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Abstract

This paper presents the solution to a general decentralized state-feedback
problem, in which the plant and controller must satisfy the same
combination of delay constraints and sparsity constraints. The control
problem is decomposed into independent subproblems, which are solved by
dynamic programming. In special cases with only sparsity or only delay
constraints, the controller reduces to existing solutions.

Problem

Find a policy that minimizes a quadratic cost
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subject to linear dynamics and a partially nested information constraint.
Plant sparsity and information constraints are encoded by a network graph:

1

2

3

4

0

0

0

0

1

1

1 0

1

d =


0∞∞∞
1 0 ∞∞
1 1 0 0
2 1 1 0


For the network graph above, dynamics and constraints are
x1
t+1

x2
t+1

x3
t+1

x4
t+1

=

A11 0 0 0
A21A22 0 0
A31A32A33A34

0 A42A43A44



x1
t

x2
t

x3
t

x4
t

+

B11 0 0 0
B21B22 0 0
B31B32B33B34

0 B42B43B44



u1
t

u2
t

u3
t

u4
t

+

w1
t

w2
t

w3
t

w4
t



u1
t = γ1

t

(
x1
0:t

)
u2
t = γ2

t

(
x1
0:t−1, x

2
0:t

)
u3
t = γ3

t

(
x1
0:t−1, x

2
0:t−1, x

3
0:t, x

4
0:t

)
u4
t = γ4

t

(
x1
0:t−2, x

2
0:t−1, x

3
0:t−1, x

4
0:t

)
We give a general solution for any such problem; an arbitrary directed
graph with each edge having the label ’0’ or ’1’.

Noise Partition
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Partition the noise history based on which inputs at time t are influenced.

Information Graph
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Redraw the noise partition as a graph; each edge is a time increment.

State and Input Projection
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Each ζrt corresponds to a node in the information graph. The {ζrt }r are
independent because they are functions of different noise terms.

Main Result

Define matrices Xr
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where s is the unique node with r → s in the information graph.
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Notation: M sr is the block submatrix (Mij)i∈s,j∈r

Special Cases

Sparsity only [1, 2]: Acyclic graph with delay 0 on all edges.

Delay only [3]: Strongly connected graph with delay 1 on all edges.
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