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Today’s Goal

To be able to

@ prove local and global stability of an equilibrium point
through Lyapunov’s method
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Today’s Goal

To be able to

@ prove local and global stability of an equilibrium point
through Lyapunov’s method

@ show stability of a set (for example, a limit cycle) through
invariant set theorems
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Material

@ Slotine and Li: Chapter 3
@ Lecture notes
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Alexandr Mihailovich Lyapunov (1857-1918)

BEAWKH PYLCKHH MATEMATHK
£A M ASHVHOB
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Alexandr Mihailovich Lyapunov (1857-1918)

BEAWKWR PYCCKWA MATEMATHK |
4 A M ASITIIYHOR

101

Master’s thesis

“On the stability of ellipsoidal forms of
equilibrium of rotating fluids,” St. Petersburg
University, 1884.
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Alexandr Mihailovich Lyapunov (1857-1918)

Master’s thesis

“On the stability of ellipsoidal forms of
equilibrium of rotating fluids,” St. Petersburg
University, 1884.

: - Doctoral thesis

Foconst &
G"F"-s’»f CCD “The general problem of the stability of
S HOMTALVLUL motion,” 1892.
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lexandr Mihailovich Lyapunov (1857-1918)

BEAWKHR PYCTKHH MATEMATHK
4 A M ASTIFHOR
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Master’s thesis

“On the stability of ellipsoidal forms of
equilibrium of rotating fluids,” St. Petersburg
University, 1884.
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lexandr Mihailovich Lyapunov (1857-1918)

BEAWKHR PYCTKHH MATEMATHK
M ASIIYHO)

Master’s thesis

“On the stability of ellipsoidal forms of
equilibrium of rotating fluids,” St. Petersburg
University, 1884.

Doctoral thesis

“The general problem of the stability of
motion,” 1892.
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Lyapunov’s idea

If the total energy is dissipated, the system must be
stable.

8/14 Anders Robertsson Nonlinear Control and Servo Systems



8/14

Lyapunov’s idea

If the total energy is dissipated, the system must be
stable.

Main benefit

By looking at an energy-like function (a so called Lyapunov
function), we might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
equation.
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Lyapunov’s idea
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A Motivating Example
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mx = — bxlxl —kox—k1x3, b,k(),k] >0
~——
damping spring

The energy can be shown to be

V(x, %) = mi?/2 + kox*/2 + kix* /4 > 0, V(0,0)=0

d
EV(x,x) = mxi + koxx + kjx°% = —b|x]> < 0, %0

10/14 Anders Robertsson Nonlinear Control and Servo Systems



11/14

Stability Definitions

An equilibrium point x = 0 of x = f(x) is
locally stable, if for every R > 0 there exists r > 0, such that

xO)ll <r = llx@®I <R t20
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Stability Definitions

An equilibrium point x = 0 of x = f(x) is
locally stable, if for every R > 0 there exists r > 0, such that

IO <r = x| <R 20
locally asymptotically stable, if locally stable and

IOl <r = lim x(r) =0
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Stability Definitions

An equilibrium point x = 0 of x = f(x) is
locally stable, if for every R > 0 there exists r > 0, such that

IxO)ll<r = Jx®OI<R 20
locally asymptotically stable, if locally stable and
IOl <r = lim x(r) =0

globally asymptotically stable, if asymptotically stable for all
x(0) € R".
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Lyapunov Theorem for Local Stability

Let x = f(x), f(0)=0,and 0 € Q c R". Assume thatV : Q — Riis
a C! function. If

e V(0)=0
o V(x)>0,forallxeQ, x+#0

d
° EV(x) < 0 along all trajectories in Q

then x = 0 is locally stable. Furthermore, if also
d

° —_—
dt
then x = 0 is locally asymptotically stable.

V(x) <Oforallx e Q, x#0

Proof: see p. 62.
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) Lyapunov Functions (~ Energy Functions)

A Lyapunov function fulfills V(xg) = 0, V(x) > 0 for x € Q, x # xo,

and J
V= Svw == <0

X2
Vv x|
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Lyapunov Theorem for Global Stability

Theorem Let X = f(x) and f(0) = 0. Assume that V : R® —» Risa
C! function. If

e V(0)=0

o V(x)>0,forallx#0
@ V(x)<Oforallx #£0
@ V(x) > oas ||x]| = o

then x = 0 is globally asymptotically stable.
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Radial Unboundedness is Necessary

If the condition V(x) — oo as ||x|| — oo is not fulfilled, then global
stability cannot be guaranteed.

Example Assume V(x) = x7/(1 + x}) + x5 is a Lyapunov function
for a system. Can have ||x|| — o even if V(x) < 0.

Contour plot V(x) = C:
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Positive Definite Matrices

A matrix M is positive definite if x’ Mx > 0 for all x # 0.

It is positive semidefinite if x’ Mx > 0 for all x.

A symmetric matrix M = M7 is positive definite if and only if its
eigenvalues A; > 0. (semidefinite & A; > 0)

Note that if M = M” is positive definite, then the Lyapunov
function candidate V(x) = xI M x fulfills V(0) = 0 and V(x) > 0 for
all x #0.
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More matrix results

A symmetric matrix M = M7 satisfies the inequalities

Amin(MIIx> < x"Mx < Apax(M)|1x]1?

(To show it, use the factorization M = UAU*, where U is a unitary
matrix, ||Ux|| = ||x||, U* is complex conjugate transpose, and

A =diag(1y,...,4,).)

For any matrix M one also has

1/2
IMx]| < Apa(MT M)||x|
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Lyapunov Function for Linear System

Theorem The eigenvalues A; of A satisfy Re 4; < 0 if and only if:
for every positive definite O = QT there exists a positive definite
P = PT such that

PA+ATP=-0Q

Proof of 3Q, P = Re 1;(A) < 0: Consider x = Ax and the Lyapunov
function candidate V(x) = x’ Px.

V(x) = xTPi+iTPx=xT(PA+ ATP)x = —xTQx <0, Vx#0

= X = Ax asymptotically stable Red; <0

Proof of Re 1;(A) < 0 = 3Q, P: Choose P = fooo A1 Qe dt
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Lyapunov’s Linearization Method

Recall from Lecture 2:
Theorem Consider

X = f(x)

Assume that x = 0 is an equilibrium point and that
X =Ax+g(x)

is a linearization.

(1) If Re 2;(A) < Oforall i, then x = 0 is locally asymptotically
stable.

(2) If there exists i such that 1;(A) > 0, then x = 0 is unstable.
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Proof of (1) in Lyapunov’s Linearization Method

Lyapunov function candidate V(x) = xT Px. V(0) = 0, V(x) > O for
x #0,and

V(x) = xIPf(x)+ fL(x)Px
= x'P[Ax + g(x)] + [xT A + gT (x)] Px
= xT(PA + AT P)x + 2xT Pg(x) = —xT Qx + 2xT Pg(x)

X7 0x > Anin(Q)]Ix|1?

and for all y > 0 there exists r > 0 such that
gl <yllxll, Vx|l <r
Thus, choosing vy sufficiently small gives

V(X) < _(/lmin(Q) - 2’}’/lmax(P))”x”2 <0
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