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Dynamic programming

@ Closed loop formulation of optimal control
@ Intuitive methods of solution
@ Guarantees global optimality

o lIteratively solves the problem starting at the end-time

‘Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard
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Example: Shortest path

As an example we try to find the shortest path from “A” to “H" in the
above graph.
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Example: Shortest path

We proceed with backward induction. Once the final node is reached the
remaining cost is 0.

M. Perninge Lecture 12: Dynamic Programming 2014-12-08 4 /42



Example: Shortest path

Knowing the cost at “"H” to be 0, costs of getting from “E", “F" and “G”
to “"H" are easily computed.
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Example: Shortest path

Now the optimal “cost-to-go” at “E", “F" and “G” can be used to get the
optimal “cost-to-go” at “B”, “C" and "D".
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Example: Shortest path

In the next step we arrive at the origin.
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Example: Shortest path

The procedure also gives us the optimal path.
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Basic problem formulation: The system

@ First we assume that the system is in discrete time
Xk+1 = fe(xk,ux), k=0,1,....N—1

where xi is the state uy € U(xk) is the control.
o Feedback-control implies ux = px(xx)

@ In closed-loop form the system can thus be written

X1 = (X, pur(xk))
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Basic problem formulation: The cost

o We let i = {po, pi1,...,un—1} and assume that we have an additive
cost
N-1
Ju(x0) = en(xw) + > 81 (k)
k=0
e Total cost J,(xp) is a function of both initial state xo and feedback
law 1

@ N is the horizon of the problem
e Finite-horizon: N < oo
o Infinite-horizon: N = oo, gy =0
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Basic problem formulation: Minimal cost and optimal
strategy

@ An optimal policy p* is a policy that minimizes J,(xp) (for every xo)
Jux(x0) = min J,(x
L (x0) min L(x0)

optimization is performed over the set, I1, of admissible controls
@ For deterministic problems a control is admissible whenever
o Ug € U(Xk)
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The principle of optimality

Let p* = {pg, 1, -, Wy_1 be an optimal policy for the basic problem
and assume that when applying p©*, a given state x; occurs at time 7/, when
starting at xp.

Consider the subproblem whereby we are in state x; at time i and wish to
minimize the “cost-to-go” from time i to time N

N—-1

anOw) + D gkl i (x))-
k=i

Principle of optimality
The truncated policy {u}, p} 1, -, y_1} is optimal for this subproblem.
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Principle of optimality

o Google maps fastest
route from LTH to KTH
passes through
Jonkoping

@ Subpath starting in
Jonkoping is the fastest

route from Jonkoping to
KTH
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The dynamic programming algorithm

Let
N—1

Vi) = gn(xw) + > i, 115 (%))
=k

so that Vi (xk) is the optimal “cost-to-go” from time k to time N

The Bellman equation

For every initial state xp, the optimal cost J*(xp) is given by the last step
in the following backward-recursion.

Vi(x) = min )[gk(xk7ukvwk)+Vk+1(fk(Xkauk))]

Uk € Uk (xx

Vin(xn) = gn(xn)

We get the optimal control “for-free”

pi(xk) = argmin [gr(xk, uk, wi) + Vi (fi(xi, u))]
ukEUk(xk)
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Managing spending and saving

An investor holds a capital sum in a building society, which gives an
interest rate of # x 100% on the sum held at each time kK =0,1,..., N —1.
The investor can chose to reinvest a portion u of the interest paid which
then itself attracts interest. No amounts invested can be withdrawn. How
should the investor act to maximize total consumption by time N — 17

@ We take as the state x, the present income at time
k=0,1,...,N—1 and let ux € [0, 1] be the fraction of reinvested
interest, hence

Xk+1 = Xk + 9Uka = f(Xk, uk)

@ The reward is gx(x, u) = (1 — u)x and gy(x,u) = 0.
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Managing spending and saving
@ The optimality equation is V(N, x) =0,
V(k,x) = 023%(1{(1_U)X+ V(k+1,(1+60u)x)}, k=0,1,...,N—1

o We get

V(N —-1,x) = 0?3%(1{(1 —u)x+0} =x

V(N —2,x) = 0?3%(1{(1 —u)x + (14 0u)x}

= 023%(1{2)( + (0 —1)ux} = max{2,1+ 6} x = pox
@ Guess: V(N —s+1,x) = ps_1x, then
V(N —s,x) = 023%(1{(1 —u)x + ps—1(1 + uf)x)}
= max{1l + ps—1, (1 4+ 0)ps_1}x = psx
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Managing spending and saving

@ We have thus verified that V(N — s, x) = psx, and found the
recursion
ps = ps—1 + max{1l,0ps_1}

@ Together with p; =1 this gives

s for s < s*
Ps s*(1+6)*" otherwise.

where s* is the smallest integer such that s* > 1/6
@ The optimal policy is then

|0 fork<N-—s*
Y =131 otherwise.
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Continuous time optimal control: The HJB-equation

So far we have only considered the discrete time case

@ Dynamic programming can also be applied in continuous time, this
leads to the Hamilton-Jacobi-Bellman (HJB) equation:
o Benefits over PMP:
+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality
@ Drawbacks:

— Requires solving a PDE
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Continuous time problem formulation

@ In continuous time the system is given by
x(t) = f(x(t),u(t)), te[0,T]

with x(0) = xo and u(t) € U(x(t)), for all t € [0, T].
@ We define the cost as

)
J(x0) = (x(T)) + /0 L(x(t), u(t))dt

e With optimal “cost-to-go” from (t,x)

-
V(t,x) = mljn[¢(x( T)) —i—/t L(x(t), u(t))dt]
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The HJB-equation: Informal derivation

e We divide [0, T] into N pieces using the discretization interval
§=T/N

e We thus get xx = x(kd) and ux = u(kd) for k =0,1,..., N and
approximate the system by

Xk41 = Xk + F(xk, uk)d, k=0,1,...,N.

@ The optimal “cost-to-go" is approximated by

N-1

V(kéd,x) = urgiUnN[¢(xN) + Z L(xk, uk)o]
k=0
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The HJB-equation: Informal derivation

@ Dynamic programming now yields
V(kd,x) = TeiB[L(X’ u)d + V((k+ 1), x + f(x, u)d)],
V(NG, x) = ¢(x).
e For small § we get (with t = kd)
V(t+0,x + f(x,u)d) = V(t,x) + Vi(t,x)d + V, V(t,x) - f(x,u)d
@ Inserting this in the DP equation gives
V(t,x) ~ umeiB[L(x, u)o + V(t, x)

+ Vi(t, x)0 + Vi V(t, x) - f(x, u)d]
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The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state xp, the optimal cost is given by J*(xp) = V/(0, xp)
where V/(t, x) is the solution to the following PDE

Vi(t, x) = — Lr:nellr} [L(x,u) + Vi V(t,x) - f(x,u)]
V(T,x) = ¢(x)

As before the optimal control is given in feedback form by the minimizer

wr(t,x) = argen(ﬂjin [L(x,u) + Vi V(t,x) - f(x,u)]
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Example: The HJB-equation

Consider the simple example involving the scalar system
x(t) = u(t),
with the constraint |u(t)| <1 for all t € [0, T] and the cost

Jo) = 3 (T

@ The HJB equation for this problem is

Vi(t,x) = — |uE?)I\n§1[VX(t7X)U]

with terminal condition V(T,x) = x2/2.
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Example: The HJB-equation

@ An optimal control for this problem is

1 forx<0
p(t, x) = 0 forx=0
-1 forx>0

@ The optimal “cost-to-go” with this control is

V(t x) = %(max{O, x| = (T = 1)})?
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Example: The HJB-equation

N/

—(T —t)

o For [x| > T —t we have V(t,x) = 1/2(|x| — (T — t))?, hence

=[x =(T=1)
amin V(e X)U] —sgn(x) Vi(t, x) = —sgn(x)*(|x| — (T — 1))
t
—(x[ = (T =1)
e For [x| < T —t we have V(t,x) =0 and the HJB equation holds
trivially
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Dynamic programming and randomness

@ So far we have only considered deterministic systems
@ For deterministic systems open-loop and closed-loop control coincide
e Minimizing over admissible policies = {po ..., un—1} equivalent to
minimizing over control vectors {up, ..., uy_1}
e Given p, future states are perfectly predictable through

Xk+1 = fk(Xk,LLk(Xk)), kZO,l,...,Nfl
e Corresponding controls perfectly predictable through
ug = fuk(xx)

@ When introducing randomness in the state evolution, closing the loop
becomes important
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Problem formulation with randomness: The system

@ We assume that the system is in discrete time but add randomness

Xi4+1 = Fie(Xke, Uk, wic)

where xy is the state ux € U(xx) is the control and wy is a noise term.

@ The distribution of the noise term w; only depends on the past
through xx and wuy

@ In closed-loop form the system can thus be written

X1 = (X, poc(Xic) s wic)
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Basic problem formulation: The cost

@ In the random case we get the cost

N—1
Ju(x0) = E |an(w) + D grlxk ia(xk), wi)
k=0
where expectation is taken over the random variables x, and wy

o Expected cost J,(xp) is a function of both initial state xp and
feedback law p
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Basic problem formulation: Minimal cost and optimal
strategy

@ An optimal policy p* is a policy that minimizes J,(xo) (for every xp)
Jy+(x0) = min J,(x
e (x0) min (x0)

@ Optimization is performed over the set, I1, of admissible controls

o uk € U(xk), for all xx
e uy does not depend on future events
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Basic problem formulation: Minimal cost and optimal
strategy

@ An optimal policy p* is a policy that minimizes J,(xo) (for every xp)
Jy+(x0) = min J,(x
e (x0) min (x0)

@ Optimization is performed over the set, I1, of admissible controls

o uk € U(xk), for all xx
e uy does not depend on future events

@ Optimal control is in feedback-form u; = p}(x;)
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The value of information

Two chess players play a two round chess match. Winning one round gives
1 point, drawing gives 1/2 and losing gives 0. If the score after the two
rounds is tied the match will be decided by sudden death.

Player 1 has the opportunity of adapting his strategy by selecting to play
either timid or bold,

@ Timid: Draws with probability py and loses with probability 1 — py
(no chance of winning)

@ Bold: Wins with probability p,, and loses with probability 1 — p,, (no
chance of drawing)

Two round chess match

Player 1 is thus faced with the problem of finding the strategy that
maximizes his probability of winning the match.
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Open-loop strategy

With an open-loop strategy Player 1 has to decide beforehand how to play
in each round.

@ Timid-timid: Probability pgpw of winning the match

@ Bold-bold: Probability p2, + 2p2(1 — pw) = p2(3 — 2pw) of winning
the match

@ Timid-bold: Probability pyp, + (1 — pg)p2, of winning the match
@ Bold-timid: Probability p,pg + p2 (1 — pg) of winning the match

Open-loop probability of win = max(p2 (3 — 2pw), PwPd + P2 (1 — pg))
= va + Pw(1l — pw) max(2pw, pd)

Optimal open loop strategy:
@ pg > 2py: Timid-bold or bold-timid
@ pg < 2py: Bold-bold
@ pg = 2py: All except timid-timid are optimal
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Closed-loop strategy

Here we start with a bold strategy in the first round and choose
@ Bold-timid: If score is 1-0 after Round 1
@ Bold-bold: If score is 0-1 after Round 1

Closed-loop probability of win = p,,pg + pfv(l —pd) + (1 — pw)pfv
= Py, + Pu(l = pw)(Pw + Pa)

Comparing with the open-loop case gives

Value of information =p2, + pw(1 — pw)(Pw + Pd)
- va — pw(1 — pw) max(2py, pa)
=pw(1 — pw) min(pw, pd — pw)

M. Perninge Lecture 12: Dynamic Programming 2014-12-08 32 /42



The dynamic programming algorithm
Now,
N—-1

Vi) = E |gn(xn) + Y 8i(x5 117 09), wy)
j=k

The Bellman equation

For every initial state xp, the optimal cost J*(xp) is given by the last step
in the following backward-recursion.

Vil(xk) = min E [gi(Xk, uk, wi) + Vier1 (Fe(Xk, uk, wi))]
ug € Ug(xk)

Vin(xn) = gn(xn)

We get the optimal control “for-free”

pi(xk) = argmin E [gi(Xk, tie, wi) + Viepr (fc(X, tk, wi))]
ukGUk(xk)
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Example: Selling an asset

Optimal asset selling

Consider a person having an asset that has to sell within N time periods.
Every time period he gets a new offer, that he can either accept or reject.
These offers are given by a sequence of independent random variables

wo, Wi, ..., wy_1. When the seller accepts an offer he can invest the
money at fixed interest rate r > 0. The sellers objective is to maximize the
revenue at day M.

.

o We let u, = 0 represent rejecting to k%' offer and ux = 1 when
accepting offer k

@ We also introduce the terminal state T that x, enters once the asset
is sold and get the state equation xxy1 = f(xk, wx), where

T if xx =T (sold), or if xx # T and ux =1 (sell),
wy otherwise.

(XK, wk) = {
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Example: Selling an asset

@ The corresponding reward function may be written as

N-1
E [gN(XN) + > g, ik, Wk)]

k=i
where
) XN if XN 75 T
gN(X"’)_{o ifxy = T.
and
S @+ )V R ifxg # T and uy =1 (sell),
& Xk s wi) = {0 otherwise.
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Example: Selling an asset
@ This gives the DP algorithm

xy if x T
Vivbw) = {ON if xxi T

and

Vk(Xk) _ {gWaX{(]- + f)N—kxka E[Vk+1(Wk)]} iﬁ 7: ;

@ We thus get the policy

U — 1 if x> ay
k 0 ika<Oék,

where B EVirr(wo)]
(L )Nk
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Example: Selling an asset

@ Let us now assume that the wy are identically distributed

o Introduce the functions Gy(xx) = (1 + r) "N Vi (xx), hence for

XN, xk # T
GN(XN) = XN
G(x) = max{xe, (1 + 1) E[Gesa (w)]}
and
o ElGes(w)
k= 1+4+r

e Now Gn_1(x) > Gn(x) and if Gj11(x) > Gjio(x) then
Gj(x) > Gjt1(x), hence by induction Gi(x) > Gyy1(x) for
k=0,....N—1

@ This shows that «y is a decreasing sequence
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Example: Selling an asset

@ To compute the sequence ay we note that Gi(xx) = max{xk, ak},

hence
= ——E|[G
Qg 1_|_ [Grt1(w)]
. Plw < |+ — ! /OO fw(x)d
= o w < o xty, (x)dx
1+r k+1 k+1 1+r . w
@ Since by definition ap = 0 this gives a recursion for o, k =1,..., N
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Example: Selling an asset

@ Assume that w is Exp(1) distributed i.e. f,(x) = e™*
@ We have P[w < ajy1] =1 — e~ %+ and

[o¢]
/ xfu(x)dx = e (o + 1)
(6%

k+1

@ This gives the recursion

1
o = k(1 — e ) +
— 1 — Q41
17 r(ak-i-l +e )

—O41 1
1 L€ (aks1+1)
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Example: Selling an asset

- ACCEPT

REJECT

The figure shows the optimal policy for r = 0.01 and N = 20.
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Optimal stopping

@ Optimal stopping problems are a special case of the basic problem in
which the control can only take two values e.g. {0,1} one of which
renders the cost (reward) ¢(x) and makes the system enter an
absorbing terminal state T after which no further cost is incurred

@ The Dynamic programming algorithm for optimal stopping problems
can be written

Vin(xn) = én(xn)
Vie(xk) = min{¢x(xk), E [Vi1(f (xi, wk )]}

@ For optimal stopping problems we can define a set
Tk = {x: ¢(x) < E[Vis1(f(xk, wk))]} called the termination set
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Optimal stopping: The one-stage look-ahead rule

@ Sometimes extracting the optimal policy by backward iteration in the
DP algorithm is complex

@ For a specific type of problems we do not need to solve the DP
however

@ Define the set S = {(k, x) : ¢x(x) < E [drr1(F(xk, wk))]}

o If (k,xx) € S it is better to stop now than to continue and stop in the
next step

@ Assume that the set S is absorbing in the sense that
(k+1,f(xk,wk)) € S whenever (k,xx) € S

@ Then it is optimal to stop iff (k,xx) € S.
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