
LECTURE 3

4. The Maximum Principle

In the previous lecture we saw how far calculus of variations can take us when it comes to solving
optimal control problems. We now move on to consider Pontryagin’s maximum principle which provides
us with a more powerful tool for solving optimal control problems.

4.1. Basic variable-time, fixed-endpoint problem. For the basic variable-time fixed endpoint prob-
lem we assume that f = f(x, u), L = L(x, u), K ≡ 0 and S = [t0,∞)× {x1}.

Let u∗ : [t0, tf ] → U be an optimal control and let x∗ : [t0, tf ] → R
n be the corresponding trajectory,

with x∗(t0) = x0 and x∗(tf ) = x1. Then there exists a p∗ : [t0, tf ] → R
n and a p∗0 ≤ 0 such that

(p∗(t), p∗0) 6= (0, 0), ∀t ∈ [t0, tf ] (non-triviality), and

(1) ẋ∗ = Hp

∣
∣
∗
and ṗ∗ = −Hx

∣
∣
∗
, where

H(x, u, p, p0) = 〈p, f(x, u)〉+ p0L(x, u).

(2) For fixed t, the function u 7→ H(x∗(t), u, p∗(t), p∗0) takes a global maximum at u = u∗(t). Hence,

H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u, p∗(t), p∗0),

for all u ∈ U and all t ∈ [t0, tf ].

(3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0, for all t ∈ [t0, tf ].

4.2. Basic variable-time, variable-endpoint problem. In the variable-endpoint problem we change
the final set to S = [t0,∞) × S1. Here, S1 = {x ∈ R

n : h1(x) = h2(x) = . . . = hn−k(x) = 0} with hi,
i = 1, . . . , n− k, C1 functions and assuming that every point x ∈ S1 is a regular point of S1.

To be valid for this case the maximum principle for the basic fixed-endpoint problem given above has
to be changed to x∗(tf ) ∈ S1 and we have to add the following (transversality condition):

(4) 〈p∗(tf ), d〉 = 0 for all d ∈ Tx∗(tf )S1.

With these changes we have freed k dimensions of the final state, but constrained k dimensions of
the adjoint state in the final time, thus preserving the number of boundary conditions to the canonical
equations.

4.3. Proof of the maximum principle. To prove the maximum principle we assume that we have
found an optimal control u∗ giving the trajectory x∗. We then consider a set of perturbations that shows
that the various criteria in the maximum principle have to hold for the given control and trajectory to
be optimal. The proof of the Maximum principle is divided into 10 steps

Step 1: First we move from Lagrange form to Mayer form by introducing the additional state x0,
with ẋ0 = L(x, u) and x0(t0) = 0. We then get the new differential equation

ẏ =

(
ẋ0

ẋ

)

=

(
L(x, u)
f(x, u)

)

=: g(y, u),

1
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where y :=

(
x0

x

)

. The cost functional can now be written

J(u) =

∫ tf

t0

ẋ0(t)dt = x0(tf )

and the new target set is [t0,∞)× R× {x1} =: [t0,∞)× S′.

Figure 1. The trajectories x∗ and y∗.

The Hamiltonian can now be written

H(x, u, p, p0) =

〈(
p0
p

)

,

(
L(x, u)
f(x, u)

)〉

.

Step 2: The next step is to consider what is referred to as temporal control perturbations. A temporal
perturbation is achieved by adding a small perturbation to the final time t∗. Let uτ (t) := u∗(min{t, t∗}),
for t ∈ [t0, t

∗ + ετ ].

Figure 2. Temporal perturbations of u∗.
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Let y be the perturbed trajectory. We first assume look at the case τ > 0:

y(t∗ + ετ) = y∗(t∗) + ẏ∗(t∗)ετ + o(ε)

= y∗(t∗) + g(y∗(t∗), u∗(t∗))ετ + o(ε)

=: y∗(t∗) + εδ(τ) + o(ε),

where δ(τ) is a vector that is linear in τ . For τ < 0 we have

y(t∗ + ετ) = y∗(t∗ + ετ)

= y∗(t∗) + g(y∗(t∗), u∗(t∗))ετ + o(ε)

= y∗(t∗) + εδ(τ) + o(ε).

Hence, for a given small ε we get a vector in the enlarged state space as a result of the temporal control
perturbation when varying τ over R. We call this vector ~ρ.

Figure 3. The result of temporal perturbations.

Step 3: Additional to the temporal perturbations we wish to apply spatial control perturbations. In
the proof of the maximum principle we apply something called needle perturbations (Pontryagin-McShane
perturbations).

Let w ∈ U and I := (b − εa, b] where a > 0 and b is chosen such that I ⊂ (t0, t
∗) for some ε > 0 and

u∗(t) is continuous at t = b. Define the perturbed control

uw,I(t) :=

{
u∗(t), if t /∈ I,
w, if t ∈ I.

Taylor expanding around t = b gives

y∗(b− εa) ≈ y∗(b)− ẏ∗(b)εa

= y∗(b)− g(y∗(b), u∗(b))εa

where ≈ denotes equality up to terms of order o(ε). If we move to considering the perturbed trajectory,
Taylor expansion around t = b− εa gives

y(b) ≈ y∗(b− εa) + g(y∗(b− εa), w)εa.
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Figure 4. Spatial perturbations of u∗.

We want to find the difference between the optimal and the perturbed trajectory at time t = b and Taylor
expand the last part of this equation around t = b. We have

g(y∗(b− εa), w)εa ≈ g(y∗(b), w)εa + gy(y
∗(b), w)(y∗(b− εa)− y∗(b))εa

︸ ︷︷ ︸

o(ε)

.

Hence,

y(b) ≈ y∗(b− εa) + g(y∗(b− εa), w)εa

≈ y∗(b)− g(y∗(b), u∗(b))εa + g(y∗(b), w)εa

= y∗(b) + νb(w)εa,

where

νb(w) := g(y∗(b), w) − g(y∗(b), u∗(b)).

In words this means that up to o(ε) the difference between the optimal trajectory y∗ and the perturbed
trajectory y is the length of the interval times the difference in derivative at the end of the interval. This
seems natural since u∗ is continuous at b, and thus by the piecewise continuity assumption, continuous
on the entire interval I for sufficiently small ε.

Step 4: We are now ready to write the variational equation for the needle perturbations. We want to
find how, up to order o(ε), the perturbation from Step 3 propagates up to the final time. For t ≥ b we let

(4.1) y(t) = y∗(t) + εψ(t) + o(ε) =: y(t, ε),

where ψ : [b, t∗] → R
n+1 is the function we seek.

Differentiating y(t, ε) w.r.t. ε we find ψ(t) = yε(t, 0) and get the boundary condition ψ(b) = yε(b, 0) =
νb(w)a.

If we rewrite (4.1) as an integral equation we get

y(t, ε) = y(b, ε) +

∫ t

b

g(y(s, ε), u∗(s))ds.

Hence,

ψ(t) = yε(t, 0) = νb(w)a+

∫ t

b

gy(y
∗(s), u∗(s))ψ(s)ds.
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Figure 5. The result of spatial perturbations.

Differentiating with respect to t we find that

ψ̇(t) = gy(y
∗(t), u∗(t))ψ(t) = gy

∣
∣
∗
(t)ψ(t) =: A∗(t)ψ(t),

ψ(b) = νb(w)a.

For later purposes we can divide ψ into two parts,

(4.2) ψ̇ =

(
η̇0

η̇

)

=

(
0 (Lx)

⊤
∣
∣
∗

0 fx
∣
∣
∗

)(
η0

η

)

.

Since ψ is the solution to a linear differential equation there is a transition matrix Ψ∗(·, ·), such that

ψ(t2) = Ψ∗(t2, t1)ψ(t1).

Hence,
ψ(t∗) = Ψ∗(t

∗, b)ψ(b) = Ψ∗(t
∗, b)νb(w)a

which gives us
y(t∗) = y∗(t∗) + εΨ∗(t

∗, b)νb(w)a+ o(ε).

Letting δ(w, I) := Ψ∗(t
∗, b)νb(w)a we get

y(t∗) = y∗(t∗) + εδ(w, I) + o(ε)

Observe here that, since a > 0, having a perturbation that gives δ(w, I) does not mean that there is
a corresponding perturbation w′, I ′ such that δ(w′, I ′) = −δ(w, I). Hence, as opposed to the temporal
perturbations, spacial perturbations give rise (up to o(ε)) to a set of unidirectional vectors starting at
y∗(t∗).

Step 5: The next step is to define what is referred to as the terminal cone. When combining two
spatial perturbations we get

y(t∗) = y∗(t∗) + εδ(w1, I1) + εδ(w2, I2) + o(ε).

Letting āi = βiai, with βi ≥ 0 we can combine any number m of spatial perturbations to get

y(t∗) = y∗(t∗) + ε

m∑

i=1

βiδ(wi, Ii) + o(ε).

We then add temporal perturbations with τ̄ = β0τ , β0 ∈ R, and consider points of the form

y = y∗(t∗) + ε

(

β0δ(τ) +

m∑

i=1

βiδ(wi, Ii)

)

+ o(ε).

These y will define a convex cone Ct∗ with apex at y∗(t∗).
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Figure 6. The terminal cone Ct∗ .

Note here that since Ii ⊂ (t0, t
∗) the temporal perturbations will not interfere with the spatial pertur-

bations.

Step 6: Let µ := (−1, 0, . . . , 0)⊤ ⊂ R
n+1 and let ~µ be the ray generated by aµ with a ≥ 0. A key

topological lemma in the proof of the maximum principle is that, when (u∗, x∗) is optimal,

Lemma 4.1. The intersection of ~µ and int Ct∗ is empty.

A heuristic argument for this is given by assuming the opposite. Then there is a temporal and a spatial
perturbation such that

y(tf ) = y∗(t∗) + εβµ + o(ε),

for some (arbitrary) β > 0. We have

J(u) = J(u∗)− εβ + o(ε)

x(tf ) = x1 + o(ε).

Now it might seem that we have a proof, but, since there is a o(ε) difference between xtf and x1, we need
not hit the target set.

To obtain a formal proof assume that the lemma is false, we will then show that in this case there has
to be a perturbation giving a y(tf ) along the ray ~µ under y∗(t∗).

Proof. If the lemma is false we can choose a point ŷ on the ray ~µ with an ε-ball, Bε, centered in ŷ, such
that Bε ⊂ Ct∗ . For a suitable β > 0 we can write ŷ = y∗(t∗)+ εβµ. Since Bε ⊂ Ct∗ every point of Bε can
be written y∗(t∗)+εν, where εν is a first order perturbation of the terminal point given by a combination
of temporal and spatial perturbations. Since ŷ ∈ Ct∗ , there is perturbation ∆u0, such that ε∆u0 gives
the first order perturbed terminal value ŷ.

To parameterize the perturbations leading to first-order terminal values in Bε let ei, i = 1, . . . , n + 1,
be n+1 perpendicular unit-vectors and chose n+1 perturbations ∆u+i , such that ε∆u+i leads to the first

order perturbed terminal value ŷ + εei and n+ 1 perturbations ∆u−i , such that ε∆u−i leads to the first
order perturbed terminal value ŷ − εei.
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Let

h+(ρ) =

{
0, for ρ < 0,
ρ, for ρ ≥ 0,

and let

h−(ρ) =

{
−ρ, for ρ < 0,
0, for ρ ≥ 0.

Then for |ρ|2 = ρ21 + . . .+ ρ2n+1 ≤ 1 the perturbations

(4.3) ∆u(ρ1, . . . , ρn+1) := ε

(

1−

n+1∑

i=1

|ρi|

)

∆u0 + ε

n+1∑

i=1

h+(ρi)∆u
+
i + ε

n+1∑

i=1

h−(ρi)∆u
−
i

give a parametrization of the perturbations leading to first-order terminal values in Bε, with

εν = ε

(

1−

n+1∑

i=1

|ρi|

)

ν0 + ε

n+1∑

i=1

h+(ρi)ν
+
i + ε

n+1∑

i=1

h−(ρi)ν
−
i ,

where εν0, εν
+
i and εν−i are the first order-results of applying the perturbations ε∆u0, ε∆u

+
i and ε∆u−i ,

respectively.
The function defined in (4.3) mapping ρ to a point in Bε is continuous and bijective and thus has a

continuous inverse. Since the actual terminal point depends continuously on the perturbation, we can
define a continuous “warping” map F by

F (y∗(t∗) + εν) = yρ1,...,ρn+1
(tf ),

Where yρ1,...,ρn+1
is the actual trajectory obtained when adding the perturbation ∆u(ρ1, . . . , ρn+1) and

tf is the corresponding terminal time. The map F should be seen as taking first-order perturbations to
actual perturbed terminal points, but can also be seen as a map from Bε onto a warped version of Bε

which we denote B̃ε.
Let ŷε = y∗(t∗) + εβµ. Then ŷε → y∗(t∗) along ~µ as ε→ 0. Bε that is now centered in ŷε is still in Ct∗

and still consists of points y∗(t∗) + εν for all ε.

Figure 7. The first order perturbed terminal values and the actual perturbed terminal values.

To finish the proof we need to show that, for sufficiently small ε, B̃ε will contain points along ~µ under
y∗(t∗).

For all α ∈ (0, 1) we have that |o(ε)| < αε, for sufficiently small ε. For an arbitrary z in the (1−α)ε-ball
around ŷε we want to find a y in Bε such that F (y) = z, or equivalently if we define

G(y) := y − F (y) + z,

then G(y) = y.
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Let y ∈ Bε, then |y − F (y)| = o(ε), so that |y − F (y) + z − ŷε| ≤ o(ε) + (1 − α)ε ≤ ε. Hence, G is
a continuous map from the compact convex set Bε into itself. Hence, by Brouwer’s fixed point theorem
there is a y such that G(y) = y. Since z was arbitrary this finishes the proof. �

Step 7: Since intCt∗ and ~µ are convex disjoint sets there exists a hyperplane that separates them.
This hyperplane must pass through y∗(t∗). Lets denote by

(
p∗0

p∗(t∗)

)

,

a vector normal to this hyperplane. The equation for the hyperplane is then
〈(

p∗0
p∗(t∗)

)

, y

〉

=

〈(
p∗0

p∗(t∗)

)

, y∗(t∗)

〉

,

and separation means that
〈(

p∗0
p∗(t∗)

)

, δ

〉

≤ 0,

for all δ ∈ R
n+1 such that y∗(t∗) + δ ∈ Ct∗ , and

〈(
p∗0

p∗(t∗)

)

, µ

〉

= −p∗0 ≥ 0.

Step 8: The two linear systems

ẋ = Ax and ż = −A⊤z

are called adjoint. We have that

d

dt
〈z, x〉 = 〈ż, x〉+ 〈z, ẋ〉 = −x⊤A⊤z + x⊤A⊤z = 0.

Hence, the angle that the state vectors for a pair of adjoint systems make is constant over time. Remem-
bering the variational equation

ψ̇(t) = A∗(t)ψ(t).

The adjoint to this system is

ż = −A⊤
∗ (t)z =

(
0 0

−Lx

∣
∣
∗

−(fx)
⊤
∣
∣
∗

)

z.

Hence with z =

(
p∗0
p∗(t)

)

we get ṗ∗0 = 0 and

ṗ∗ = −Lx

∣
∣
∗
p∗0 − 〈fx

∣
∣
∗
, p∗〉 = −Hx(x

∗, u∗, p∗, p∗0).

The way the costate was defined in the maximum principle we see that, for all t ∈ [t0, t
∗],

〈(
p∗0
p∗(t)

)

, ψ(t)

〉

=

〈(
p∗0

p∗(t∗)

)

, ψ(t∗)

〉

.

Gemoetrically this means that we can see

(
p∗0
p∗(t)

)

6= 0 as the normal to a hyperplane passing through

y∗(t∗) such that any perturbation always pushes the curve to the same side of this hyperplane.

Step 9: We are now ready to tie up the sack for the fixed-endpoint problem by showing that the
Hamiltonian has the properties stated in the maximum principle.

Hamiltonian maximization: From Step 7 we know that
〈(

p∗0
p∗(t∗)

)

,Ψ∗(t
∗, b)νb(w)

〉

≤ 0,
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which by the adjoint property of previous step gives that
〈(

p∗0
p∗(b)

)

, νb(w)

〉

≤ 0,

for any spatial perturbation. But νb(w) was defined as

νb(w) = g(y∗(b), w) − g(y∗(b), u∗(b))

=

(
L(x∗(b), w) − L(x∗(b), u∗(b))
f(x∗(b), w) − f(x∗(b), u∗(b))

)

,

hence 〈(
p∗0
p∗(b)

)

,

(
L(x∗(b), w)
f(x∗(b), w)

)〉

︸ ︷︷ ︸

H(x∗(b),w,p∗(b),p∗
0
)

≤

〈(
p∗0
p∗(b)

)

,

(
L(x∗(b), u∗(b))
f(x∗(b), u∗(b))

)〉

︸ ︷︷ ︸

H(x∗(b),u∗(b),p∗(b),p∗
0
)

.

This shows that u∗(b) maximizes H(x∗(b), ·, p∗(b), p∗0) for all b such that u∗ is continuous at b. However,
H is continuous in both x∗ and p∗ which are continuous in t. Hence, H(x∗(t), ·, p∗(t), p∗0) is continuous in
time. Now since u∗ is piecewise continuous with right or left limits the Hamiltonian will be maximized
by u∗(t) for all t ∈ [t0, t

∗].

H
∣
∣
∗
≡ 0: For temporal perturbations we have

δ(τ) =

(
L
∣
∣
∗
(t∗)

f
∣
∣
∗
(t∗)

)

τ, for τ ∈ R.

By the separation property we must then have that
〈(

p∗0
p∗(t∗)

)

,

(
L
∣
∣
∗
(t∗)

f
∣
∣
∗
(t∗)

)

τ

〉

≤ 0, for τ ∈ R.

Hence,

H
∣
∣
∗
(t∗) =

〈(
p∗0

p∗(t∗)

)

,

(
L
∣
∣
∗
(t∗)

f
∣
∣
∗
(t∗)

)〉

= 0.

We now show that H
∣
∣
∗
is continuous in t and has time-derivative 0. Assume that u∗ is discontinuous

at tc and let tր tc. By the Hamiltonian maximization property, and since x∗ and p∗ are both continuous
in t, we have

H(x∗(tc), u
∗(t−c ), p

∗(tc), p
∗
0) ≥ H(x∗(tc), u

∗(t+c )
︸ ︷︷ ︸

w

, p∗(tc), p
∗
0).

Letting t ց tc gives us the opposite relation which finishes the proof of continuity.

To compute the time derivative of H
∣
∣
∗
we must be careful since Hu might not exist. We write

H
∣
∣
∗
(t) = m(x∗(t), p∗(t)), where

m(x, p) := max
u∈U

H(x, u, p, p∗0).

First note that m∗(x∗(t), p∗(t)) is continuous in t. Let t and t′ be two times

H(x∗(t′), u∗(t), p∗(t′), p∗0)−H
∣
∣
∗
(t) ≤ m(x∗(t′), p∗(t′))−m(x∗(t), p∗(t))

≤ H
∣
∣
∗
(t′)−H(x∗(t), u∗(t′), p∗(t), p∗0)

Dividing by t′ − t and letting t′ ց t we get

lim
t′ցt

m(x∗(t′), p∗(t′))−m(x∗(t), p∗(t))

t′ − t
≥ lim

t′ցt

H(x∗(t′), u∗(t), p∗(t′), p∗0)−H
∣
∣
∗
(t)

t′ − t

= 〈Hx

∣
∣
∗
, ẋ∗〉+ 〈Hp

∣
∣
∗
, ṗ∗〉

= 〈Hx

∣
∣
∗
,Hp

∣
∣
∗
〉+ 〈Hp

∣
∣
∗
,−Hx

∣
∣
∗
〉 = 0.
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With t′ ր t we get the opposite relation and thus have that dm
dt

∣
∣
∗
= 0. Hence, Ḣ

∣
∣
∣
∗
= 0 a.e. and

H
∣
∣
∗
(t∗) = 0 which shows that H

∣
∣
∗
≡ 0.

This finishes the proof of the maximum principle for the fixed-endpoint case!

Step 10: In the variable-endpoint setting the constraint x(tf ) = x1 is changed to x(tf ) ∈ S1. We thus

have a contradiction of optimality if y(tf ) =

(
x0(tf )
x(tf )

)

, with x(tf ) ∈ S1 and x0(tf ) < x0,∗(tf ).

We let D denote the set of all y =

(
x0

x

)

, with x ∈ S1 and x0 ≤ x0,∗(tf ). We also introduce a linear

approximation of this set

T := {y ∈ R
n+1 : y = y∗(t∗) +

(
0
d

)

+ βµ, with d ∈ Tx∗(t∗)S1, and β ≥ 0}.

Figure 8. The sets D and T in the transversality condition.

Lemma 4.2. The intersection of T and int Ct∗ is empty.

To prove this lemma we choose an ε-ball around ŷε = y∗(t∗) + ε

(
0
d

)

+ εβµ, for some d ∈ Tx∗(t∗)S1

and β > 0. Since T and D are tangent in y∗(t∗) and hence the difference between T and D along ε

(
0
d

)

is o(ε), B̃ε will meet D for sufficiently small ε. �

Following the same reasoning as in Step 7 we find that
〈(

p∗0
p∗(t∗)

)

, y − y∗(t∗)

〉

≥ 0, ∀y ∈ T,

which specifically means that
〈(

p∗0
p∗(t∗)

)

,

(
0
d

)〉

= 〈p∗(t∗), d〉 ≥ 0, ∀d ∈ Tx∗(t∗)S1.
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Now, if d ∈ Tx∗(t∗)S1 then also −d ∈ Tx∗(t∗)S1 and we arrive at the transversality condition

〈p∗(t∗), d〉 = 0, ∀d ∈ Tx∗(t∗)S1.

Note that in the special case when S1 = R
n we have Tx∗(t∗)S1 = R

n and thus p∗(t∗) = 0.


