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Abstract—Theory for Distributed Model Predictive Control
(DMPC) is developed based on dual decomposition of the
convex optimization problem that is solved in each time sample.
The process to be controlled is an interconnection of several
subsystems, where each subsystem corresponds to a node in
a graph. We present a stopping criterion for the DMPC
scheme that can be locally verified by each node and that
guarantees closed loop suboptimality above a pre-specified level
and asymptotic stability of the interconnected system.

One extra line

I. INTRODUCTION

Dual decomposition has been a well established concept

since around 1960 when the remarkable Usawa’s algorithm

[1] was presented and similar ideas were exploited in large-

scale optimization [7]. Very soon, the decomposition meth-

ods were also applied for computation of optimal control

trajectories [22]. Over the next decades, methods for decom-

position and coordination of dynamic systems were refined

[15], [21], [9] and used in large-scale applications [5].

The purpose of this paper is to investigate how the same

methods can be used in the context of Model Predictive Con-

trol (MPC). Our main focus is not reduction of computational

complexity in a centralized computational unit, but instead

coordination of many local control units, each connected to

a sub-component of a large interconnected system.

The idea of MPC is to solve, in each sampling instant, a

finite horizon optimization problem that predicts the future

plant dynamics and minimizes a given cost function based on

the predictions. When new measurements become available

to the controller, another optimization takes place. Over

the last decades many successful applications have been

implemented [3], [16].

The most common approach for control of large-scale net-

worked systems is to design local controllers that ignore (or

minimize) the interaction between subsystems. This might,

however, lead to severely deteriorated global performance.

A centralized optimization-based approach could be much

better, but is often impractical due to communication con-

straints and an overwhelming number of decision variables.

Distributed MPC, where the global optimization problem is

decomposed into many smaller optimization problems that

can be solved locally for each subsystem, is therefore appeal-

ing. In this distributed framework, the interaction between

subsystems is taken into account, while the flexibility of the

decentralized approach is still there.

Some distributed MPC formulations have already been

presented in the literature. In [17], proximal center decompo-

sition was used to decompose the MPC optimization prob-

lem. It was shown that the proximal center decomposition

method gives faster convergence properties than ordinary

sub-gradient methods for dual decomposition. In [8] a dis-

tributed MPC-scheme for coupled nonlinear systems with

decoupled constraints was presented. In [23] a cooperation

based MPC-scheme was presented where global objective

functions are used in each node. Closed loop stability for this

scheme is guaranteed. Another distributed MPC formulation

was presented in [4] based on a cooperative iteration scheme.

Dual decomposition along the time axis was pursued in [2].

Further references as well as applications to power networks

can be found in [18].

The distributed Model Predictive Controller in this paper

is based on dual decomposition with sub-gradient updates

of the lagrange multipliers. Such algorithms are know to

have fairly slow convergence properties. However, in control,

the performance of the closed loop system is the primary

objective. A stopping criterion, which is based on relaxed

dynamic programming (cite), for the distributed Model Pre-

dictive Controller is developed with significantly reduces

the amount of iterations needed in the dual decomposition

algorithm. The stopping criterion is designed such that closed

loop performance above a certain pre-specified degree is

achieved and asymptotic stability of the closed loop system

is guaranteed. The set of cost functionals considered in this

work are cost functionals without terminal cost or terminal

constraints. In most MPC literature asymptotic stability is

guaranteed for systems with certain terminal cost or terminal

constraints, see [14] for a survey of such methods. Recently,

stability and suboptimality results have been established for

different MPC schemes without terminal cost or terminal

constraints in [12], [11], [19]. This paper has been developed

in parallel with [10] in which similar ideas are used in an

adaptive MPC scheme for the centralized case.

The paper is organized as follows. In Section II we formu-

late the optimization problem that is solved in each sample

of the distributed MPC-controller. In Section III we describe

a dual decomposition algorithm that solves the optimization



problem in a distributed fashion. MPC analysis and design

tools, based on relaxed dynamic programming, are presented

in Section IV. In Section V it is shown how the developed

design tool can be used as a stopping criterion for distributed

MPC. Numerical examples are given in Section VI in which

the performance of the proposed scheme is evaluated. Finally

in Section VII we give conclusions and discuss some future

work directions.

II. PROBLEM SETUP

Consider a dynamical system with the state vector x =
[x1;x2 . . .xJ ] and the dynamics

xi(t +1) =
J

∑
j=1

Ai jx j(t)+Biui(t) xi(0) = x̄i (1)

for all i= 1, . . . ,J , where xi ∈R
ni and ui ∈R

mi . The system

has an associated graph, with one node for every i and an

edge connecting j and i unless Ai j and A ji are both zero.

The dynamics of the full system can be written as

x(t+1) = Ax(t)+Bu(t) x(0) = x̄ (2)

where x ∈ R
n, n = ∑i ni and u ∈ R

m, m = ∑imi.

The control objective is to minimize the following infinite

horizon cost:

V∞(x̄) := min
u

∞

∑
t=0

J

∑
i=1

ℓi(xi(t),ui(t))

︸ ︷︷ ︸

ℓ(x(t),u(t))

(3)

subject to convex constraints

xi(t) ∈ Xi and ui(t) ∈Ui for all i,t (4)

Under general assumptions (essentially convexity of ℓ), we

will see that the problem can be solved to arbitrary accuracy

with a distributed Model Predictive Control (MPC) scheme,

where the only communication that is allowed is between

neighboring nodes. Hence node i may exchange information

with all nodes j that are connected to i by an edge of the

graph.

For the centralized case, the MPC-controller is based on

iterative solutions of the following finite horizon approxima-

tion of (3):

VN(x(t)) := min
u

N

∑
τ=0

ℓ(x(t,τ),u(t,τ)) (5)

subject to

xi(t,τ) ∈ Xi and ui(t,τ) ∈Ui for all i,τ (6)

and the plant predictions:

x(t,τ +1) = Ax(t,τ)+Bu(t,τ) x(t,0) = x(t).

The objective function in the minimization is a straight

forward truncation of the infinite horizon objective. This

means that no terminal cost or terminal constraints are

present, as in most MPC literature. From the optimization

(5) a control sequence u(t,τ) is obtained. The first of those

control actions, u(t,0), is applied to the process giving the

following closed loop dynamics

x(t +1) = Ax(t)+Bu(t,0) x(0) = x̄ (7)

Note that the predicted plant evolution in the controller at

time t is denoted x(t,τ) where τ is the internal time, while

the actual closed loop state at time t is denoted x(t).
The optimal performance, from initial state to the origin,

is defined in (3), while the actual performance of the MPC

controller is defined as

V∞
MPC(x̄) :=

∞

∑
t=0

ℓ(x(t),u(t,0)) (8)

where the state evolution is defined by (7). The ultimate

objective of this paper is to create a distributed MPC scheme

such that V∞
MPC(x̄) is within a certain pre-specified factor of

the optimal performance V∞(x̄).
To distribute the optimization problem (5) over all the

nodes in the graph associated with the dynamical system,

dual decomposition is used.

III. DUAL DECOMPOSITION

The problem (5) can be decomposed using so called dual

decomposition. For this purpose, we follow the notation of

[6] and introduce the decoupled state equations

xi(τ +1) = Aiixi(τ)+Biui(τ)+ vi(τ) xi(0) = x̄i (9)

with the additional constraints that

vi(τ) = ∑
j 6=i

Ai jx j(τ) for all τ (10)

For notational convenience we have dropped the t-parameter

in x(t,τ) and u(t,τ) in this section. The variable vi can

be interpreted as the expected influence of other agents in

the update of xi. The constraints (10) are then relaxed by

introduction of corresponding Lagrange multipliers in the

cost function. This gives

max
p

min
u,v,x

N

∑
τ=0

J

∑
i=1

[

ℓi(xi,ui)+ pTi
(
vi−∑ j 6=iAi jx j

)]

=

= max
p

∑
i

min
ui,xi,vi

N

∑
τ=0

[

ℓi(xi,ui)+ pTi vi−xTi

(

∑ j 6=iA
T
jip j

)]

︸ ︷︷ ︸

ℓ
p
i (xi,ui,vi)

subject to (6), (9) and the restriction that p(N) = 0, since we

have only N equality constraints.

After introduction of dual variables the problem can be

interpreted as a game with two players for each graph node.

Given the prices, the objective of the first player in node i

is to select the inputs ui(0), . . . ,ui(N) to minimize the local

cost ∑N
τ=0 ℓ

p
i (xi,ui,vi), which can be decomposed as

N

∑
τ=0

ℓi(xi,ui)

︸ ︷︷ ︸

local cost

+

what he expects others to charge him
︷ ︸︸ ︷

N

∑
τ=0

pTi vi −
N

∑
τ=0

xTi

(

∑ j 6=iA
T
jip j

)

︸ ︷︷ ︸

what he is payed by others



The other player in node i chooses pi(0), . . . , pi(N) with the

objective to minimize ∑N
τ=0 p

T
i

(

∑ j 6=iAi jx j− vi
)
.

To summarize, a decomposition of the objective as well as

distributed optimality conditions are given by the following

proposition.

Proposition 1: Suppose that ℓ1, . . . , ℓJ are convex and

that the minimum in (5) is attained. Then

VN(x̄) = max
p

J

∑
i=1

min
xi ,ui,vi

(
N

∑
τ=0

ℓ
p
i (xi(τ),ui(τ),vi(τ))

)

(11)

where maximization is subject to p(N) = 0, (6) and (9).

Moreover, the maximum in (11) is attained if and only if

the constraints (1) are satisfied.

Proof. The equality (11) is an instance of standard La-

grangian duality. The maximum in (11) is attained if and only

if the gradient with respect to p is zero. The gradient with

respect to pi(τ) is vi(τ)−∑ j 6=iAi jx j(τ), so all the constraints

(1) must be satisfied at optimum. �

Proposition 1 shows that the computation of xi, ui and

vi for given prices p j is completely decentralized. However,

finding the optimal prices requires coordination. The expres-

sions on the right hand side of (11) are concave functions

of p. Hence optimal prices can be found as the limits of

a gradient iteration: Given some price prediction sequence

{pki (τ)}Nτ=0, corresponding state predictions {xki (τ)}Nτ=1 and

input predictions {uki (τ)}Nτ=0 are computed locally by mini-

mization of ∑N
τ=0 ℓ

p
i

(
xi(τ),ui(τ),vi(τ)

)
subject to (6) and (9).

Then prices can then be updated distributively by a gradient

step

pk+1
i (τ) = pki (τ)+ γki

[

vki (τ)−∑ j 6=iAi jx
k
j(τ)
]

(12)

for τ = 0, . . . ,N. Convergence of such gradient algorithms

has been proved under different types of assumptions on

the step size sequence γki , see [20]. In the continuation we

assume that the γki are such that the dual decomposition

iterations converge towards the optimum. However, the con-

vergence rate of such algorithm may be fairly slow. This

undesirable property is addressed in the following sections

where a stopping criterion is developed which guarantees

certain closed loop performance and stability. This criterion

shows to significantly decrease the number of iterations

needed compared to if the optimum was to be found.

Before we continue with the development of the stopping

criterions, we need the following definition:

V
N,k
i (x̄i) :=

N

∑
τ=0

[

ℓi(x
k
i ,u

k
i )+ (pki )

T
(

vki −∑ j 6=iAi jx
k
j

)]

where k denotes the iteration number and all variables are

optimized according to (11). Also note that by standard

duality we have that

VN,k(x̄) :=
J

∑
i=1

V
N,k
i (x̄i) ≤VN(x̄)

for any k. If the conditions in the stopping criterions are

satisfied for k = K ∈ N1, the control action to be applied to

the process is

u(t,0) = [uK1 (0);uK2 (0) . . .uKJ (0)] (13)

which together with (7) defines the closed loop solution.

IV. MPC TOOLS

In this section two tools for DMPC based on dual de-

composition are developed. The first tool is an analysis tools

based on the relaxed dynamic programming inequality. If

the conditions of this analysis tool are satisfied, asymptotic

stability and closed loop suboptimality to a certain degree

are guaranteed. This analysis tool is then developed to a

design tool that can be used as a stopping criterion for the

number of iterations needed in the DMPC scheme to ensure

asymptotic stability and closed loop suboptimality to a pre-

specified degree. For both tools in this section it is assumed

that data from all nodes are available when checking the

conditions. In the next section, it is shown how the conditions

of the design tool can be verified in a distributed manner

suitable for implementation of the DMPC scheme.

A. MPC Analysis Tool

The analysis tool presented here is based on the work

about relaxed dynamic programming, see [13]. In [19]

asymptotic stability and a certain degree of suboptimality

is proved if the relaxed dynamic programming inequality

VN(x(t)) ≥VN(Ax(t)+Bu(t,0))+ αℓ(x(t),u(t,0)) (14)

holds for some α ∈ (0,1) and for all time steps in the closed

loop trajectory. Further in [11] it is shown that using some

controllability assumptions on the running cost, ℓ, a minimal

control horizon N such that (14) is satisfied for all x ∈ X

can be calculated for the class of systems satisfying the

controllability assumptions. Thus, in the continuation of this

paper we use the following assumption:

Assumption 1: Assume that for a pre-specified value of

α ∈ (0,1) a control horizon N is known such that

VN(x(t)) ≥VN(Ax(t)+Bu(t,0))+ αℓ(x(t),u(t,0))

holds for all x ∈ X .

In the distributed MPC-scheme the control horizon is chosen

such that Assumption 1 holds.

The work in [11] considers MPC in which the optimum

of the each optimization problem is attained. Next we will

state two theorems for unfinished optimizations based on the

relaxed dynamic programming inequality (14) that ensures

a certain degree of suboptimality and asymptotic stability

respectively. The first theorem is about suboptimality and

is an variation of [10, Theorem 1] to include unfinished

optimizations.

Theorem 1: Consider the closed loop solution x(·) ac-

cording to (7) with control signal (13) applied after K(t)
iterations. Assume that there is an α ∈ (0,1) such that

VN,K(t)(x(t)) ≥VN,K(t+1)(x(t +1))+αℓ(x(t),u(t,0))+ s(t) (15)

where

VN,K(t)(x(t)) ≥ 0 (16)



and

s(t) = s(t−1)+ αℓ(x(t−1),u(t−1,0))+

+VN,K(t)(x(t))−VN,K(t−1)(x(t−1)) (17)

and s(0) = 0 hold for all t ∈ N0. Then

αV∞
MPC(x(0)) ≤V∞(x(0))

Proof. Induction of (17) gives

s(T ) = s(T −1)+ αℓ(x(T −1),u(T −1,0))+

+VN,K(T )(x(T ))−VN,K(T−1)(x(T −1)

= s(T −2)+ α
T−1

∑
t=T−2

ℓ(x(t−1),u(t−1,0))+

+VN,K(T )(x(T ))−VN,K(T−2)(x(T −2)

= . . . = α
T−1

∑
t=0

ℓ(x(t−1),u(t−1,0))+

+VN,K(T )(x(T ))−VN,K(0)(x(0))

Insertion of this into (15) gives for any T ∈ N0

α
T

∑
t=0

ℓ(x(t),u(t,0)) ≤

≤VN,K(0)(x(0))−VN,K(T+1)(x(T +1))

≤VN,K(0)(x(0)) ≤VN(x(0)) ≤V∞(x(0))

where the second inequality comes from (16). The third

inequality is a direct consequence of duality theory which

says that a dual feasible point is less than or equal to

the primal optimal point. The last inequality is due to the

observation that longer control horizon gives larger cost since

no terminal constraint or terminal cost is present. The result

follows from the definition of V∞
MPC(x(0)) as T → ∞. �

Our next objective is to prove asymptotic stability of the

system if the conditions of Theorem 1 are satisfied. Before

we do that, the following assumptions on the running cost

is needed:

Assumption 2: Assume that there exist a β > 0 such that

min
u

ℓ(x,u) ≥ β‖x‖22.

Theorem 2: Consider the closed loop trajectory (7) with

control action (13). Assume that

VMPC
∞ (x(0)) ≤M (18)

whereM is a finite positive real number. Then then ‖x(t)‖22→
0 as t → ∞.

Proof. We show this by a contradiction argument. We have

that

VMPC
∞ (x(0)) =

∞

∑
t=0

ℓ(x(t),u(t,0)) ≤M (19)

where M is a finite positive real number. Assume that

‖x(t)‖22 6→ 0 as t → ∞, then there is an ε > 0 such that

‖x(t)‖22 ≥ ε for all t ∈ N0. Further

∞

∑
t=0

ℓ(x(t),u(t,0)) ≥
∞

∑
t=0

β‖x(t)‖22 ≥ β ε
∞

∑
t=0

1 (20)

which is unbounded. Thus by contradiction the assertion

holds. �

The two theorems presented here are analysis tools that

can be verified in run-time. The objective of the next section

is to use these analysis tools as stopping criterion for the

distributed MPC scheme. There are two main considerations

when doing this. The first is that the conditions of the

theorems, that hold for a centralized MPC-scheme, must be

guaranteed to hold using local stopping criterions in each

node where local optimizations take place. The second is

that the value function of the optimization in the following

time step is not known, but an upper bound can be calculated

as a primal solution with control horizon N.

B. MPC Design Tool

The objective of this section is to develop a design tool

that utilizes the analysis tool developed in Section IV-A.

The analysis tool cannot be used directly as a design tool,

since at time t information about the dual value function,

VN,K(t+1)(x(t + 1)), at time t + 1 is needed. However, if an

upper bound, denoted V̄N,K(t+1)(x(t+1)), to VN,K(t+1)(x(t+
1)) is known at time t the conditions of Theorem 1 can be

changed to

VN,K(t)(x(t)) ≥ V̄N,K(t+1)(x(t+1))+αℓ(x(t),u(t,0))+ s(t)

where

VN,K(t)(x(t)) ≥ 0

and

s(t) = s(t−1)+ αℓ(x(t−1),u(t−1,0))+

+ V̄N,K(t)(x(t))−VN,K(t−1)(x(t−1))

and the results from Theorem 1 clearly holds. Due to the

upper bound used, the conditions get more conservative.

Most of this conservatism can be eliminated by changing the

update of the slack variable s(t) as in the following theorem.

Theorem 3: Consider a closed loop trajectory (7) with

control action (13). Assume that for a pre-specified α ∈ (0,1)
that

VN,K(t)(x(t)) ≥ V̄N,K(t+1)(x(t +1))+αℓ(x(t),u(t,0))+ s(t) (21)

where

VN,K(t)(x(t)) ≥ 0 (22)

and

s(t) = s(t−1)+ αℓ(x(t−1),u(t−1,0))

+ V̄N,K(t)(x(t))− V̄N,K(t−1)(x(t−1)) (23)

for t ≥ 2 and

s(1) = αℓ(x(0),u(0,0))+ V̄N,K(1)(x(1))−VN,K(0)(x(0))
(24)



and s(0) = 0. Then

αV∞
MPC(x(0)) ≤V∞(x(0))

and ‖x(t)‖22 → 0 as t → ∞.

Proof. Induction over (23) gives

s(T ) = s(T −1)+ αℓ(x(T −1),u(T −1,0))+

+ V̄N,K(T )(x(T ))− V̄N,K(T−1)(x(T −1))

= s(T −2)+ α
T−1

∑
t=T−2

ℓ(x(t),u(t,0))+

+ V̄N,K(T )(x(T ))− V̄N,K(T−2)(x(T −2))

= . . . = s(1)+ α
T−1

∑
t=1

ℓ(x(t),u(t,0))+

+ V̄N,K(T )(x(T ))− V̄N,K(1)(x(1))

= α
T−1

∑
t=0

ℓ(x(t),u(t,0))+

+ V̄N,K(T )(x(T ))−VN,K(0)(x(0))

where the last inequality comes from (24). Insertion of this

into (21) gives for any T ∈ N0

α
T

∑
t=0

ℓ(x(t),u(t,0)) ≤

≤VN,K(0)(x(0))− V̄N,K(T+1)(x(T +1))+

+VN,K(T )(x(T ))− V̄N,K(T )(x(T ))

≤VN,K(0)(x(0))− V̄N,K(T+1)(x(T +1))

≤VN,K(0)(x(0)) ≤VN(x(0)) ≤V∞(x(0))

where the second and third inequalities come from that

V̄N,K(T )(x(T )) is an upper bound to VN,K(T )(x(T )) which

is positive. The fourth inequality is an application of duality

theory which says that the value of a dual feasible point is

less than the primal optimal point. The last inequality is due

to the observation that a longer control horizon gives larger

cost in absence of terminal cost and terminal constraints. The

assertion about suboptimality follows from the definition of

V∞
MPC(x(0)) as T → ∞.

Since V∞
MPC(x(0)) is finite, Theorem 2 gives that ‖x(t)‖22→

0 as t → ∞.

This completes the proof. �

Remark 1: The slack variable s(t) in this theorem actually

consists of two parts. The first part is the unused slack from

the inequality of the previous time step

s(t) = s(t−1)+ αℓ(x(t−1),u(t−1,0))+

+ V̄N,K(t)(x(t))−VN,K(t−1)(x(t−1)).

The second part is added to reduce conservatism due to the

use of upper bounds from two time steps ago

VN,K(t−1)(x(t−1))− V̄N,K(t−1)(x(t−1)).

Also note that s(t) ≤ 0 for all t ∈ N0.

Remark 2: When the system is operating far from the

origin the valueV∞
MPC(x(0)) is much more affected than when

operating close to the origin. Thus, the control performance

might deteriorate close to the origin since the overall ob-

jective is not affected. If desired, extra conditions might be

added to avoid such behaviour without compromising the

results. For instance one might want the system to satisfy

VN,K(t)(x(t)) ≥ V̄N,K(t+1)(x(t+1))+ αlbℓ(x(t),u(t,0))

in every time step where αlb < α .

V. DISTRIBUTED MODEL PREDICTIVE CONTROL

The objective of this section is to use the developed design

tool as a stopping criterion for the number of iterations

needed in the DMPC scheme based on dual decomposition.

If the conditions hold in every sample, we can guarantee

suboptimality to a certain degree for the closed loop system

and asymptotic stability. Since all communication in the

dual decomposition scheme is between neighbouring nodes,

the conditions of Theorem 3 should also be guaranteed by

conditions that can be locally verified with communication

between closest neighbours. Throughout this section we

assume that the control horizon, N, in the DMPC scheme

is such that Assumption 1 holds for a pre-specified value

α ∈ (0,1).
To ensure the conditions in the design tool, i.e. in The-

orem 3, an upper bound is needed. Any primal feasible

solution over N time steps, defined as

PN(x(t),u(t, ·)) =
N

∑
τ=0

ℓ(x(t,τ),u(t,τ))

where

x(t,τ +1) = Ax(t,τ)+Bu(t,τ) , x(t,0) = x(t)

with initial state, x(t + 1), is an upper bound to

VN,K(t+1)(x(t +1)) since

PN(x(t +1),u(t, ·)) ≥VN(x(t +1)) ≥VN,K(t+1)(x(t+1)).

To account for the fact that the primal solution might be

infeasible, we define PN(x(t),u(t, ·)) = ∞ if the solution is

infeasible. The local part of the primal cost is

PN
i (xi(t),ui(t, ·)) =

N

∑
τ=0

ℓi(xi(t,τ),ui(t,τ))

which gives

PN(x(t),u(t, ·)) =
J

∑
i=1

PN
i (xi(t),ui(t, ·)).

To calculate the primal cost, the following control sequence,

based on the control sequence in the current iteration of the

dual decomposition scheme, uk(t, ·), is used

ukP(t,τ) =

{

uk(t,τ +1), τ = 0, . . . ,N−1

0, τ = N

This gives the following upper bound to be used in the

DMPC scheme

PN(x(t +1),ukP(t, ·))



where x(t + 1) is the predicted next state if the current

control action, uk(t,0), is applied. The upper bound can

be computed locally with neighbouring communication by

forward simulation of the system.

To locally verify the conditions of Theorem 3 the follow-

ing conditions are used in each node

V
N,k
i (xi(t))−PN

i (xi(t +1),uki,P(t, ·)) ≥

≥ αℓi(xi(t),u
k
i (t,0))+ si(t) (25)

where

V
N,k
i (xi(t)) ≥ 0 (26)

and

si(t) = si(t−1)+ αℓi(xi(t−1),ui(t−1,0))+

+PN
i (xi(t),u

K(t)
i,P (t, ·))−

−PN
i (xi(t−1),u

K(t−1)
i,P (t−1, ·)) (27)

and

si(1) = αℓi(xi(0),ui(0,0))+

+PN
i (xi(1),u

K(1)
i,P (1, ·))−V

N,K(0)
i (xi(0)) (28)

and si(0) = 0.

Under Assumption 1 the conditions hold for the global

system after sufficiently many iterations. However, it is not

certain the these distributed tests will pass even at optimum.

The conditions must be complemented by the following

optimality condition

V
N,k
i (xi(t)) = PN

i (xi(t),u
k(t, ·)). (29)

A distributed MPC scheme that guarantee the conditions

of Theorem 3 is summarized in the following theorem

Theorem 4: Consider a closed loop trajectory (7) with

control action (13) which is applied after K(t) iterations

where the K(t) = k such that

(25), (26), (27), (28),si(0) = 0 or (29)

holds for all t ∈N0. Further suppose that Assumption 1 holds.

Then the conditions of Theorem 3 hold which guarantee

αV∞
MPC(x(0)) ≤V∞(x(0))

and ‖x(t)‖22 → 0 as t → ∞ for the global system.

Proof. Summation over i of (25), (26), (27), (28), si(0) = 0

directly gives the conditions of Theorem 3.

Condition (29) is satisfied at the optimum. Assumption 1

gives that the conditions of Theorem 3 holds when the

optimum is reached since s(t) ≤ 0 for all t ∈ N0. �

Practical examples have shown that if the neighbouring

interaction is not too large, the optimality conditions never

need to be used as stopping criterion.

VI. NUMERICAL EXAMPLE

The performance of the developed distributed MPC

scheme is evaluated by applying it to an artificial example

with equally sized water containers. The water containers

are connected in series and the flow between neighbouring

containers are proportional to the relative difference in water

level. Between every second container there are pumps that

can control the water flow between the two containers they

are connected to. In this example we consider the case of ten

water containers and five pumps. The system is decomposed

to consist of five subsystems, each with two containers

and one pump. The local subsystems have the following

dynamics:

xi(t +1) = Ai,ixi(t)+Ai,i−1xi−1(t)+

+Ai,i+1xi+1(t)+Biui(t)

where

A1,1 =

(
0.9 0.1

0.1 0.8

)

A5,5 =

(
0.8 0.1

0.1 0.9

)

Ai,i =

(
0.8 0.1

0.1 0.8

)

for i = 2,3,4

and

Ai,i−1 =

(
0 0.1

0 0

)

= AT
i,i+1 Bi =

(
1

−1

)

for i = 1, . . . ,5 where A1,0 = A5,6 = 0

The mean water level of the system is actually uncon-

trollable since the total amount of water in the containers

is constant. By requiring that 1Tx(0) = 0 the mean water

level is defined to be zero. The objective is to control the

individual water levels to the mean value of the water levels,

i.e. to zero, while minimizing the following local running

cost:

ℓi(xi,ui) = xTi xi +uTi ui.

The control horizon is chosen to N = 10 which satisfies

Assumption 1. The following table presents the results ob-

tained for different schemes when suboptimality specified by

α = 0.8 is desired.

MPC scheme comparisons

Scheme cond mean # iters αcalc pupd
DMPC all 1.95 0.841 prev

DMPC all 7.05 0.891 0

DMPC (25),(29) 150.0 0.889 prev

DMPC (29) 161.6 0.893 prev

DC - - 0.720 -

C - - 0.893 -

TABLE I

RESULTS FROM EXPERIMENTS WITH DIFFERENT MPC SCHEMES

The first column describes what conditions are used as

stopping criterion in the Distributed MPC scheme. The sec-

ond column presents the mean number if iterations required



for the conditions to hold. The third column specifies the

resulting performance where

αcalc =
VN,K(0)(x(0))

∑T
t=0 ℓ(x(t),u(t,0))

.

The last column pupd specifies how the price-updates are

performed between optimizations. A zero means that the

prices initially are chosen to 0 in each optimization. If

the entry says ’prev’ the previously calculated prices are

shifted one time step and used as initial prices for the new

optimization.

The first four rows present result when using the DMPC

scheme presented in this article, with different conditions as

stopping criterion. When the full scheme is used, presented

in the first row, only 1.95 iterations are needed on average

while still guaranteeing the suboptimality requirements. This

can be compared to the second row, where the prices are set

to zero between every new optimization. Then 7.05 iterations

must be performed on average to guarantee the conditions.

The scheme behind the results in row three has si(t) = 0

in (25). The number of iterations get very large using this

scheme. This shows that the introduced slacks si(t) has a

large effect on the number of iterations needed to ensure a

certain suboptimality bound. The condition in row four is

that the optimum in the optimization should be found. This

requires a large number of iterations on average.

Row five, labeled DC, corresponds to decentralized control

in which the local optimizations are performed ignoring the

coupling between systems. Using the method, no guarantees

about performance or stability can be made, and the system

in this case do not reach the desired performance. Row six,

labeled C, presents results when applying centralized control.

This is actually results in the same control strategy as the one

in row four where the optimum is found in each sample.

VII. CONCLUSIONS AND FUTURE WORK

We have presented theory for distributed Model Predictive

Control based on dual decomposition, where the process

to be controlled is an interconnection of several linear

subsystems. We have developed stopping criterions which

can be verified locally in each node, that guarantees closed

loop asymptotic stability and suboptimality to a pre-specified

degree for the global system. The provided numerical exam-

ples show that the number of iterations needed to guarantee

the conditions is significantly smaller than if the optimum

was to be reach in all optimizations.

Future work might be to extend this suboptimality frame-

work to fit other decomposition methods for distributed MPC

that show better convergence properties than the sub-gradient

method proposed here.
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