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Abstract— One of the main limiting factors in improving
glucose control for T1DM subjects is the lack of a precise
description of meal and insulin intake effects on blood glucose.
Knowing magnitude and duration of such effects would be
useful not only for patients and physicians but also for the
development of a controller targeting glycemia regulation.
Therefore, in this paper we focus on estimating low-complexity
yet physiologically sound and individualized MISO models of
the glucose metabolism in T1DM able to reflect the basic
dynamical features of the glucose-insulin metabolic system in
response to a meal intake or an insulin injection. The models
are continuous-time second-order transfer functions relating
the amount of carbohydrate of a meal and the insulin units of
the accordingly administered dose (inputs) to plasma glucose
evolution (output) and consist of few parameters clinically
relevant to be identified. The estimation strategy is data-driven
and exploits a database in which meals and insulin boluses
are separated in time, allowing the unique identification of the
model parameters.

I. INTRODUCTION

Diabetes Mellitus is a chronic disease of disordered glu-
cose metabolism due to defects in either insulin secretion by
the pancreatic β -cells or insulin action [1]. In particular, Type
1 Diabetes Mellitus (T1DM), being caused by no production
of insulin whatsoever, is characterized by abnormally high
blood glucose levels (hyperglycemia, blood glucose > 180
[mg/dL]) leading to serious health damages. In order to
prevent the long term complications associated to the sus-
tained hyperglycemia it becomes critical, then, for diabetic
patients to regulate their blood glucose tightly, maintaining
its level within the near-normal range (70−180 [mg/dL]) [2].
Because insulin lack defines the disease, exogenous insulin
replacement administered with either multiple daily injec-
tions (MDI) or with an external insulin infusion pump (CSII)
is the hallmark of the treatments. The idea behind conven-
tional therapy insulin regimens is to mimic the physiological
insulin secretion pattern of the non-diabetic subjects using
delayed-acting (basal) doses to provide a background insulin
concentration throughout the day and short-acting (bolus)
doses to simulate the normal prandial insulin levels, this
strategy being called basal-bolus regimen. The task is non
trivial and demanding, therefore the development of control
tools aiming at assisting the patients in the management
of their disease has been the focus of extensive research
for almost 40 years [3] and is progressing towards a fully
automated closed-loop control artificial pancreas [4], [5].
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However, while such a system is expected to improve the
quality of life reducing the time plasma glucose is outside
the target range, it will be suitable and affordable only
for a minority. In addition, closed-loop control introduces
certain risks, the most dangerous being potentially severe
and unavoidable hypoglycemia induced by overdelivery of
insulin compensating for hyperglycemia following a meal
[3]. Against this background, the availability of an “advisory
system” recommending the user to take appropriate insulin
injections and eventually recovery carbohydrates, would be
desirable. Within this scenario the controller is expected
to determine impulse-like control inputs, namely insulin
shots and amount of carbohydrate of a meal, which are not
automatically applied but rather suggested to the patient,
thereby assuring safety. Actually, this was the focus of the
major European project DIAdvisor TM [6].

To date several types of glucose metabolism models have
been proposed (see e.g. [3] for a comprehensive review),
most of these efforts being first-principles based descriptions
of diabetes physiology [7], [8], [9] and only to a lesser extent
mathematical modeling by means of system identification
[10], [11], [12]. Neverthless, despite significant attention
to the problem, the idea of building models specifically
for control purposes has not emerged in the field until
very recently [13], [14] [15]. That said, our purpose is
to estimate approximate, low-order, physiologically sound
models from actual T1DM patients data for future use in
a model-based control framework. In the application at hand
the two control inputs are simultaneous, since according to
clinical practice, the subject boluses at the same time of the
meal intake, making it difficult to distinguish each input’s
contribution to blood glucose fluctuations. In addition, the
possibilities for experiment design are limited due to strict
safety requirements and patient risk. In the light of the
above considerations a novel and unique clinical database
was created and exploited to our objectives, building on what
was presented in [16].

The remainder of the paper is organized as follows.
Section II deals with data collection and the explanation of
the modeling work. Section III presents identification and
validation results for the estimated models over the consid-
ered population, while the discussion on the achievements
is left to Sec. IV. Finally, Sec. V concludes the paper with
final remarks and considerations for future work.
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Fig. 1. Interpolated blood glucose for the selected population [mg/dL] vs.
time of the day [h]
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Fig. 2. The coloured area represents the range of the interpolated blood
glucose for the selected population [mg/dL] vs. time of the day [h].

II. MATERIAL AND METHODS

A. Experimental conditions

The clinical protocol for data acquisition was designed
under the aegis of DIAdvisor TM [6], a large scale FP7-
IST European project, reviewed and approved by the ethical
committee of the Clinical Investigation Center (CIC) in
Montpellier, France. A population of T1DM subjects using
basal-bolus insulin regimen participated in the study signing
an informed and witnessed consent form. The trial comprised
a series of experiment sessions for a duration of up to 9
weeks per patient. In particular, a novel meal test was carried
out as follows. Patients were admitted at the clinic for a 6
hours observation period, from 7:00 am to 1:00 pm, fasting
from the midnight. A standardized breakfast, the amount
of carbohydrate being 40 [g], was served at 8:00 am. The

patients calculated and noted on their personal logbook the
amount of insulin needed to cover this meal, based on the
outcome of their personal glucose meter. However, contrary
to standard practice, the insulin bolus was administered 2
hours later. No other meals nor snacks were consumed up
until 1:00 pm. Blood samples were drawn every 10 minutes
for the 3 hours following the meal intake and every 20
minutes otherwise to assess glucose concentration by means
of a Yellow Spring Instrument (YSI) 2300 STAT Plus blood
glucose analyzer. Figure 3 shows such experiments for one
representative subject. Figure 1 depicts the interpolated blood
glucose for all of the subjects in the population. Figure 2
displays the range of the interpolated blood glucose for the
selected population.

B. Modeling strategy

The first step in our methodology consisted in analyzing
the collected data. From steady-state conditions and almost
constant blood glucose levels, at 8.00 am an input was
applied, namely 40 [g] of carbohydrate intake, which caused
the controlled variable to rise (fig. 3). In absence of any
action taken, plasma glucose concentration didn’t fall (time
interval 8.00 am to 10.00 am). Then, the insulin shot which
was previously calculated by the patient was administered,
making glucose concentration to fall piece-wise linearly. We
modeled the inputs as impulses applied at time instants
tcarb = 8.00 am and tins = 10.00 am, respectively. We as-
sumed noise-free conditions, as plasma glucose is directly
available thanks to the YSI. All these facts, led us to the
formulation of the following OE-model structure [17]:

YBG(s) = Gcarb(s)Ucarb(s)+Gins(s)Uins(s) (1)

where YBG(s) is the Laplace transform of the output blood
glucose concentration; the transfer functions from carbohy-
drate to blood glucose and from insulin to blood glucose are
given in Eq. 2 and 3, respectively.

Gcarb(s) = e−sτcarb
Kcarb

s(1+ sTcarb)
(2)

Gins(s) = e−sτins
Kins

s(1+ sTins)
(3)

The choice of the integrators was motivated by looking at the
data series for the available 5 hours test. Further, ucarb,uins ∈
Z+ are the inputs carbohydrate amount and insulin doses,
respectively, Kcarb,Kins ∈ R are the gains and Tcarb,Tins ∈ R

time constants governing rise and fall, respectively, of plasma
glucose, τcarb,τins ∈ R+ are the time delays associated with
carbohydrate and insulin appearance in plasma, respectively.
Our objective was to estimate the unknown parameter vector
θ̂ = [K̂carb K̂ins T̂carb T̂ins τ̂carb τ̂ins] so that the esti-
mation error between the actual blood glucose data yBG(t)
and the simulated model data ŷBG(t) is minimized in a least-
squares sense:

θ̂ = argmin
θ

∫ T

0
(yBG(t)− ŷBG(t;θ ))2dt (4)
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Fig. 3. Patient 2. Meal test data, first admission. Top Blood glucose
measured by the YSI [mg/dL]; Center Carbohydrate intake [g]; Bottom

Insulin bolus [IU]. All the measurements vs. Time of the day [h]

where t is the continuous-time index and T = 5 [h], subject
to some constraints on θ , namely K̂carb > 0, K̂ins < 0 to guar-
antee qualitatively correct responses to inputs (blood glucose
increases after a meal intake and decreases after an insulin
shot) and T̂carb, T̂ins > 0 to guarantee stability. Now, we deter-
mined the time delays empirically, while the estimation of the
remaining parameters was performed applying a continuous-
time subspace based identification methods as outlined as
follows. First of all, the steady state glycemia level, i.e., the
value of blood glucose before breakfast is administered, was
taken away from the data series. Subsequently, the records
were splitted in 2 parts: the first corresponding to the time
interval 8:00-10:00, while the second corresponding to the
time interval 10:00-12:00, the first being used for quantifying
the impact of carbohydrate whereas the second for the impact
of insulin. The continuous-time predictor-based identification
(PBSIDcont ) algorithm proposed in [18] was applied to the
first portion of the data and the parameters Kcarb, Tcarb were
estimated. Next, the effect of such carbohydrate predicted by
the identified model if no insulin would have been taken after
10:00 was removed (Fig. 4) and the PBSIDcont algorithm
applied to the resulting data in order to get an estimate of
Kins, Tins. Last, the output plasma glucose was interpolated
and uniformly resampled, the sampling period being 1 [min].

III. RESULTS

A. Models

Table I summarizes the model parameters for the popula-
tion. The steady-state level of blood glucose, i.e., the value of
glycemia just before 08:00, was removed so that the model
outputs in Fig. 4 represent the deviation in blood glucose
due to the inputs. The top panel in Fig. 6 shows the impulse
responses to 10 [g] of carbohydrate while the bottom panel
shows the responses to 1 [IU] of insulin obtained with the
identified models for all the patients in the population. The
resulting blood glucose profile seems to reflect what observed
by the clinicians in the care units, i.e., a plausible increase
of glycemia in response to carbohydrate, and a decrease of

TABLE I

ESTIMATED MODELS: IDENTIFIED PARAMETERS

Name τ̂carb [min] K̂carb T̂carb τ̂ins [min] K̂ins T̂ins

P1 20 0.53 7.69 10 -4.79 55.86
P2 20 0.79 6.78 20 -7.30 22.64
P3 10 0.61 5.84 20 -8.36 34.48
P4 10 0.70 11.21 20 -7.07 22.07
P5 20 0.97 4.52 10 -6.86 33.89
P6 30 1.23 2.14 10 -3.87 17.12

glycemia in response to insulin.

B. Model performances

As for the assessment of model performances, the follow-
ing metrics were considered:

• Percentage FIT:

FIT =
(

1−
‖y(t)− ŷ(t)‖

‖y(t)− ȳ(t)‖

)

× 100%

where y(t) are the actual measurements, ŷ(t) are the
model predictions, ȳ is the mean value of y(t) and
‖ · ‖ is the Euclidean norm. This metric measures how
much variability in the data is explained by the model
prediction.

• Percentage Variance Accounted For (VAF):

VAF =
(

1−
E[(y(t)− ŷ(t))(y(t)− ŷ(t))⊺]

E[y(t)y⊺(t)]

)

× 100%

where E[·] denotes mathematical expectation. The VAF
of two signals that are the same is 100%. If they differ,
the VAF will be lower.

• Root Mean Square Error (RMSE) [mg/dL2]:

RMSE =

√

(y(t)− ŷ(t))(y(t)− ŷ(t))⊺

n

where n denotes the number of samples.

Table II presents performance results for the carbohydrate
effect modeling obtained on the estimation data, whereas
Table III presents performance results for the insulin effect
modeling obtained on the estimation data. Last, we compare
the statistics across the population in Fig. 7, where the central
mark in each box is the median of the empirical variance over
the population, the edges are the 25th and 75th percentiles.

C. Model Validation

A second meal test was performed 14±3 days apart, on
day 3 of a 72-hours long in-hospital visit. Prior to this
test, the subjects performed an exercise test on an ergo-
cyclometer on day 1, whereas they were served a big meal
containing 100 [g] carbohydrate on day 2, in order to excite
the system making hospital conditions closer to outpatient
conditions. For the whole duration of the second admission
test, the same protocol for data collection used in the first
admission was followed, except for the blood samples to
assess glucose concentration with the YSI, this time drawn
every 15 minutes for the 4 hours following carbohydrate
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Fig. 5. Representative Patient. Meal test data, second admission. Cross
validation. Top Breakfast impact modelling on fasting blood glucose: actual
YSI data (red star) vs estimated response from the identified model (black
dot) [mg/dL]; Center Carbohydrate intake [g]; Bottom Insulin bolus [IU].
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TABLE II

CARBOHYDRATE EFFECT MODELING:PERFORMANCE EVALUATION

Name VAF [%] FIT [%] RMSE [mg/dL2]
P1 99.39 90.96 3.2
P2 99.70 91.48 4.30
P3 98.80 88.97 4.26
P4 99.63 93.87 3.68
P5 98.96 88.25 5.63
P6 96.16 80.04 6.66

TABLE III

INSULIN EFFECT MODELING:PERFORMANCE EVALUATION

Name VAF [%] FIT [%] RMSE [mg/dL2]

P1 98.87 89.30 8.74
P2 97.95 80.69 6.71
P3 95.74 79.16 4.34
P4 99.65 85.04 10.85
P5 97.23 82.30 12.01
P6 97.68 74.90 26.35
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Fig. 6. Responses of the identified models for the selected population to:
Top carbohydrate 10 [g]; Bottom insulin 1 [IU]. Each plot represents the
variation of blood glucose [mg/dL] vs. time [h]

ingestion. Validation was perfomed on this set of data for
those patients partecipating in the trial. The experimental data
exibited a feature of reproducibility in response to the inputs.
This characteristic was verified by cross validation (Fig. 5,
Tables IV, V).

IV. DISCUSSION

We have proposed continuous-time transfer function mod-
els of second order with time delays quantifying the impact
of a meal intake and an insulin injection on blood glucose
dynamics. The selection of integrating models seemed suit-
able for the description of the 5-hours test data. To make
it more physiologically plausible we may have replaced the
integrators with another pole with a very slow time constant,
that eventually brings blood glucose back to steady state
due to clearance of glucose and insulin, respectively, in
the kidneys. However, the correct estimation of such time
constants would have required data sets with a larger time
splits between inputs. Time delays accounting for food trans-
portation along the gastro-intestinal tract and insulin kinetics
from the subcutaneous tissues to plasma have been easily
incorporated in the model structure as in [16]. The remaining
parameters in the models are linked to clinical variables. In
particular, Kcarb, Tcarb can be related to glucose tolerance,
i.e., how the body metabolizes glucose, whereas Kins, Tins

are connected to insulin sensitivity or resistance, i.e., how
effective is insulin in lowering blood glucose. Actually, prior
information could be incorporated in the tuning procedure,



TABLE IV

CARBOHYDRATE EFFECT MODELING:CROSS VALIDATION.

PERFORMANCE EVALUATION

Name VAF [%] RMSE [mg/dL2]
P1 not participating not participating
P2 not participating not participating
P3 39.37 42.56
P4 not participating not participating
P5 94.81 16.63
P6 86.84 25.99

TABLE V

INSULIN EFFECT MODELING:CROSS VALIDATION. PERFORMANCE

EVALUATION

Name VAF [%] RMSE [mg/dL2]

P1 not participating not participating
P2 not participating not participating
P3 81.84 35.90
P4 not participating not participating
P5 36.22 151.33
P6 42.80 127.82
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taking into account the patient personal history of the disease
and the experience gained in its regulation. It is a well known
fact, indeed, that the subjects learn by trial-and-error how
their glycemia reacts to different sources of carbohydrate and
different insulin analogues. The approach resembles standard
clinical practice being personalized due to the high inter-
subject variability and particularly appealing as it amounts
to estimating only 6 parameters in the plausible range, pro-
vided that the data for identification are informative enough
with respect to the model application. Contrary to previous
contributions dealing with simulated data obtained with in-
silico ad-hoc experiments, e.g. [15], [19], we have employed
actual T1DM patient data collected within a major European
study, DIAdvisor TM [6]. Experiment design turned out to be
of crucial importance, not only being tightly connected to the
intended use of the models but also being constrained due to
safety issues when dealing with patients harm. Despite the
simple structure the models are able to sufficiently describe
the main dynamics of the gluco-regulatory system and in our
opinion are suitable for controller design. A representative
scenario would be that of basal-bolus therapy, involving im-
pulsive control variables, namely insulin injections and meal
carbohydrates, administered several times over the course
of the day at irregularly spaced time instants. A possible
controller, then, would consider in the control algorithm the
effects of a meal or an insulin intake on blood glucose
concentration predicted by the proposed models, in order to
determine the appropriate control moves, the objective being
the maintainance of blood glucose in the normoglycemic
range. As a matter of fact, such strategy was proposed in
[20], [21]. Cross-validation was performed on a completely
new set of data collected 14 ± 3 days apart, in different
conditions, for that subset of subjects participating in both of
the visits. Intra-patient variability was observed for some of
the subjects, as highligthed by the poor VAF values for P3 in
Table IV, and P5-P6 in Table V. This fact may suggest the
need of a model parameters updating scheme. The proposed
models have been obtained from breakfast data only and may,
hence, turn out not to be accurate in modeling lunch and
dinner. In order to assess whether or not this is the case, a
clinical meal test similar to that used in this contribution
should be carried out, provided a 4-hours at least period
of steady state prior to the test so to be able to apply the
same method to the new set of data. This could be realized
admitting the patients at the clinical investigation center for
a 8-hours fasting period prior to the meal test. In the actual
setting the YSI measurements will not be available as it
is standard clinical practice assessing glycemia levels by a
subcutaneous continuous glucose monitoring sensor (CGMS)
or a self-monitoring finger-stick glucose meter (SMBG),
introducing issues such as sensor noise, device recalibration,
time delays just to mention a few. This contrasts to our
assumption of noise-free set-up and would require additional
components to the control system, i.e., a sensor model [22],
[23]. Further investigation is required also to understand
whether or not it is more appropriate and physiologically
plausible to replace the integrator with a very slow pole,



accounting for clearance of blood glucose from the kidneys.
Correlation between the identified model parameters and
patients characteristics, namely, BMI, HbA1c and total daily
insulin intake, was investigated. However, probably due to
the small size of the population taken into consideration no
clear correlation was detected.

V. CONCLUSIONS AND FUTURE WORK

Low order continuous-time transfer function models have
been identified from actual T1DM patients data collected
adhering to a unique protocol for a meal test. The strategy is
appealing as it amounts to estimating only 6 parameters. The
parameters have intuitive meaning that can be linked to clini-
cal practice. The structure seems to be suitable for controller
design mimicking a basal-bolus type of therapy for insulin
treated subjects. However, in order to assess whether or not
modeling was successful, the model needs to be implemented
in the controller and then the performances of the closed-loop
evaluated. Indeed, whether or not a model is appropriate it
depends as much on the controller that will be implemented
as it depends on the model-physiology mismatch. Hence,
future work will be devoted to this analysis. The paper
considered breakfast data only. Thus, it would be interesting
to perform the same type of modeling for other meals or
snacks. No clear correlation between model parameters and
patient characteristics such as BMI, HbA1c and total daily
insulin was noticed. Future work will be carried out to extend
the study on a larger population. By doing so, it will become
apparent whether or not it is possible to classify subjects
based on their clinical characteristics so to build reasonable
nominal models for each of the category.
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