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Abstract

In this paper, we consider dynamical subsystems inter-
connected in a broadcast architecture. In the broadcast-
out case, the root node can affect several leaf nodes,
but the leaf nodes do not affect any other nodes. Each
subsystem is locally controlled via output feedback, and
the controllers can communicate according to a struc-
ture that parallels the dynamic coupling between sub-
systems. Explicit state-space realizations for the optimal
controllers are derived using a spectral factorization ap-
proach. An interpretation of the controller states is also
provided in terms of optimal state estimators. We also
address the dual broadcast-in case, where there is a single
leaf node affected by multiple root nodes.

1 Introduction

In this paper, we consider a class of interconnected dy-
namical systems and associated controllers arranged in
a broadcast structure. Visualizing each subsystem as a
node in a directed graph, the two types of broadcast
structures are illustrated in Figure 1. Each controller has
access to local measurements from its associated subsys-
tem. Additionally, a directed edge from A to B indicates:

(i) A change in the state or input of A can affect the
state of B, but not vice versa.

(ii) The controller for A transmits everything it knows
to the controller for B, but not vice versa.

The goal for the controllers is to optimize a global cost,
which may couple the states and inputs of all subsystems.
Such problems are decentralized, because the various con-
trollers do not have access to the same information about
the system.

Even in the case of a linear plant with Gaussian
noise and a quadratic cost function, decentralization can
greatly increase the difficulty of the associated controller
synthesis problem. Witsenhausen showed that for a very
simple instance of such a problem, linear controllers are
strictly suboptimal [19]. In general, finding an optimal
decentralized controller can be hard [1].
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Figure 1: Diagrams representing a broadcast-out struc-
ture on the left and a broadcast-in structure on the right.

Since Witsenhausen’s counterexample, efforts have
largely been focused on identifying classes of decentral-
ized control problems that can be reduced to convex
programs [9, 11, 13]. When the information pattern is
partially nested [3] as in the broadcast case considered
herein, there always exists a linear optimal controller.
Roughly speaking, the associated convex optimization
problem can be reduced to a structured model-matching
problem:

minimize
∥∥T1 + T2QT3

∥∥
subject to Q is stable, Q ∈ Λ

where Q and the Ti are matrices of proper stable trans-
fer functions, and Λ is a subspace that characterizes the
admissible controllers. For example, it may impose a
sparsity constraint on Q.

Since the design parameter Q is a rational function
of unknown order, the resulting optimization problem
is infinite-dimensional. Numerical approaches have been
proposed, and examples include SDP methods [10, 14], or
solution via a converging sequence of finite-dimensional
problems [9]. An exact solution can be obtained by us-
ing vectorization [12], though it is only feasible for small
problem instances. The methods mentioned above do
not produce minimal state-space realizations in general,
and perhaps most importantly, they do not reveal the
structure (if any) of the optimal controller.

In the past few years, exact solutions have been found
for many partially nested special cases. These solutions
provide minimal state-space formulas for the optimal
controller, and give great structural insight as well. For
example, the controller’s states can be interpreted as con-
ditional estimates of the plant’s states.

In the state-feedback case, general delayed-sharing
architectures were considered in [5], and sparsity-
constrained structure were solved in [15, 16, 17]. The
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problem becomes considerably more complicated in the
case of output feedback, and far less is known. Two spe-
cial cases include:

(i) partial output feedback [4, 18]: leaf nodes have out-
put feedback, internal nodes have state feedback.

(ii) dynamically decoupled [4]: all nodes have output
feedback, but their dynamics are fully decoupled.

The common feature shared by these special cases is that
the cost function can be split into independent terms that
can be separately optimized using standard techniques.

For the general case with coupled dynamics and output
feedback, no such separation has been found. The first
solution to such a problem appeared in [6], and it treats
the case of two subsystems. The solution also reveals a
new feature not present in previously reported solutions:
some of the control and estimation gains are coupled, and
depend on all problem parameters.

In this paper, we present a generalization of the two-
player output feedback result [6, 7]. Indeed, if a broad-
cast structure has a single root node and single leaf node,
we recover the two-player case. The approach used herein
is based on spectral factorization, and is similar to the ap-
proach in [7]. However, the broadcast case presents new
challenges over the two-player case. Firstly, the multi-
ple leaf nodes are dynamically decoupled, which leads to
new technicalities that we discuss in depth in Section 6.
Secondly, the broadcast case requires a more complicated
set of coupling conditions.

The paper is organized as follows. We state the prob-
lem in detail in Section 2, and explain new notation in
Section 3. The main result is stated in Section 4, and
proved in Section 8. Additional discussion regarding the
solution structure is provided in Sections 5–7. Finally,
we conclude in Section 9.

2 Problem Statement

We will assume a broadcast-out structure as in Figure 1.
The broadcast-in case is treated separately in Section 7.
All subsystems are assumed to be continuous-time and
linear time-invariant. The overall dynamics can be writ-
ten in state-space form as:

ẋ = Ax+Bu+ w

y = Cx+ v

where w and v are random variables IID in time, and
jointly Gaussian in space, with zero mean and covariance

cov
[
w
v

]
=
[
W U
UT V

]
We partition the state as x =

[
xT

0 . . . xT
N

]T. where
each part corresponds to the state of the associated sub-
system. The system matrices then inherit a sparsity

structure from the graph representation. In this case,

A =


A00 0 . . . 0
A10 A11 . . . 0

...
...

. . .
...

AN0 0 . . . ANN

 (1)

where only the block diagonal and the first block column
are populated. For convenience, we define Λ as the set
of matrices with this sparsity pattern, where the dimen-
sions of the blocks are to be inferred by context. Note
that Λ is more than a subspace, it is closed under matrix
multiplication and is therefore a ring. We assume that
B ∈ Λ and C ∈ Λ as well, and partition u and y accord-
ingly. Thus, the input-output transfer function also has
a broadcast-out structure: C(sI−A)−1B ∈ Λ. Note that
in the broadcast-in case, Λ is replaced by ΛT.

The objective is to design a decentralized output-
feedback control policy that minimizes the infinite-
horizon quadratic cost function:

cost = lim
T→∞

1
T

E
∫ T

0

[
x
u

]T [
Q S
ST R

] [
x
u

]
dt

While the noise covariance matrices W , V , and U are
general, we assume in this paper that Q, R, and S have a
sparsity pattern corresponding to ΛTΛ. This assumption
is discussed in detail in Section 6.

The key constraint is that the controller must have
the same broadcast structure as the plant. Since we are
seeking a linear time-invariant controller, we will assume
the state-space matrices for the controller each share

While each controller has access to different sets of
measurements, it is assumed that each controller has full
knowledge of the plant parameters. In other words, each
controller knows A, B, C, Q, R, S, W , V , and U .

3 Notation

Matrix Manipulation. Before we state our main re-
sult, we require some new notation in order to efficiently
manipulate structured matrices. Superscripts will be
used to denote submatrices or subvectors. For example,
if A is defined as in (1), then for k = 1, . . . , N we define:

A0k =
[
A00 0
Ak0 Akk

]
and x0k =

[
x0

xk

]
Note that blocks are indexed starting from 0. Finally, we
define the E matrices as operators that pick out certain
block-columns. Specifically, they are identity matrices
with certain columns removed. We indicate the columns
by using subscripts. For example, if N = 2,

E0 =

I0
0

 such that AE0 =

A00

A10

A20


The dimensions of the identity matrices within the blocks
of E matrices may vary depending on the context. For
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example, If there are three states with dimension ni and
three inputs with dimensions mi, E0 will have dimension
(n0 + n1 + n2)× n0 in the expression AE0, but will have
dimension (m0 +m1 +m2)×m0 in the expression BE0.

Expected Values. We write E(x | y) as shorthand to
denote the expected value of x(t) conditioned on the past
history of measurements y(τ) for 0 ≤ τ ≤ t. This nota-
tion is often combined with superscripting. For exam-
ple, E(x0 | y02) denotes the expected value of x0(t) con-
ditioned on the past history of y0 and y2.

Riccati Equations. Consider the continuous-time al-
gebraic Riccati equation:

ATX +XA− (XB + S)R−1(XB + S)T +Q = 0 (2)

We say that X is a stabilizing solution to (2) if A+BK is
Hurwitz, where K = −R−1(BTX + ST). In such a case,
we use the notation:

(X,K) = care(A,B,Q,R, S)

For cases of interest in this paper, this notation is always
well-defined, because stabilizing solutions will always ex-
ist and be unique.

4 Main Result

The main result is an explicit state-space representa-
tion of the optimal controller with broadcast-out sparsity
structure. Our assumptions are as follows:

A1) (Akk, Bkk) is stabilizable for k = 1, . . . , N .

A2) (Ckk, Akk) is detectable for k = 1, . . . , N .

A3) R > 0 and V > 0.

A4)
[
A− jωI B

]T [
A− jωI B

]
+
[
Q S
ST R

]
> 0

for all ω ∈ R.

A5)
[
A− jωI

C

] [
A− jωI

C

]T

+
[
W U
UT V

]
> 0

for all ω ∈ R.

A6) Q, R, and S have sparsity pattern ΛTΛ.

The first two assumptions are necessary and sufficient for
the existence of a stabilizing controller with the required
sparsity pattern [9]. Note that these requirements are
stronger than requiring that (C,A,B) be stabilizable and
detectable. Assumptions A3–A5 are standard assump-
tions used in H2 optimal control to guarantee that the
problem has a unique optimal controller which is linear,
time-invariant, and finite-dimensional. See for example
[20]. Assumption A6 is discussed in detail in Section 6.

The first step is to compute solutions to several Riccati
equations. For the root node, we have the pair:

(X,K) = care(A,B,Q,R, S) (3)

(Ỹ0,M
T
0 ) = care(AT

00, C
T
00,W00, V00, U00) (4)

For the kth leaf node, we have the pair:

(X̃k, Jk) = care(Akk, Bkk, Qkk, Rkk, Skk) (5)

(Y0k, L
T
0k) = care

(
(A0k)T, (C0k)T,W 0k, V 0k, U0k

)
(6)

Under Assumptions A1–A5, (3)–(6) have unique stabi-
lizing solutions. The next step is to solve a system of
simultaneous linear equations in the variables Ψk and
Φk. There are two sets of equations, each indexed over
k = 1, . . . , N :

(Akk +BkkJk)Ψk + Ψk(A00 +M0C00)T

−BkkR
−1
kk

(
BT

kkΦk + ST
0k

)
(Ỹ0 − Y0)

+
(
Ak0Ỹ0 + Uk0M

T
0 +Wk0 −BkkJkY0k

)
= 0 (7)

(Akk +BkkJk)TΦk + Φk(A00 +M0C00)

−
N∑

i=1

(δikX̃k −Xki)
(
ΨiC

T
00 + Ui0

)
V −1

00 C00

+
(
X̃kAk0 + JkS

T
0k +Qk0 −Xk0M0C00

)
= 0 (8)

One can verify that (7)–(8) are n0(n1 + · · · + nN ) lin-
ear equations in as many unknowns. While they appear
complicated because they are coupled, they are in princi-
ple much easier to solve than the Riccati equation for X,
which is quadratic and involves more variables. Finally,
define the new gains for K = 1, . . . , N :

K̂k = −R−1
kk

(
BT

kkΦk + ST
0k

)
(9)

L̂k = −
(
ΨkC

T
00 + Uk0

)
V −1

00 (10)

Theorem 1. The optimal broadcast-out controller for
the plant described in Section 2 is given by the following
state-space equations. The controller for the root node
has state ζ, with dimension n0 + · · ·+ nN :

ζ̇0 = A00ζ0 +B00u0 −M
(
y0 − C00ζ0

)
ζ̇k = Ak0ζ0 +Akkζk +Bk0u0 − L̂k

(
y0 − C00ζ0

)
u0 = ET

0Kζ

The controller for the kth leaf node requires a new state
ξk, which has state dimension n0 + nk:

ξ̇k = A0kξk +B0ku0k − L0k

(
y0k − C0kξk

)
uk = ET

kKζ + K̂k(ξ0 − ζ0) + Jk(ξk − ζk)

Note that each of the leaf nodes also depends on ζ.
This does not violate the broadcast constraint, since each
leaf node has access to y0 and can therefore compute
ζ. An outline of the proof of Theorem 1 is provided in
Section 8.

5 Estimation Structure

The solution provided by Theorem 1 is an explicit state-
space realization of the optimal decentralized controller.
The following theorem gives a physical interpretation of
its states.
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Theorem 2. The states of the optimal broadcast-out
controller described by Theorem 1 have the following in-
terpretations:

(i) ζ0 = E(x0 | y0)

(ii) ζk = E(xk | y0) for k = 1, . . . , N

(iii) ξk = E
(
x0k | y0k

)
for k = 1, . . . , N

Proof. Items (i) and (iii) are immediate. For exam-
ple, the Kalman filter E(x0k | y0k) can be computed by
extracting the relevant state equations from the plant:

ẋ0k = A0kx0k +B0ku0k + w0k

y0k = C0kx0k + v0k

Because the kth leaf node has access to y0k, it may also
compute u0k. Thus, this is a centralized Kalman filtering
problem, and the optimal estimator is:

ξ̇k = A0kξk +B0ku0k − L0k

(
y0k − C0kξk

)
which matches the state equation in Theorem 1. Item
(ii) is more involved because xk depends on uk, which is
not known to the root node. The equations can never-
theless be verified by closing the loop on the uk using the
optimal controller from Theorem 1 and solving for the
corresponding estimator, which has an augmented state.
The details are omitted due to space constraints.

Another useful interpretation of the optimal controller
is as the sum of a baseline policy that uses the infor-
mation common to all controllers, plus correction terms
that account for additional private information. Struc-
tural results of this type were explored in [8] for more
general Markov decision processes. In the broadcast case,
y0 is the common information, and indeed, the optimal
control input is of the form:

u = Kζ + (correction terms)

where ζ = E(x | y0). The leaf nodes benefit from the ad-
ditional knowledge of yk, and so the control policy for uk

contains correction terms that depend on the estimation
error (ξ0k − ζ0k) =

(
E(x0k | y0k)− E(x0k | y0)

)
. In the

case where the yk are uninformative for k = 1, . . . , N ,
the correction terms are zero and we recover the optimal
centralized controller based on the measurement y0.

6 Discussion

The assumption A6 turns out to be very important. As
an illustrative example, consider the case N = 2. The
sparsity patterns are:

A =

A00 0 0
A10 A11 0
A20 0 A22

 , Q =

Q00 Q01 Q02

Q10 Q11 0
Q20 0 Q22


where B and C have patterns similar to A, and R and S
have patterns similar to Q. The physical interpretation

is that the cost function is not coupled amongst the leaf
nodes of the graph. No such constraints are required for
the covariance terms W , V , and U .

A key simplification happens in the proof of Theo-
rem 1, namely when Qkk is computed as a function of
the other controllers. In the absence of Assumption A6,
the expression does not simplify, and our approach fails
to obtain the optimal controller.

Numerical computations were carried out using the
vectorization method of [12], and it was found that As-
sumption A6 is necessary in Theorem 1; if Q, R, S are
general, the optimal controller has a larger state dimen-
sion than the one reported in Theorem 1. A possible
explanation is that having a coupled cost function be-
tween leaf nodes would require each leaf node to also es-
timate the states of the other leaf nodes. Simply comput-
ing E(x0 | y0) and E

(
x0k | y0k

)
as indicated by Theorem 2

might be insufficient.
This evidence suggests that a new approach might be

required to solve the case with a general cost function,
and that the structure of the optimal controller would be
different from the one reported herein. This an avenue
of potential future research.

Nevertheless, the result of Theorem 1 is a generaliza-
tion of the previous result on two-player architectures [6].
Indeed, when we set N = 1, we recover the two-player
case. Note that Assumption A6 is nonrestrictive in the
case N = 1, so it may be removed.

7 Broadcast-in Structures

In Sections 4–6, we only considered the broadcast-out
structure of Figure 1. It turns out that the broadcast-in
case can be solved in a similar manner, and the result
provides a dual interpretation of Theorem 1. The model-
matching formulation (12) is given by:

minimize
∥∥P11 + P12QP21

∥∥
subject to Q ∈ RH∞ ∩ Λ

Suppose Qopt is the solution to this problem. Since the
H2 norm does not change if we transpose the operand,
the solution to the dual optimization problem

minimize
∥∥PT

11 + PT
21QPT

12

∥∥
subject to Q ∈ RH∞ ∩ ΛT

is given by Qopt = QT
opt. Note that ΛT is the sparsity

pattern of the broadcast-in architecture. Thus, we may
solve broadcast-in problems by transposing the appropri-
ate system parameters and solving the dual broadcast-
out problem via Theorem 1.

A point worth noticing is that under a broadcast-in
structure, Assumption A6 becomes a constraint on the
noise covariance matrices W , V , and U rather than a
constraint on the cost matrices. So in the broadcast-in
cast, the noise processes driving each of the leaf nodes
must be mutually independent.
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8 Proof Outline of the Main Result

In this section, we provide an outline of the proof of The-
orem 1 in the case where A is Hurwitz. The result still
holds for unstable plants, but the proof is more involved
and omitted due to space constraints. Roughly speaking,
a Youla-like parameterization of stabilizing controllers is
carried out similar to the one found in [9]. This con-
verts the problem to a stable structured model-matching
problem similar to (12).

The problem of Section 2 can be converted to a
sparsity-constrained H2 model-matching problem. For
a thorough introduction on H2 optimal control and asso-
ciated notation, see for example [2, 20]. In the case when
A is Hurwitz, we may pose the problem as:

minimize
∥∥P11 + P12K (I − P22K)−1 P21

∥∥
subject to K ∈ RL∞ ∩ Λ

K is stabilizing

(11)

where: [
P11 P12

P21 P22

]
=

 A B1 B

C1 0 D12

C D21 0


and B1, C1, D12, and D21 satisfy:[

Q S
ST R

]
=
[
C1 D12

]T [
C1 D12

]
[
W U
UT V

]
=
[
B1

D21

] [
B1

D21

]T

Now use the change of variables Q = K (I − P22K)−1.
Since P22 ∈ Λ and K ∈ Λ, the sparsity constraint is
preserved: Q ∈ Λ. Equation (11) becomes:

minimize
∥∥P11 + P12QP21

∥∥
subject to Q ∈ RH∞ ∩ Λ

(12)

The following lemma shows how (12) can be split up into
N + 1 coupled optimization problems.

Lemma 3. Q is optimal for (12) if and only if:

(i) Q00,Q10, . . . ,QN0 are optimal for:

minimize
∥∥P11 + P12QP21

∥∥
subject to Qk0 ∈ RH∞, k = 0, . . . , N

(13)

(ii) for k = 1, . . . , N , Qk0 and Qkk are optimal for:

minimize
∥∥P11 + P12QP21

∥∥
subject to Qk0,Qkk ∈ RH∞

(14)

Proof. The result follows from comparing the optimality
conditions of (12)–(14).

Lemma 3 shows that solving the structured model-
matching problem (12) is equivalent to simultaneously
solving N + 1 optimization problems. The key property

of (13)–(14) is that they are each centralized. For exam-
ple, for any Q11, . . . ,QNN , (13) can be written as:

minimize

∥∥∥∥∥∥∥P11 + P12

Q00

...
QN0

ET
0 P21

∥∥∥∥∥∥∥
subject to Qk0 ∈ RH∞, k = 0, . . . , N

where

P11 = P11 + P12


0 0 . . . 0
0 Q11

...
. . .

0 QNN

P21

Similarly, (14) can be written as a centralized problem
in the variable

[
Qk0 Qkk

]
. The main approach is to

solve each of these problems separately as if the remain-
ing variables were fixed. Then, compare the solutions
and enforce compatibility. First consider (13), and sup-

pose Qkk has a state-space realization
[
AQkk BQkk

CQkk 0

]
for k = 1, . . . , N . If we solve for Q00 in terms of the Qkk,
we obtain:

Q00 =

 A+BK

[
M0

L̂

]
C00

[
M0

L̂

]
0 A00 +M0C00 M0

− ET
0K 0 0


where M0 and K come from (3)–(4), the block-rows of
L̂ are given by (10), and the Ψk satisfy the following
independent equations for k = 1, . . . , N :

AkkΘk
Y + Θk

Y (A00 +M0C00)T

+(Ak0Ỹ0 + Uk0M
T
0 +Wk0) = 0 (15)

AQkkΓk
Y + Γk

Y (A00 +M0C00)T

+BQkk(Vk0M
T
0 + UT

0k + Ck0 + CkkΘk
Y ) = 0 (16)

AkkΨk + Ψk(A00 +M0C00)T

+(Ak0Ỹ0 + Uk0M
T
0 +Wk0 +BkkCQkkΓk

Y ) = 0 (17)

A similar procedure is explained in greater detail in [7]
for the case N = 1. Note that the poles of Q00 do not
depend on the unknown Qkk.

Next, we consider (14), and solve for Qkk Again, we
find that the poles are independent of the unknown Q’s:

Qkk =


Akk +BkkJk Bkk

[
K̂k Jk

]
0

0 A0k + L0kC
0k −L0k

[
0
I

]
Jk

[
K̂k Jk

]
0


This is the point where we rely on Assumption A6. In-
deed, if Assumption A6 fails, we cannot simplify Qkk,
and we find that in general, its poles depend on the poles
of the other leaf nodes.
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Compatibility is enforced by substituting the expres-
sion for Qkk into (15)–(17), since we now know AQkk,
BQkk, and CQkk. We then show that (15)–(17) hold when

Γk
Y =

Ψk −Θk
Y

Ỹ0 − Y00

Θk
Y − Yk0


The final result is (8), which depends only on Φk and
Ψk. Now perform a similar procedure by substituting
the expression for Q00 into the analogous equations to
(15)–(17), derived this time from (14). The final result
is (7). Now that we have found the diagonal entries Qkk,
it remains to return to (13), and solve for the missing
Q10, . . . ,QN0. Once we have assembled the optimal Q,
we can recover K via K = Q(I +P22Q)−1, and the main
result of Theorem 1 follows after simplifications.

9 Conclusion

In this paper, we presented the solution to decentral-
ized output-feedback control problems with a broadcast
architecture. The main result, Theorem 1, provides an
explicit state-space realization of the optimal controller,
which was previously not known. Computing the opti-
mal controller requires solving some standard algebraic
Riccati equations as well as a set of coupled linear equa-
tions. The computational complexity of the decentralized
case is comparable to that of the centralized case. An in-
terpretation of the controller states as estimators which
compute conditional expectations is also provided.
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