear quadratic regulator for constrained
systems. Automatica, 38(1):3–20, January 2002.

D. P. Bertsekas. Nonlinear Programming. Athena Scien-
tific, Belmont, MA, 2nd edition, 1999.

S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, 2004.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Lin-
ear Matrix Inequalities in System and Control Theory,
volume 15 of Studies in Applied Mathematics. SIAM,
Philadelphia, PA, June 1994.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

A. Domahidi, A. Zgraggen, M.N. Zeilinger, M. Morari,
and C.N. Jones. Efficient interior point methods for
multistage problems arising in receding horizon control.
In IEEE Conference on Decision and Control (CDC),
pages 668–674, Maui, HI, USA, December 2012.

P. Giselsson. Improving fast dual ascent for MPC - Part
I: The distributed case. Automatica, 2014a. Submitted.
Available http://arxiv.org/abs/1312.3012.

P. Giselsson. Improved fast dual gradient methods for
embedded model predictive control. In In Proceedings
of 2014 IFAC World Congress, 2014b. Accepted for
publication. Available https://www.control.lth.se/
Staff/PontusGiselsson.html.

J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides,
E. C. Kerrigan, and M. Morari. Embedded online
optimization for model predictive control at megahertz
rates. IEEE Transactions on Automatic Control, 2013.
Submitted.

P. Kapasouris, M. Athans, and G. Stein. Design of feed-
back control systems for unstable plants with saturating
actuators. In Proceedings of the IFAC Symposium on
Nonlinear Control System Design, pages 302–307. Perg-
amon Press, 1990.

Y. Nesterov. A method of solving a convex programming
problem with convergence rate O (1/k2). Soviet Math-
ematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Springer Netherlands, 1st edition,
2003. ISBN 1402075537.

Y. Nesterov. Smooth minimization of non-smooth func-
tions. Math. Program., 103(1):127–152, May 2005.

B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting
method for optimal control. IEEE Transactions on
Control Systems Technology, 21(6):2432–2442, 2013.

P. Patrinos and A. Bemporad. An accelerated dual
gradient-projection algorithm for embedded linear
model predictive control. IEEE Transactions on Au-
tomatic Control, 59(1):18–33, 2014.

S. Richter, C. N. Jones, and M. Morari. Certification
aspects of the fast gradient method for solving the dual
of parametric convex programs. Mathematical Methods
of Operations Research, 77(3):305–321, 2013.

K. T. Rockafellar. Convex Analysis, volume 28. Princeton
Univercity Press, Princeton, NJ, 1970.

P. Tseng. On accelerated proximal gradient methods for
convex-concave optimization. Technical report. Avail-
able: http://www.csie.ntu.edu.tw/~b97058/tseng/
papers/apgm.pdf, May 2008.

W. Zuo and Z. Lin. A generalized accelerated proxi-
mal gradient approach for total-variation-based image
restoration. IEEE Transactions on Image Processing,
20(10):2748–2759, October 2011.

