
Numerical Methods
for Optimal Control Problems

Fredrik Magnusson

Department of Automatic Control
Faculty of Engineering

Lund University, Sweden

May 12, 2014

Using the Numerical Methods in JModelica.org
for Optimal Control Problems

Fredrik Magnusson

Department of Automatic Control
Faculty of Engineering

Lund University, Sweden

May 12, 2014

Outline

Goal: learn how to solve optimal control problems (OCP)
numerically using JModelica.org

Lecture: overview of how JModelica.org works and how to use it

Exercise: solve some simple problems in Lab C

Home assignment: solve an interesting OCP of your choosing
and send a report to Magnus

1 / 53

JModelica.org

Origin is Johan Åkesson’s thesis (2007)

Today mainly developed by Modelon AB, in collaboration with
Lund University

2 / 53

The complete JModelica.org toolchain

3 / 53

The complete JModelica.org toolchain

3 / 53

Modelica

Textual language for modeling dynamic
systems

Differential-algebraic equation (DAE)
paradigm

Object-oriented

Open standard, supported by ≈ 15 different
tools

Most famous tool is Dymola

Today’s tool is JModelica.org

4 / 53

Differential-algebraic equation systems

A general form of DAE systems is

F (ẋ, x, y, u) = 0, (1)

where
x is vector of differentiated variables,
y is vector of algebraic variables (not (necessarily) outputs),
u is vector of control variables.

This is called an implicit DAE. Contains both differential and algebraic
equations.

5 / 53

DAE system index

The system index is an important notion for DAE systems.

Measure of the distance between the DAE system and a
corresponding ODE.

Easier to discuss for the semi-explicit DAE form

ẋ = f(x, y, u), (2a)

0 = g(x, y, u). (2b)

If y and g are absent, this is an explicit ODE. Index zero.

If gy is non-singular, we can solve (2b) for y and differentiate with
respect to time to get an explicit ODE in x and y (implicit function
theorem). Index one.

If gy is singular, the system is high-index. Index ≥ 2.

6 / 53

DAE system index cont.

If differentiating the algebraic equation (2b) n times yields an
explicit ODE, the system index is n.

This is called the differentiation index of the system. Many other
non-equiavlent notions of index exist.

A sufficient and necessary condition for the implicit system (1) to
be low index (≤ 1) is that

[
Fẋ Fy

]
is non-singular.

High index is bad; differentation index n means that the system
depends on (up to) the n:th-order derivative of u.

High index numerically challenging (hot topic in numerical
analysis in the 90s).

7 / 53

DAE system initial conditions

Advanced symbolic and numerical algorithms means you do not
need to know or worry about system index.

One exception: initial conditions

The needed initial conditions depend on the dimension of the
state

For low-index DAE systems, state is the differentiated variable x

Typically x(t0) = x0

I do not know how to compute the dimension of the state for a
high-index system...

8 / 53

Modelica syntax

To demonstrate Modelica’s syntax, consider the double integrator

ẋ1 = x2,

ẋ2 = u,

x1(0) = 0, x2(0) = 0.

model DoubleIntegrator

Real x1(start =0, fixed = true);
Real x2(start =0, fixed = true);
input Real u;

equation

der(x1) = x2;
der(x2) = u;

end DoubleIntegrator ;

9 / 53

Modelica syntax cont.

model DoubleIntegrator
Real x1(start =0, fixed = true);
Real x2(start =0, fixed = true);
input Real u;

equation
der(x1) = x2;
der(x2) = u;

end DoubleIntegrator ;

Declares the class DoubleIntegrator of type model

Declares the real-valued variables x1, x2, and u

The DAE system is defined in the equation section (declarative!)

der means derivative with respect to time. No higher-order or
partial derivatives!

Number of equations must be the same as the total number of
declared non-input variables

10 / 53

Modelica syntax cont.

model DoubleIntegrator
Real x1(start =0, fixed = true);
Real x2(start =0, fixed = true);
input Real u;

equation
der(x1) = x2;
der(x2) = u;

end DoubleIntegrator ;

u is declared as an input

x1 and x2 will be either differentiated or algebraic variables (in
this case they are both differentiated)

Variables have attributes. The attributes start and fixed of x1
and x2 have been modified.

11 / 53

Modelica syntax cont.

model DoubleIntegrator
Real x1(start =0, fixed = true);
Real x2(start =0, fixed = true);
input Real u;

equation
der(x1) = x2;
der(x2) = u;

end DoubleIntegrator ;

start is the initial value for that variable

fixed indicates that the start value is fixed, rather than just a
guess for the initial value (default false!)

Initial value guesses are important when solving DAE initialization
problems numerically. As long as you provide initial conditions
specifying the state, you do not need to worry about that (if you
have a high-index system, you may be in trouble).

12 / 53

Optimization and Modelica

System modeling: check. But what about optimization?

Modelica lacks inherent support for optimization formulations

Language extension Optimica enables optimization

Johan Åkesson’s PhD thesis (2007)

Not part of official Modelica language, but supported by a few
different tools

13 / 53

Optimica syntax

To demonstrate Optimica’s syntax, consider (finite horizon LQR)

minimize
∫ 10

0

(
x2

1(t) + x2
2(t) + u2(t)

)
dt,

subject to ẋ1 = x2,

ẋ2 = u,

x1(0) = 1, x2(0) = 0.

optimization DILQR (finalTime =10,
objectiveIntegrand =x1 ˆ2 + x2 ˆ2 + uˆ2)

extends DoubleIntegrator (x1(start =1));

end DILQR ;

14 / 53

Optimica syntax cont.

optimization DILQR (finalTime =10,
objectiveIntegrand =x1 ˆ2 + x2 ˆ2 + uˆ2)

extends DoubleIntegrator (x1(start =1));

end DILQR ;

Class optimization instead of model

Parameters finalTime and startTime to specify time horizon

objectiveIntegrand and objective specify the running and
terminal cost, respectively

15 / 53

Optimica syntax cont.

optimization DILQR (finalTime =10,
objectiveIntegrand =x1 ˆ2 + x2 ˆ2 + uˆ2)

extends DoubleIntegrator (x1(start =1));

end DILQR ;

Can add variables and equations also in optimization class

It is preferable to separate the model and optimization
formulation, and then use the Modelica keyword extends to
inherit the system model.

Can modify variable attributes when extending

16 / 53

Optimica syntax cont.

Consider instead the minimum time problem
minimize tf ,

subject to ẋ1 = x2, ẋ2 = u,

− 1 ≤ u ≤ 1,

x1(0) = 1, x2(0) = 0,

x1(tf) = 0, x2(tf) = 0.

optimization DIMinTime (finalTime (free=true , min= startTime),
objective = finalTime)

extends DoubleIntegrator (x1(start =1), u(min=-1, max=1));

constraint

x1(finalTime) = 0;
x2(finalTime) = 0;

end DIMinTime ;
17 / 53

Optimica syntax cont.

optimization DIMinTime (finalTime (free=true , min= startTime),
objective = finalTime)

extends DoubleIntegrator (x1(start =1), u(min=-1, max=1));
constraint

x1(finalTime) = 0;
x2(finalTime) = 0;

end DIMinTime ;

Objective is now instead to minimize finalTime, which has
been set to free

Bounds set on u using attribues min and max

Can also set bounds on states!

18 / 53

Optimica syntax cont.

optimization DIMinTime (finalTime (free=true , min= startTime),
objective = finalTime)

extends DoubleIntegrator (x1(start =1), u(min=-1, max=1));
constraint

x1(finalTime) = 0;
x2(finalTime) = 0;

end DIMinTime ;

Additional constraint section

Constraints can be point constraints, i.e. enforced at time instants
such as tf

Constraints can also be path constraints, i.e. enforced during
entire time horizon

Path constraints generalize min and max. Use min and max when
possible!

19 / 53

The complete JModelica.org toolchain

20 / 53

JModelica.org compiler

Modelica and Optimica code is not executable

The JModelica.org compiler creates an Abstract Syntax Tree
(AST) representation of the Modelica code in Java, hence
JModelica.org

Symbolic transformations, e.g. index reduction, are performed on
the AST

The transformed AST is then used to generate code that can be
used for computations

21 / 53

Functional Mock-Up Interface

For simulation purposes, most Modelica tools (including
JModelica.org) generate C code

C code is generated according to the Functional Mock-Up
Interface (FMI) standard

FMI defines a C code standard for simulating ODE systems, by
creating Functional Mock-Up Units (FMU)

Emphasis is tool interoperability; e.g. possible to generate an
FMU in JModelica.org and use the FMU as a block in Simulink

22 / 53

CasADi Interface

For optimization purposes, the AST is instead used to generate
CasADi code

CasADi (Computer algebra system with Algorithmic
Differentiation) is a tool for computing derivatives using
algorithmic differentation (AD)

AD combines the accuracy of symbolic differentation and speed
of numerical differentiation

CasADi Interface provides an interface to a symbolic
representation of OCPs

CasADi then provides the derivatives needed to solve the optimal
control problem numerically using gradient-based methods

23 / 53

Python

All the components of JModelica.org are
invoked from Python

Python is a free, high-level, dynamically
typed programming language

Mature libraries for scientific computations
inspired by MATLAB: NumPy, SciPy,
matplotlib

24 / 53

The complete JModelica.org toolchain

25 / 53

Numerical methods for optimal control

Now we have a representation of optimal control problems
suitable for numerical methods. How to proceed?

The problem is infinite-dimensional. Need to discretize.

Two choices to make: when to discretize, and how to discretize

26 / 53

Numerical methods for optimal control cont.

When:

Indirect methods (optimize, then discretize): establish optimality
conditions using maximum principle or dynamic programming
and solve the differential equations numerically

Direct methods (discretize, then optimize): discretize to a
mathematical program, and then solve the Karush-Kuhn-Tucker
(KKT) conditions numerically

27 / 53

Numerical methods for optimal control cont.

How :

Sequential methods: discretize control, simulate dynamic system
using embedded numerical integrator, and update control
iteratively based on sensitivities

Simultaneous methods: discretize all system variables and solve
the resulting equation system

28 / 53

Numerical methods for optimal control cont.

29 / 53

Numerical methods for optimal control cont.

We essentially end up with 6 different methods (of course, more exist):

Indirect single shooting

Indirect multiple shooting

Indirect collocation (Bo)

Direct single shooting

Direct multiple shooting

Direct collocation (JModelica.org)

30 / 53

Method properties

± Indirect methods rely on calculus of variations

− Indirect methods very sensitive to initial guesses of costates
and switching structure of inequalities

− Single shooting can be slow and can not handle open-loop
unstable systems

+ Direct multiple shooting and direct collocation are the most
powerful

31 / 53

Direct multiple shooting vs. collocation

Multiple shooting is more memory efficient

Multiple shooting has adaptive discretization (from embedded
numerical integrators)

Collocation is faster

Not clear which is more robust

32 / 53

A closer look at direct collocation

Main idea is to approximate system trajectories by polynomials:

Divide the time horizon [t0, tf] into ne elements

Approximate system variables in each element by a collocation
polynomial

Force this polynomial to satisfy all the constraints in nc

collocation points

This uniquely determines a polynomial of degree nc − 1 by
interpolation

The discretization is not adaptive. YOU have to choose ne and
nc!

33 / 53

Collocation polynomials

Let ti,k denote collocation point number k in element i and let

ui,k := u(ti,k).

-

6

ti,1 ti,2 ti,3

?

?
?

ui,1

ui,2 ui,3

Polynomials for x and y are constructed in a similar manner.

The choice of collocation points ti,k define the collocation method.

34 / 53

Nonlinear program

Applying a direct collocation discretization procedure results in a
finite-dimensional nonlinear program (NLP) of the form

minimize f(x),
with respect to x ∈ Rn,

subject to xL ≤ x ≤ xU ,

g(x) = 0,

h(x) ≤ 0.

Solving the NLP gives an approximate solution to OCP

Dual variables of NLP correspond to costate of OCP

35 / 53

The complete JModelica.org toolchain

36 / 53

IPOPT

IPOPT (Interior Point OPTimizer) iteratively solves NLPs using a
primal-dual interior-point method with filter-based line search

Nonlinear dynamics =⇒ nonlinear equality constraints =⇒
nonconvexity

Any local minimum is considered a solution

37 / 53

NLP initialization

A decent initial guess of the solution is important to find a decent
local optimum

For large nonlinear systems, a decent initial guess is important to
find anything at all

For NLPs arising from direct collocation, the decision variables
include all of the system variables (input, differentiated and
algebraic variables) at all collocation points

An initial guess is decent if it is close to a decent local optimum.
Does not have to be feasible!

38 / 53

NLP initialization cont.

Constant (w.r.t. time) initial guesses can be provided with the
Optimica variable attribute initialGuess

For non-trivial problems, constant initial guesses are usually
insufficient

Usually better to guess an optimal input, and then simulate the
system using the guessed input

Alternatively, solve a simpler but related optimization problem and
use that as guess

39 / 53

Regularity conditions

In each iteration, IPOPT basically solves the linearized KKT
conditions (KKT system)

The KKT conditions involve the gradient of the objective and the
Jacobian of the constraints (first-order derivatives)

The linearization thus involves second-order derivatives of the
objective and the constraints (Hessian of the augmented
Lagrangian)

F , L, and K thus need to be C2! (Although not w.r.t. time)

CasADi is used to obtain these derivatives

40 / 53

Solving the KKT system

Solving the KKT system in each iteration is the most time
consuming step of the entire toolchain

Important that this linear system of equations can be solved
efficiently

This is a challenge - recall my last Friday seminar!

Another reason why a decent initial guess is important, since it
affects the KKT conditioning

41 / 53

Choice of linear solver

IPOPT supports many different linear solvers, but only one
(MUMPS) is freely available

MUMPS is often insufficient, but personal academic licenses
available for better ones

Unfortunately, using these means that you have to install
JModelica.org yourself

42 / 53

Complete double integrator example

To demonstrate, simulate the solution to problem 2 on home
assignment 3, i.e.

minimize tf ,

subject to ẋ1 = x2, ẋ2 = u,

− 1 ≤ u ≤ 1,

x1(0) = 0, x2(0)) = 0,

x1(tf) = 2, x2(tf)) = 2.

Solution is u∗ ≡ 1, tf = 2.

model DoubleIntegrator
Real x1(start =0, fixed = true);
Real x2(start =0, fixed = true);
input Real u;

equation
der(x1) = x2;
der(x2) = u;

end DoubleIntegrator ;
43 / 53

Complete double integrator example cont.

Import JModelica .org modules
from pymodelica import compile_fmu
from pyfmi import load_fmu
from pyjmi import transfer_optimization_problem

Import useful Python modules
import matplotlib . pyplot as plt
import numpy as np

Compile simulation model
model = load_fmu (compile_fmu (

'DoubleIntegrator ', 'double_integrator .mop '))

Create system input
t0 = 0.
tf = 2.
u_values = np. array ([[t0 , 1.] , [tf , 1.]]) # Constantly 1

44 / 53

Complete double integrator example cont.

Simulate with created input
sim_res = model . simulate (start_time =t0 , final_time =tf ,

input =('u', u_values),
options ={ 'ncp ': 100})

Obtain simulation result
sim_time = sim_res ['time ']
sim_x1 = sim_res ['x1 ']
sim_x2 = sim_res ['x2 ']
sim_u = sim_res ['u']

Plot simulation result
plt. close (1); plt. figure (1)
plt.plot(sim_time , sim_x1)
plt.plot(sim_time , sim_x2)
plt.plot(sim_time , sim_u)
plt.grid(True)
plt. xlabel ('time ')
plt. legend (['x1 ', 'x2 ', 'u'])
plt. title ('Simulation ')
plt.show ()

45 / 53

Double integrator simulation

0.0 0.5 1.0 1.5 2.0

time

0.0

0.5

1.0

1.5

2.0

2.5
Simulation

x1

x2

u

46 / 53

Double integrator LQR

Consider the optimization problem from before:

optimization DILQR (finalTime =10,
objectiveIntegrand =x1 ˆ2 + x2 ˆ2 + uˆ2)

extends DoubleIntegrator (x1(start =1));

end DILQR ;

47 / 53

Double integrator LQR cont.

Compile LQR problem
op_lqr = transfer_optimization_problem (

'DILQR ', 'double_integrator .mop ')

Solve optimization problem
lqr_res = op_lqr . optimize ()

Obtain optimization result
lqr_time = lqr_res ['time ']
lqr_x1 = lqr_res ['x1 ']
lqr_x2 = lqr_res ['x2 ']
lqr_u = lqr_res ['u']

Plot LQR result

48 / 53

Double integrator LQR cont.

0 2 4 6 8 10

time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
LQR

x1

x2

u

49 / 53

Double integrator minimal time

Consider the minimal time problem from before:

optimization DIMinTime (finalTime (free=true , min= startTime),
objective = finalTime)

extends DoubleIntegrator (x1(start =1), u(min=-1, max=1));

constraint

x1(finalTime) = 0;
x2(finalTime) = 0;

end DIMinTime ;

This time, we will use the solution to the LQR problem as an initial
guess.

50 / 53

Double integrator minimal time cont.

Compile minimal time problem
mintime_op = transfer_optimization_problem (

'DIMinTime ', 'double_integrator .mop ')

Get optimization options
opts = mintime_op . optimize_options ()

Set LQR solution as initial guess
opts['init_traj '] = lqr_res . result_data
opts['nominal_traj '] = lqr_res . result_data

Solve optimization problem
mintime_res = mintime_op . optimize (options =opts)

Obtain optimization result
mintime_time = mintime_res ['time ']
mintime_x1 = mintime_res ['x1 ']
mintime_x2 = mintime_res ['x2 ']
mintime_u = mintime_res ['u']

Plot time minimization result

51 / 53

Double integrator minimal time cont.

0.0 0.5 1.0 1.5 2.0 2.5

time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
Minimal time

x1

x2

u

52 / 53

Resources

NumPy for Matlab users:
http://wiki.scipy.org/NumPy_for_Matlab_Users

JModelica.org User’s Guide:
http://www.jmodelica.org/page/236

53 / 53

http://wiki.scipy.org/NumPy_for_Matlab_Users
http://www.jmodelica.org/page/236

