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Abstract— This contribution reviews theory, algo-
rithms, and validation results for system identification
of continuous-time state-space models from finite input-
output sequences. The algorithms developed are au-
toregressive methods, methods of subspace-based model
identification and stochastic realization adapted to the
continuous-time context. The resulting model can be
decomposed into an input-output model and a stochas-
tic innovations model. Using the Riccati equation, we
have designed a procedure to provide a reduced-order
stochastic model that is minimal with respect to system
order as well as the number of stochastic inputs, thereby
avoiding several problems appearing in standard appli-
cation of stochastic realization to the model validation
problem. Next, theory, algorithms and validation results
are presented for system identification of continuous-time
state-space models from finite non-uniformly sampled
input-output sequences. The algorithms developed are
methods of model identification and stochastic realization
adapted to the continuous-time model context using non-
uniformly sampled input-output data.

I. INTRODUCTION

The accurate knowledge of a continuous-time trans-

fer function is a prerequisite to many methods in

physical modeling and control system design. System

identification, however, is often made by means of

time-series analysis applied to discrete-time transfer

function models. As yet, there is no undisputed al-

gorithm for parameter translation from discrete-time

parameters to a continuous-time description. Problems

in this context are associated with translation of the

system zeros from the discrete-time model to the

continuous-time model whereas the system poles are

mapped by means of complex exponentials. As a

result, a poor parameter translation tends to affect both

the frequency response such as the Bode diagram and

the transient response such as the impulse response.

Early contributions on continuous-time identification

can be found in [21], [3], [22], [23], [10], [18].

In the case of uniform sampling, two circumstances

favor the indirect approach via discrete-time iden-

tification: Firstly, data are in general available as
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discrete measurements. Another problem is the math-

ematical difficulty to treat continuous-time random

processes. In the case of non-uniform sampling of

data, new problems arise as linear regression based

on z-transform properties will fail. The difficulties to

convert a discrete-time transfer function to continuous-

time transfer function are well known and related

to the mapping f(z) = (log z)/h—for non-uniform

sampling [6], [5].

In this paper, we derive an algorithm that fits

continuous-time transfer function models to discrete-

time non-uniformly sampled data and we adopt a

hybrid modeling approach by means of a discrete-

time disturbance model and a continuous-time transfer

function.

II. A MODEL TRANSFORMATION

This algorithm introduces an algebraic reformu-

lation of transfer function models. In addition, we

introduce discrete-time noise models in order to model

disturbances. The idea is to find a causal, stable, real-

izable linear operator that may replace the differential

operator while keeping an exact transfer function. This

shall be done in such a way that we obtain a linear

model for estimation of the original transfer function

parameters ai, bi. We will consider cases where we

obtain a linear model in all-pass or low-pass filter

operators. Actually, there is always a linear one-to-

one transformation which relates the continuous-time

parameters and the convergence points for each choice

of operator [12].

Then follows investigations on the state space pro-

perties of the introduced filters and the original model.

Finally, there are two examples with applications to

time-invariant and time-varying systems, respectively.

Consider a linear nth order transfer operator formu-

lated with a differential operator p = d/dt and

unknown coefficients ai, bi.

G0(p) =
b1p

n−1 + · · ·+ bn
pn + a1pn−1 + · · ·+ an

=
B(p)

A(p)
(1)

where it is assumed that A(·) and B(·) are coprime.

It is supposed that the usual isomorphism between

transfer operators and transfer functions, i.e., the cor-

responding functions of a complex variable s, is valid.



Because of this isomorphism, G0 will sometimes be

regarded as a transfer function and sometimes as a

transfer operator. A notational difference will be made

with p denoting the differential operator and s denoting

the complex frequency variable of the Laplace trans-

form.

On any transfer function describing a physically realiz-

able continuous-time system, it is a necessary require-

ment that the transfer function be proper because pure

derivatives of the input cannot be implemented. This

requirement is fulfilled as lims→∞ G0(s) is finite, i.e.,

G0(s) has no poles at infinity. An algebraic approach

to system analysis may be suggested. Let a be point

on the positive real axis and define the mapping

f(s) =
a

s+ a
, s ∈ C

Let C̄ = C ∪∞ be the complex plane extended with

the ‘infinity point’. Then f is a bijective mapping from

C̄ to C̄ and it maps the ‘infinity point’ to the origin

and −a to the ‘infinity point’. The unstable region—

i.e., the right half plane (Re s > 0)—is mapped onto

a region which does not contain the ‘infinity point’.

Introduction of the operator

λ = f(p) =
a

p+ a
=

1

1 + pτ
, τ = 1/a (2)

allows us to make the following transformation

G0(p)|p= 1−λ

τλ

= G∗
0(λ) =

B∗(λ)

A∗(λ)

with

A∗(λ) = 1 + α1λ+ α2λ
2 + · · ·+ αnλ

n (3)

B∗(λ) = β1λ+ β2λ
2 + · · ·+ βnλ

n (4)

An input-output model is easily formulated as

A∗(λ)y(t) = B∗(λ)u(t) (5)

or on regression form

y(t) = −α1[λy](t)− · · · − αn[λ
ny](t) (6)

+β1[λu](t) + · · ·+ βn[λ
nu](t)

This is now a linear model of a dynamical system at

all points of time. Notice that [λu], [λy] etc. denote

filtered inputs and outputs. The parameters αi, βi

may now be estimated by any suitable method for

estimation of parameters of a linear model. A refor-

mulation of the model Eq. (6) to a linear regression

form is

y(t) = ϕT
τ (t)θτ ,

θτ =
(
α1 α2 . . . αn β1 β2 . . . βn

)T

ϕτ (t) = (−[λy](t), . . .− [λny](t),

[λu](t), . . . [λnu](t))T

(7)

with parameter vector θτ and the regressor vector ϕτ .

A. Parameter transformations

Before proceeding, we should make clear the rela-

tionship between the parameters αi, βi of (4) and the

original parameters ai, bi of the transfer function (1).

Let the vector of original parameters be denoted by

θ =
(
−a1 −a2 . . . −an b1 . . . bn

)T
(8)

Using the definition of λ of Eq. (2), it is straight-

forward to show that the relationship between the

operator-transformed parameters of Eq. (7) and the

original parameters of Eq. (8) is

θτ = Fτθ +Gτ (9)

where the 2n× 2n−matrix Fτ is

Fτ =

(
Mτ 0n×n

0n×n Mτ

)
(10)

and where Mτ is the Pascal matrix

Mτ =




m11 0 · · · 0

m12 m22
. . .

...
...

. . . 0
mn1 mn2 · · · mnn




, (11)

mij = (−1)i−j

(
n− j

i− j

)
τ j (12)

Furthermore, the 2n× 1−vector Gτ is given by

Gτ =
(
g1 . . . gn 0 . . . 0

)T
; gi =

(
n

i

)
(−1)i

(13)

The matrix Fτ is invertible when Mτ is invertible, i.e.

for all τ > 0. The parameter transformation is then

one-to-one and

θ = F−1
τ (θτ −Gτ ) (14)

We may then conclude that the parameters ai, bi of the

continuous-time transfer function G0 may be recon-

structed from the parameters αi, βi of θτ by means

of basic matrix calculations. As an alternative we may

estimate the original parameters ai, bi of θ from the

linear relation

y(t) = θTτ ϕτ (t) = (Fτθ +Gτ )
Tϕτ (t) (15)

where Fτ and Gτ are known matrices for each τ .

Moreover, orthogonal linear combinations of the re-

gressor vector components by means of some trans-

formation matrix T could be accommodated by mod-

ification of Eq. (15) to

y(t) = (Tϕτ (t))
TT−TFτθ + (Tϕτ (t))

TT−TGτ

Hence, the parameter vectors θτ and θ are related via

known and simple linear relationships so that transla-

tion between the two parameter vectors can be made

without any problem arising. Moreover, identification

can be made with respect to either θ or θτ .



B. Non-uniform Sampling

Assume that data acquisition has provided finite

sequences of non-uniformly sampled input-output data

{y(tk)}
N
0 , {u(tk)}

N
0 at sample times {tk}

N
0 , where

tk+1 > tk for all k.

As the regression model of Eq. (6) is valid for all

times, it is also a valid regression model at sample

times {tk}
N
0

y(tk) = −α1[λy](tk)− · · · − αn[λ
ny](tk) (16)

+β1[λu](tk) + · · ·+ βn[λ
nu](tk)

Introduce the following brief notation for non-

uniformly sampled filtered data

[λju]k = [λju](tk), 0 ≤ j ≤ n, 0 ≤ k ≤ N (17)

[λjy]k = [λjy](tk) (18)

Introduce the regressor-state vectors

xu =




[λ1u]
[λ2u]

...

[λnu]


 , xy =




[λ1y]
[λ2y]

...

[λny]


 (19)

with dynamics

τ ẋu =




−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1




xu+




1
0
0
...

0




u (20)

τ ẋy =




−1 0 0 · · · 0

1 −1
. . .

. . . 0

0 1 −1
...

...
. . .

. . .
. . .

0 · · · 0 1 −1




xu+




1
0
0
...

0




y (21)

or

τ ẋu = Aλxu +Bλu, τ ẋy = Aλxy +Bλy (22)

Adopting a zero-order-hold (ZOH) approximation, the

non-uniformly sampled discretized model will be

xu(tk+1) = Akxu(tk) +Bku(tk) (23)

xy(tk+1) = Akxy(tk) +Bky(tk) (24)

where

Ak = eAλ(tk+1−tk)/τ (25)

Bk =

∫ (tk+1−tk)/τ

0

eAλsBλds (26)

Summarizing the regressor model of Eq. (16) including

the regressor filtering, we have

φ(tk) =

(
xy(tk)
xu(tk)

)
(27)

φ(tk+1) =

(
Ak 0
0 Ak

)
φ(tk) (28)

+

(
−Bk 0
0 Bk

)(
y(tk)
u(tk)

)
(29)

θ =
(
α1 · · ·αn β1 · · ·βn

)T
(30)

y(tk) = φ(tk)θ + w(tk) (31)

where {w(tk)} represents an uncorrelated non-

uniformly sampled noise sequence.

III. STATE-SPACE MODEL IDENTIFICATION

Consider a continuous-time time-invariant system

Σn(A,B,C,D) with the state-space equations

ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) +Du(t) + e(t) (32)

with input u ∈ R
m, output y ∈ R

p, state vector x ∈
R

n and zero-mean disturbance stochastic processes

v ∈ R
n, e ∈ R

p acting on the state dynamics and

the output, respectively. The continuous-time system

identification problem is to find estimates of system

matrices A, B, C, D from finite sequences {uk}
N
k=0

and {yk}
N
k=0 of input-output data. The underlying

discretized state sequence {xk}
N
k=0 and discrete-time

stochastic processes {vk}
N
k=0, {ek}

N
k=0 correspond to

disturbance processes v and e which at the sampling

instants can be represented by the discretized compo-

nents

vk =

∫ tk

tk−1

eA(tk−s)v(s)ds, k = 1, 2, ..., N (33)

ek = e(tk) (34)

with the covariance Q ≥ 0, q = rank(Q)

E{

[
vi
ei

] [
vj
ej

]T
} = Qδij =

[
Q11 Q12

QT
12 Q22

]
δij , (35)

which enter the non-uniformly sampled and discretized

system Σn(Ak, Bk, C,D) with input uk ∈ R
m, output

yk ∈ R
p, state vector xk ∈ R

n and noise sequences

vk ∈ R
n, ek ∈ R

p acting on the state dynamics and

the output, respectively.

Remark: As computation and statistical validation

tests deal with discrete-time data, we assume the

original sampled stochastic disturbance sequences to

be uncorrelated with a uniform spectrum up to the

Nyquist frequency, thereby avoiding the mathematical

problems associated with Brownian motion [12].

Continuous-Time State-Space Linear System

From the set of first-order linear differential equa-

tions of Eq. (32), one finds the Laplace transforms

sX = AX +BU + V + sx0, x0 = x(t0)

Y = CX +DU + E (36)



Introduction of the complex variable transform

λ(s) =
1

1 + sτ
(37)

corresponding to a stable, causal operator permits an

algebraic transformation of the model

X = (I + τA)[λX] + τB[λU ] + τ [λV ] + (1− λ)x0

Y = CX +DU + E (38)

Reformulation while ignoring the initial conditions to

linear system equations gives
[
ξ
y

]
=

[
I + τA τB

C D

] [
x
u

]
+

[
τv
e

]
, x(t) = [λξ](t)

=

[
Aλ Bλ

C D

] [
x
u

]
+

[
τv
e

]
,

{
Aλ = I + τA

Bλ = τB
(39)

the mapping between (A,B) and (Aλ, Bλ) being

bijective. Provided that a standard positive semi-

definiteness condition of Q is fulfilled so that the

Riccati equation has a solution, it is possible to replace

the linear model of Eq. (39) by the innovations model
[
ξ
y

]
=

[
Aλ Bλ

C D

] [
x
u

]
+

[
Kλ

I

]
w, Kλ = τK (40)

By recursion it is found that

y = Cx+Du+ w (41)

= CAλ[λx] + CBλ[λu] +Du+ CKλ[λw] + w

...

= CAk
λ[λ

kx] +

k∑

j=1

CAk−jBλ[λ
k−ju] +Du

+

k∑

j=1

CAk−jKλ[λ
k−jw] + w (42)

To the purpose of subspace model identification, it is

straightforward to formulate extended linear models

for the original models and its innovations form

Y = ΓxX + ΓuU + ΓvV + E (43)

Y = ΓxX + ΓuU + ΓwW (44)

with state variables X = [λi−1x] and input-output

variables

Y =




[λi−1y]
[λi−2y]

...

[λ1y]
y(t)



, U =




[λi−1u]
[λi−2u]

...

[λ1u]
u(t)



, (45)

and stochastic processes of disturbance

V =




[λi−1v]
[λi−2v]

...

[λ1v]
v(t)



, E =




[λi−1e]
[λi−2e]

...

[λ1e]
e(t)



,W =




[λi−1w]
[λi−2w]

...

[λ1w]
w(t)




(46)

and parameter matrices of state variables and input-

output behavior

Γx =




C
CAλ

...

CAi−1
λ


 ∈ R

ip×n (47)

Γu =




D 0 · · · 0

CBλ D
. . .

...
...

...
. . . 0

CAi−2
λ Bλ CAi−3

λ Bλ · · · D



∈ R

ip×im

and for stochastic input-output behavior

Γv =




0 0 · · · 0 0
τC 0 0 0

τCAλ τC
. . .

...
...

...
...

. . . 0 0

τCAi−2
λ τCAi−3

λ · · · τC 0



∈ R

ip×im

and

Γw =




I 0 · · · 0 0

CKλ I
. . .

...
...

... CKλ
. . . 0 0

CAi−3
λ Kλ

...
. . . I 0

CAi−2
λ Kλ CAi−3

λ Kλ · · · CKλ I




(48)

It is clear that Γx of Eq. (47) represents the extended

observability matrix as known from linear system

theory [20], [19].

System Identification Algorithms

The theory provided permits formulation of a variety

of algorithms with the same algebraic properties as

the original discrete-time version though with applica-

tion to continuous-time modeling and identification.

Below is presented one realization-based algorithm.

Subspace-based algorithms and theoretical justification

is to be found in [13].

Algorithm 1 (System realization [8], [13], [9]):

1) Use least-squares identification to find a multi-

variable transfer function

G(λ(s)) = D−1
L (λ)NL(λ) =

∞∑

k=0

Gkλ
k (49)

where DL(λ), NL(λ)are polynomial matrices

obtained by means of some identification method

such as linear regression with

ε(t, θ) = DL(λ)y(t)−NL(λ)u(t) (50)

DL(λ) = I +D1λ+ · · ·+Dnλ
n (51)

NL(λ) = N0 +N1λ+ · · ·Nnλ
n (52)
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Fig. 1. Non-uniformly sampled data used for continuous-time
model identification: Input {uk} (upper), output {yk} with stochas-
tic disturbance (middle), regressors {[λu]k}, {[λy]k} (lower).

2) Solve for the transformed Markov parameters

Gk = Nk −

k∑

j=1

DjGk−j , k = 0, . . . , n (53)

Gk = −

n∑

j=1

DjGk−j , k = n+ 1, . . . , N (54)

3) For suitable numbers q, r, s such that r+s ≤ N
arrange the Markov parameters in the Hankel

matrix

G(q)
r,s =




Gq+1 Gq+2 · · · Gq+s

Gq+2 Gq+3 · · · Gq+s+1

...
...

. . .
...

Gq+r Gq+r+1 · · · Gq+r+s−1


(55)

4) Determine rank n and resultant system matrices

G(0)
r,s = UΣV T (SVD) (56)

ET
y = [Ip×p 0p×(r−1)p] (57)

ET
u = [Im×m 0m×(s−1)m] (58)

Σn = diag {σ1, σ2, . . . , σn} (59)

Un = matrix of first n columns of U (60)

Vn = matrix of first n columns of V (61)

Finally, calculate the state-space matrices

An = Σ−1/2
n UT

n G(1)
r,sVnΣ

−1/2
n , Â =

1

τ
(An − I) (62)

Bn = Σ1/2
n V T

n Eu, B̂ =
1

τ
Bn (63)

Cn = ET
y UnΣ

1/2
n , Ĉ = Cn (64)

Dn = G0, D̂ = Dn (65)

which yields the nth-order state-space realization

ẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉx(t) + D̂u(t) (66)

Algorithm 2 (System realization [8], [13], [9]):

1) Use linear regression to find a truncated multi-

variable transfer function

Gm(λ(s)) =

m∑

k=0

Gm
k λk (67)
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Fig. 2. Continuous-time model identification of Example 1 with
a1 = 2, b1 = 3 and recursive least-squares identification using non-

uniformly sampled input u and noisy output y. The estimates â1, b̂1
converge towards the correct values a1 = 2, b1 = 3 (N = 1000).

where the prediction error

ε(t, θ) = y(t)−
(
Gm

1 . . . Gm
2

)
︸ ︷︷ ︸

θ




[λ1u](t)
...

[λmu](t)




be minimized at the set of sample times {tk}
N
k=1

by least-squares estimation of θ or {Gm
k }mk=1.

2) For suitable numbers q, r, s such that r+s ≤ N
arrange the Markov parameters in the Hankel

matrix of Eq. (55).

3) Determine rank n and resultant system matrices

according to Eqs. (56-61).

4) Finally, calculate the state-space matrices ac-

cording to Eqs. (62-65) which yields the nth-

order state-space realization of Eq. (66).

Remark: A similar algorithm is obtained by replacing

Steps 3-4 by balanced model reduction of the system

τ ẋu = Aλxu +Bλu, (68)

y = Ĉxu, Ĉ =
(
Gm

1 . . . Gm
2 0 . . . 0

)
(69)

with Aλ, Bλ according to Eq. (22).

A. Example: T1DM Blood Glucose Dynamics

Individualized models of blood glucose dynamics

are currently of great interest for improved clinical

therapy for Type-1 diabetes (T1DM) patients [17], [1],

[2], [16]. To this purpose, a clinical protocol for data

acquisition was designed under the aegis of DIAdvisor

[1], a large scale FP7-IST European project, reviewed

and approved by the ethical committees of the Clinical

Investigation Centers participating in the trials, namely,

Montpellier University Hospital (CHU) in Montpel-

lier, France, Padova University Clinics (UNIPD) in

Padova, Italy and the Clinical Institute of Experimen-

tal Medicine (IKEM) in Prague, Czech Republic. A

population of T1DM subjects using basal-bolus insulin

regimen participated in the study, signing an informed

and witnessed consent form. The trial comprised a se-

ries of intermittent experiment sessions for a duration

of up to 9 weeks per patient. Patients were admitted to



the clinic for a 6.5 hours observation period, from 6:30

am to 1:00 pm, fasting from the midnight, equipped

with a Dexcom SevenrPlus continuous glucose mon-

itoring sensor (CGMS) for interstitial glucose samples

and a HemoCue Glucose 201+ Analyzer for capillary

blood glucose measurements [4], [7]. After arrival, a

recalibration of the CGM system was performed by the

subjects using the HemoCue meter, in order to be able

to start data collection at 7:00 with a well calibrated

glucose monitoring device. A standardized breakfast,

the amount of carbohydrate being 40 [g], was served at

8:00am and fully ingested within 20 minutes. Insulin

was injected at 10:00am.

Application of Algorithm 2 was successful in ac-

curate modeling of the blood glucose concentration

response to meals and insulin. Figure 3 shows an

example of non-uniformly sampled diabetic blood glu-

cose concentration y(t), continuous-time model output

ŷ(t), model error y(t)− ŷ(t), in response to food input

ug , insulin input ui with regressors for τ = 10 [min],

n = 4 and m = 10. The error L2 norm of the open-

loop model response to inputs was less than 1% of the

output L2 norm for model order n = 4.

IV. DISCUSSION AND CONCLUSIONS

We have formulated an identification method

for continuous-time state-space models using non-

uniformly sampled data [11]. The transformation by

means of λ allows an exact reparametrization of

a continuous-time transfer function. High-frequency

dynamics and low-frequency dynamics thus appear

without distortion in the mapping from input to output.

Both the operator translation and filtering approaches

such as the Poisson moment functional (PMF) or

the Laguerre polynomials give rise to similar esti-

mation models for the deterministic case [18], [22],

[23]. Implementation of the operator λ may be done

as continuous-time filters, discrete-time filters or by

means of numerical integration methods [12]. Whereas

ZOH only was studied here, inter-sample behavior is

significant for approximation properties.

The main differences between this method and pre-

vious approaches to continuous-time model identifi-

cation consist of a different estimation model and a

new parametrization of the continuous-time transfer

function whereas the parameter estimation method are

standard methods [12]. Analysis of convergence and

statistical consistency was presented in [12].
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