
Optimal movement in 2D for DOA estimation

Let say we have a given time interval available and can move at a maximum
velocity of 1. We want to find the best trajectory to move a receiver antenna that
optimizes the CRB performance of DOA estimation of an incoming planar radio
wave, regardless of its incoming direction. Since the accuracy is determined by
the moments of inertia this amounts to finding a unit length trajectory that
maximizes the minimal moment of inertia of a string of unit mass density.

To simplify lets assume the movement is in 2D, (x(t), y(t)). Lets also as-
sume (prove?) we have a symmetry axis in the movement along the y-axis
so that it can be described by (x(t), y(t), t ∈ [−1, 1] where (x(−t), y(−t)) =
(−x(t), y(t)), ∀t. Also assume x(0) = y(0) = 0.

Figure 1: The trajectory is assumed symmetric as in the figure

Note that the moment of inertia matrix

(

Ixx Ixy
Iyx Iyy

)

is diagonal since Ixy = 0

because of the symmetry. To maximize min(Ixx, Iyy) we will study max γIxx +
Iyy for different γ > 0. The optimization problem can now be formulated as
this optimal control problem

max γIxx + Iyy subject to

Ixx =

∫ 1

0

x2(t)dt

Iyy =

∫ 1

0

y2(t)dt−
(
∫ 1

0

y(t)dt

)2

ẋ2(t) + ẏ2(t) ≤ 1

which can be formulated as the optimal control problem

max

∫ 1

0

γx2
1(t) + x2

2(t)dt − x2
3(1) subject to

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2

u2
1 + u2

2 ≤ 1
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Probably we can also assume that u1 ≥ 0 and u2 ≥ 0.
Pontryagin’s minimum principle now gives with adjoint variable p(t), run-

ning cost L := − 1
2 (γx

2
1 + x2

2) and final cost K := 1
2x

2
3(1)

H = pT f + L = p1u1 + p2u2 + p3x2 −
1

2
γx2

1 −
1

2
x2
2

ṗ = −Hx

p(1) = Kx

which gives

ẋ1 = u1, x1(0) = 0

ẋ2 = u2, x2(0) = 0

ẋ3 = x2, x3(0) = 0

ṗ1 = γx1, p1(1) = 0

ṗ2 = x2 − p3, p2(1) = 0

ṗ3 = 0, p3(1) = x3(1)
(

u1

u2

)

∗

= argminuH = −
(

p1
p2

)

/∥

∥

∥

(

p1
p2

)

∥

∥

∥

Remark: These equations always have one (often false) solution with x2 =
x3 = p2 = p3 = 0 giving (x1, x2) = (t, 0), i.e. a straight line. This is probably
optimal for large γ. One can also notice that since p2(t) = p2(0) + x3(t) − p3t
it follows that for t = 1 that p2(1) = p2(0) + x3(1)− p3(1), giving p2(0) = 0.

With γ = 0.20333 we get Ix ≈ Iy ≈ 0.07136 and the solution is shown in the
following figure. It is remarkable that the solution is extremly close to (equal
to?) the curve

y = 4x2 + 16x4.

also shown in the same figure.
This total curve has length = 2. Rescaling to unit length gives a curve with

Ix = Iy = 0.01784. This is 41 percent better than the result for a circle with unit
length, which has Ix = Iy = 1

8π2 = 0.0127, and 72 percent better than a square
which has Ix = Iy = 4

384 = 0.0104. A wedge with opening angle 60 degrees

(best) has Ix = Iy =
√
3/128 = 0.0135.

Code at /home/bob/doktorander/mannesson/tests/doaoptim/ :

solinit = bvpinit(linspace(0,1,50),[0.3 0.4 0.2 -0.1 -0.1 0.3]);

options = bvpset(’Stats’,’on’,’RelTol’,1e-7);

global gamma; gamma = 0.20333;

sol = bvp4c(@BVP_ode, @BVP_bc, solinit, options);

t = sol.x;

xp = sol.y;

%%%%%%%%%%%%%%%%%%%

function dxpdt = BVP_ode(t,xp )

global gamma;

x1 = xp(1);

x2 = xp(2);

x3 = xp(3);
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numerical solution
x

2
 = 4x

1
2+16x

1
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Figure 2: Numerical solution when γ = 0.20333. Only half the curve is plotted,
the part with x1 < 0 is symmetric. The curve is indistinguishable from a 4th
order polynomial.

p1 = xp(4);

p2 = xp(5);

p3 = xp(6);

pnorm = norm([p1;p2]);

u1 = -p1/pnorm;

u2 = -p2/pnorm;

dxpdt = [u1; u2; x2; gamma*x1; x2-p3; 0];

%%%%%%%%%%%%%%%%%%%%%%

function res = BVP_bc(xpinit,xpfinal )

res = [xpinit(1); xpinit(2); xpinit(3); xpfinal(4); xpfinal(5); xpfinal(6)-xpfinal(3)];

Open Questions: Can we prove the curve is symmetric? Is it a 4th order
polynomial, or is it just very close? What does the optimal 3D movement look
like? If one instead of maximizing the minimial moment of inertia, which focuses
on the worst case direction, optimizes performance for a random direction of the
incoming ray. Will it give the same solution? What if one must come back to the
initial point, will it be a circle then? Probably one can use similar optimization
problem but enforce x1(tf ) = 0.

Returning to initial point

If we enforce that the solution returns to the initial point, a natural guess is that
the optimal trajectory is a circle. With the same setup as before, i.e. assuming a
symmetry axis along the y-axis the corresponding equations from Pontryagin’s
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principle become

ẋ1 = u1, x1(0) = 0, x1(1) = 0

ẋ2 = u2, x2(0) = 0

ẋ3 = x2, x3(0) = 0

ṗ1 = γx1, p1(1) free

ṗ2 = x2 − p3, p2(1) = 0

ṗ3 = 0, p3(1) = x3(1)
(

u1

u2

)

∗

= argminuH = −
(

p1
p2

)

/∥

∥

∥

(

p1
p2

)

∥

∥

∥

It is now easy to verify that the the equations with γ = 1 are fulfilled by the

semi-circle x1(t) =
1
π
sin (πt), x2(t) =

1
π
(1 − cos (π)), x3(t) =

t
π
− sin(πt)

π2 . The
dual variables become p1(t) = − 1

π2 cos(πt), p2(t) = − 1
π2 sin(πt) and p3(t) =

1
π
.

It should be possible to verify somehow that this solution is actually a global
optimum

Without assuming symmetry

To remove the assumption of symmetry we can solve an extended optimization
problem. We can still constrain solutions to fulfill Ixy = 0, since this can always
be achieved by rotation of the solution, but we will not assume that the y-axis
is a symmetry axis by studying the following optimization problem

max

∫ 1

0

γx2
1(t) + x2

2(t)dt− γx2
3(1)− x2

4(1) subject to

ẋ1 = u1, x1(0) = 0

ẋ2 = u2, x2(0) = 0

ẋ3 = x1, x3(0) = 0

ẋ4 = x2, x4(0) = 0

ẋ5 = x1x2, x5(0) = 0

x5(1)− x3(1)x4(1) = 0 (Ixy = 0)

u2
1 + u2

2 ≤ 1
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