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Project description

For convex monotone systems, the state trajectory is a convex
function of the initial state and the input trajectory

» Want to use the methods from the course to solve an optimal
control problem that includes a convex monotone system
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Monotone systems

Definition
A system
x=f(x,u), x(0)=a

is said to be (a controlled) monotone system if its solution satisfies

(a0, ug) < (a1, u1) = P(ag, up) < de(ar,ur) Vvt

Example of monotone systems can be found in: Virus-mutations,
Power Networks, Fluid Dynamics...



Monotone systems

Proposition (Rantzer & Bernhardsson 2014, (Angeli & Sontag
2003))

For f € C! the following statements are equivalent:

a) The dynamical system
x=f(x,u), x(0)=a
is monotone.
b) The inequalities

of; of;

8XJ 8uk -

, Vi j,kst.i#£j holds.

c) The solution to

x = f(x(t),u(t))+v, x(0)=a,

is @ monotone function of u,v and a.



Convex monotone system

x=f(x,u), x(0)=a

is a monotone system and every row of f is convex, the system is
called a convex monotone system.

Theorem (Rantzer & Bernhardsson 2014)

If f € Ct and the system is a convex monotone system, then each
component of ®.(a, u) is a convex function of a and u.



Convex monotone system

Proof.
xo(t) = ®r(a0, o) x1(t) = Pe(a1, 1)
xy = (1= X)xo + Axq
ay=(1—XNao+ a1
uy = (1= A)uo + Ay
( )\) (X()7 Uo) + )\f(Xl, u1) — f(X)\, U>\) Z 0
Let
y(t) = f(y(t), ua(t)) + v(t), ¥(0) = ax
then

de(an, uxn) < y(t) = xa(t) = (1 = N)d¢(ag, up) + APt(ar, ur).
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A dynamical model for power networks - Motivating
example

» Two types of nodes, generators and active loads, connected
via links (transmission lines)

> An active load tries to keep its power constant by regulating
the current



A dynamical model for power networks - Motivating
example

Example network: Node 1, uy, is a generator while node 2, up, is
an active load.

R O

Dynamical model of current from the active load :
di p .
—_— = —
dt w1 —Ri
where R is the line resistance.
> The active load tries to keep its power constant at p by
regulating the current



Dynamical model for power networks - General model

Kirchoff's law for a general network:

—iG(t) B yGG  yGL uG(t)
iL(t) — |yLlG ylLL uL(t)
where Y is the admittance (inverse of resistance) and superscript

G and L stands for generator and load, respectively. The
dynamical model for the active load can then be written as

di
dt
and for a specific load k € 1,... K

(1) = p/I(YHH) It = YEou® )l =it (1)

dif B
—(t) = — t
dt ( ) Ul%(t) Ik( )
G

The system is convex monotone with state it and input —u©.



Convex montone system?

Fli,u) = B/I0YH) G — YECuO)] = it(1)

» Monotonicity Fact from [Abraham Berman and Robert J.
Plemmons. Nonnegative matrices in the mathematical
sciences]: Structure of Yt = (Yth)~1 <.

” ", 1 1
Idea”: f(X):m—)f/(X):m—a

» Convexity ﬁ + h(x) where g(x) > 0 and h(x) are affine.
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Numerical example

Network: Two generators, u; and up, and one active load, u3

i1 iz

Kirchoff’s law:

f1(t)} [n 0 n ] [Ul(t)]
—b(t)| =] 0 -»m 2 u2(t)
i3(t) i 2 =y1—y2] [us(t)

Dynamics:

dis oy P P + y2)
E P O R T R AR R

— i3(t)



Voltage collapse
Dynamics:

dy  plyity)
dt  yiui+ysup — i
Power in node 3:
p3(t) = us(t) - is(t)
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The optimal control problem

Input: w7 and w»

minimize t%
subject to i3(tf) - us(tr) = p
diz

p .
E(t) = w0 i3(t)
—i(t) -y1 O yi
—h(t)| =] 0 -y y2
i3(t) i y2 —yi—y

|

ul(t)
U2(t)
U3(t)



Implementation of Optimal control problem in Jmodelica

model PowerNetwork

input Real ulp;
input Real u2p;

Real ul(start =1.3, fixed = true);
Real u2(start = 0.6, fixed = true);
Real i3(start = 1.2, fixed = false);

Real p;
Real u3;
Real p3;
Real i2;
Real i1;

constant Real yl = 1;

constant Real y2 = 1;

constant Real p3_hat = 1;

equation

// Integrator

der(ul) = ulp;

der(u2) = u2p;

// Active load

der(i3) = p3_hat = (yl + y2) / (yl % ul + y2 % u2 — i3) — i3;

// Currents Kirchhoff law
0= (—il) — i2 + i3;

il — yl % ul + yl % u3;
i2 — y2 % u2 + y2 x u3;

p =(—il) — i2 + i3;

end PowerNetwork;



Implementation of Optimal control problem in Jmodelica

optimization PowerNetwork_-MinTime(finalTime(free=true, min=startTime),
objective=(finalTime "2))
extends PowerNetwork(ul(min=0.05,max=10), u2(min=0.05,max=10));

constraint

ulp <= 1;

u2p <= 0.5;

p3(finalTime) = p3_hat;
end PowerNetwork_MinTime;
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Result
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The optimal control problem - fixed final time

Input: v and wp

15
minimize / 10 - ug(t)? + ua(t)?dt
0

1.5
verusus minimize / ur(t)® 4 10 - uo(t)?dt
0
subject to i3(tf) - us(tr) = p

di p )
= RO

—i1(t) - 0 yi
[iz(f)] = { 0 -y y2
b(t)

y1 Y2 =y1—32

|

ul(t)
U2(t)
U3(t)

|



The optimal control problem - fixed final time

optimization PowerNetwork_Lagrangel(finalTime=1.5, objectivelntegrand=10%xul"2+u2"2)
extends PowerNetwork(ul(min=0.05,max=10), u2(min=0.05,max=10));

constraint

il >= 0;

i2 >= 0;

ulp <= 1;

u2p <= 0.5;

p3(finalTime) = p3_hat;

end PowerNetwork_Lagrangel;



Simulation results
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Convex combination
A=0.5

of control signal




Convexity of the system

A=05

24r

22r-

2@, u)+ (1) D(a, uy)

P(a, ku1 +(1-1) u2)

0.5
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Comments on results

» Time-optimal control of monotone systems, " maximize” the
control signal

» Convex-monotone system - still open question how to use the
convexity property?
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