
LECTURE 5

5. The Hamilton-Jacobi-Bellman equation

At the same time that the maximum principle was developed in Soviet, a fundamentally different
method for solving the same type of problems was developed in the west. This method, which seems
more intuitive, is based on what is called the principle of optimality of dynamic programming.

5.1. Dynamic Programming. To illustrate dynamic programming let us consider the following exam-
ple:

Example Given a function g : [0, a] → R+, find the partition of the interval [0, a] into N different
subintervals [0, x1], [x1, x2], . . . , [xN−1, a] that maximizes

1

2

N
∑

k=1

g

(

xk−1 + xk
2

)

(xk − xk−1),

with x0 = 0 and xN = a.

Figure 1. The partition in the Example.

To solve this problem we let Vk−1(x) denote the optimal value for a partition of [0, x] into k−1 intervals.
Adding one more interval at the end, [x− u, x], we get

Vk(x) = sup
0≤u≤x

{

1

2
g(x− u/2)u+ Vk−1(x− u)

}

,

with

V1(x) =
1

2
g(x/2)x.

As an example let g(x) = x and let a = 1, then

V1(x) =
1

4
x2

1
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and

V2(x) = sup
0≤u≤x

{

1

2
g(x− u/2)u + V1(x− u)

}

= sup
0≤u≤x

{

1

2
(x− u/2)u+

1

4
(x− u)2

}

= sup
0≤u≤x

{

1

4

(

2xu− u2 + x2 − 2xu+ u2
)

}

=
1

4
x2.

Hence, by induction VN (x) = 1
4x

2, giving us VN (1) = 1/4 independent of the partition. �

We now consider the target set S = {t1} × R
n and consider the family of problems

J(t, x, u) =

∫ t1

t

L(s, x(s), u(s))ds +K(x(t1)),

where x(t) = x, and define the value function

V (t, x) := inf
u[t,t1]

J(t, x, u),

where u[t,t1] is the set of controls restricted to [t, t1].

V (t, x) is thus the optimal “to go” cost from t to t1 when x(t) = x. The end-time condition gives that
V (t1, x) = K(x).

Bellman’s approach to solve optimal control problems was to derive a PDE for the value function
through the principle of optimality.

5.2. Principle of optimality. The principle of optimality says that an optimal trajectory must be
optimal everywhere. If we partition the interval [t, t1] into two intervals [t, t+∆t] and [t+∆t, t1]. Then
the control must be optimal on [t+∆t, t1] with K(x(t1)) as terminal cost, and optimal on [t, t+∆t] with
V (t+∆t, x(t+∆t)) as terminal cost. Hence,

V (t, x) = inf
u[t,t+∆t]

∫ t+∆t

t

L(s, x(s), u(s))ds + V (t+∆t, x(t+∆t)),

for every (t, x) ∈ [t0, t1]× R
n and ∆t ∈ (0, t1 − t].

5.3. The HJB equation. We have that x(t+∆t) ≈ x+ f(t, x, u(t))∆t which gives

V (t+∆t, x(t+∆t)) ≈ V (t, x) + Vt(t, x)∆t+ 〈Vx, f(t, x, u(t))〉∆t.

We also have that
∫ t+∆t

t

L(s, x(s), u(s))ds ≈ L(t, x, u(t))∆t.

Putting this together we get that

V (t, x) ≈ inf
u[t,t+∆t]

{L(t, x, u(t))∆t+ V (t, x) + Vt(t, x)∆t+ 〈Vx(t, x), f(t, x, u(t))〉∆t} .

We observe here that the V (t, x) cancel out and we get

0 ≈ inf
u[t,t+∆t]

{L(t, x, u(t))∆t+ Vt(t, x)∆t+ 〈Vx(t, x), f(t, x, u(t))〉∆t} .

Dividing by ∆t and letting ∆t → 0 we get

0 = inf
u∈U

{L(t, x, u) + Vt(t, x) + 〈Vx(t, x), f(t, x, u)〉} .
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This equation is called the Hamilton-Jacobi-Bellman (HJB) equation and is often written

−Vt(t, x) = inf
u∈U

{

L(t, x, u) + 〈Vx(t, x), f(t, x, u)〉
}

.

The HJB equation is a PDE for the value function, as opposed to the maximum principle which gave us
an ODE, with boundary condition given by V (t1, x) = K(x(t1)).

The HJB equation can also be written

Vt(t, x) = sup
u∈U

{〈−Vx(t, x), f(t, x, u)〉 − L(t, x, u)} ,

which can be compared to
H(t, x, u, p) = 〈p, f(t, x, u)〉 − L(t, x, u).

This brings us to the Hamiltonian form of the HJB equation:

Vt(t, x) = sup
u∈U

H(t, x, u,−Vx(t, x)).

So far we have only shown necessity, if an optimal control exists then the corresponding value function
will fulfill the HJB equation. However, sufficiency can also be shown:

Suppose that a C1 function V̂ : [t0, t1]×Rn → R satisfies the HJB equation:

−V̂t(t, x) = inf
u∈U

{

L(t, x, u) + 〈V̂x(t, x), f(t, x, u)〉
}

,

for all t ∈ [t0, t1) and all x ∈ R
n and the boundary condition

V̂ (t1, x) = K(x(t1)).

Suppose that a control û : [t0, t1] → U and the corresponding trajectory x̂ : [t0, t1] → R
n, with the given

initial condition x̂(t0) = x0, satisfy everywhere the equation

L(t, x̂(t), û(t)) + 〈V̂x(t, x̂(t)), f(t, x̂(t), û(t))〉 = inf
u∈U

{

L(t, x̂(t), u) + 〈V̂x(t, x̂(t)), f(t, x̂(t), u)〉
}

.

Then V̂ (t0, x0) is the optimal cost and û is the optimal control.

To prove this note that since

−V̂t(t, x̂(t)) = L(t, x̂(t), û(t)) + 〈V̂x(t, x̂(t)), f(t, x̂(t), û(t))〉
we have

0 = L(t, x̂(t), û(t)) +
d

dt
V̂ (t, x̂(t)).

Hence,

0 =

∫ t1

t0

L(t, x̂(t), û(t))dt+ V̂ (t1, x̂(t1))− V̂ (t0, x̂(t0)),

or

V̂ (t0, x̂(t0)) =

∫ t1

t0

L(t, x̂(t), û(t))dt+K(x̂(t1)) = J(t0, x0, û).

For any other control u with corresponding trajectory x with the same initial conditions we have

−V̂t(t, x(t)) ≤ L(t, x(t), u(t)) + 〈V̂x(t, x(t)), f(t, x(t), u(t))〉
or

0 ≤ L(t, x(t), u(t)) +
d

dt
V̂ (t, x(t)).

Integrating this gives us

V̂ (t0, x̂(t0)) ≤
∫ t1

t0

L(t, x(t), u(t))dt +K(x(t1)) = J(t0, x0, u).
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Hence, V̂ (t0, x̂(t0)) is the minimal cost and û is an optimal control as no other control gives a lower
cost. �

Note that û gives a global minimum as opposed to the maximum principle which gave a necessary
condition for local optimality.

5.4. Viscosity solutions. Example Consider the problem

min
u

x(t1) subj. to

{

ẋ(t) = u(t)x(t), u(t) ∈ [−1, 1],
x(0) = x0, x(t1) free.

By inspection we find that the optimal control for this problem is u ≡ −1 if x0 > 0 and u ≡ 1 if x0 < 0.
The value function is

V (t, x) =







xe−(t1−t) if x > 0,
xet1−t if x < 0,
0 if x = 0.

The HJB equation reads −Vt = inf
u∈[−1,1]

{Vxxu} = −|xVx| with boundary condition V (t1, x) = x.

Figure 2. A value function that is not C1.

This example shows that there are optimal control problems which have value functions that are not
C1. Hence, they cannot solve the HJB equation at all points in the classical sense. However, it can be
shown that they still represent something called viscosity solutions to their HJB equations.

5.4.1. Super- and sub-differentials. Let v : Rn → R be a continuous function. A vector ξ ∈ R
n is called

a super-differential to v in x if, for every y close to x, we have

v(y) ≤ v(x) + 〈(y − x), ξ〉+ o(|y − x|).
A sub-differential similarly fulfills

v(y) ≥ v(x) + 〈(y − x), ξ〉 − o(|y − x|).
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Slope

Super differential

Slope

Sub differential

Figure 3. Super- and Sub-differentials.

The set of super-differentials at x is denoted D+v(x) and the set of sub-differentials at x is denoted
D−v(x).

Example Let

v(x) =







0 if x < 0,√
x if 0 ≤ x ≤ 1,

1 if x > 1.

Then at x = 0 we have D+v(0) = ∅ and D−v(0) = [0,∞). At x = 1 we have D+v(1) = [0, 1/2] and
D−v(1) = ∅.

Figure 4. The function v in the example.

Claims:

(1) At all points x where v is C1, we have D+v(x) = D−v(x) = ∇v(x).
(2) If both D+v(x) and D−v(x) are non-empty, then ∇v(x) exists.

5.4.2. Test functions. ξ ∈ D+v(x) iff there is a C1 function ϕ : Rn → R such that ∇ϕ(x) = ξ, ϕ(x) = v(x)
and ϕ(y) ≥ v(y), for all y sufficiently close to x, i.e. ϕ− v has a local minimum at x.

Similarly, ξ ∈ D−v(x) iff there is a C1 function ϕ : Rn → R such that ∇ϕ(x) = ξ, ϕ(x) = v(x) and
ϕ(y) ≤ v(y), for all y sufficiently close to x, i.e. ϕ− v has a local maximum at x.

The function ϕ is sometimes called a test function.
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Figure 5. Test functions.

Using test functions we can prove the above claims:

(1) Let v be C1 at x. If ϕ−v has a local minimum at x, then ∇(ϕ−v)(x) = 0. Hence, ∇ϕ(x) = ∇v(x)
so that D+v(x) = ∇v(x). Replacing minimum with maximum we get that D−v(x) = ∇v(x).

(2) Assume that ϕ1, ϕ2 ∈ C1 are such that ϕ1(x) = ϕ2(x) = v(x) and ϕ1(x) ≤ v(x) ≤ ϕ2(x) close to
x. Then ϕ1−ϕ2 has a local minimum at x, hence ∇ϕ1(x) = ∇ϕ2(x). By the “Sandwich theorem”
v is then differentiable at x, and ∇v(x) = ∇ϕ1(x) = ∇ϕ2(x).

Using test functions it can also be shown that the sets {x : D+v(x) 6= ∅} and {x : D−v(x) 6= ∅} are
both dense in the domain of v.

5.4.3. Viscosity solutions of PDEs. Consider a PDE of the form

F (x, v(x),∇v(x)) = 0,

where F : Rn ×R× R
n → R is continuous.

A viscosity subsolution to the PDE is a continuous function v : Rn → R, such that

F (x, v(x), ξ) ≤ 0 ∀ξ ∈ D+v(x), ∀x.

Which can be restated as F (x, v(x),∇ϕ(x)) ≤ 0 for all C1 test functions ϕ such that ϕ − v has a local
minimum at x. Similarly a viscosity supersolution to the PDE is a continuous function v : Rn → R, such
that

F (x, v(x), ξ) ≥ 0 ∀ξ ∈ D−v(x), ∀x,
or equivalently F (x, v(x),∇ϕ(x)) ≥ 0 for all C1 test functions ϕ such that ϕ−v has a local maximum at x.

A viscosity solution of the PDE is both a viscosity sub- and a viscosity super-solution.

Example Let F (x, v, ξ) = 1− |ξ|, which corresponds to the PDE 1− |∇v(x)| = 0. Both v(x) = x and
v(x) = −x are classical solutions to this PDE. We claim that v(x) = |x| is a viscosity solution.

We have that D+v(0) = ∅, hence, the subsolution property holds trivially. For the supersolution part
we note that D−v(0) = [−1, 1] and F (0, 0, ξ) = 1− |ξ| ≥ 0 for ξ ∈ [−1, 1].

Note that the viscosity solution property is dependent on the sign on F . The term viscosity solution
comes from the fact that the solution can be obtained as the limit F (x, vε(x),∇vε(x)) = ε∆vε(x), when
ε ց 0.
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5.4.4. Viscosity solutions of the HJB equation.

Theorem 5.1. The value function V is a unique viscosity solution to the HJB equation, with boundary

conditions V (t1, x) = K(x), for all x ∈ R
n.

We prove the subsolution part and leave the proof of the supersolution property as a home assignment.
We thus want to show that for every C1 test function ϕ such that ϕ− V has a local minimum in (t0, x0),

−ϕt(t0, x0)− inf
u∈U

{

L(t0, x0, u) + 〈ϕx(t0, x0), f(t0, x0, u)〉
}

≤ 0.

Assume the opposite, i.e. that there is a C1 function ϕ and a control value u0 such that

ϕ(t0, x0) = V (t0, x0), and ϕ(t, x) ≥ V (t, x), near (t0, x0),

and

(5.1) −ϕt(t0, x0)− L(t0, x0, u0)− 〈ϕx(t0, x0), f(t0, x0, u0)〉 > 0.

Now assume that we apply the control u ≡ u0 on the short interval [t0, t0 +∆t] and get the trajectory x.
We have

V (t0 +∆t, x(t0 +∆t))− V (t0, x0) ≤ ϕ(t0 +∆t, x(t0 +∆t))− ϕ(t0, x0)

=

∫ t0+∆t

t0

d

dt
ϕ(t, x(t))dt

=

∫ t0+∆t

t0

(ϕt(t, x(t)) + 〈ϕx(t, x(t)), f(t, x(t), u0)〉) dt

< −
∫ t0+∆t

t0

L(t, x(t), u0)dt

where the last step follows from (5.1) and continuity. This means that

V (t0, x0)− V (t0 +∆t, x(t0 +∆t)) >

∫ t0+∆t

t0

L(t, x(t), u0)dt.

Hence, the control u ≡ u0 would outperform the optimal control on the interval [t0, t0+∆t], contradicting
the principle of optimality. �


