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1. Introduction

The goal of this laboratory exercise is to study Model Predictive Control
(MPC) by applying it to the quadruple-tank process. In the configuration
used in this exercise the process has nonminimum-phase behaviour and
there are also some constraints which need to be taken into account. We
are going to study a few aspects of designing MPC controllers, such as the
choice of weight functions, prediction parameters and constraint handling.
The controllers will be evaluated both in simulation and in experiments on
a real process.

For an introduction to MPCo and information about MPCtools, the toolbox
used in this exercise, see Akesson [2006]. A good text book on MPC is
Maciejowski [2001].

1.1 Model Predictive Control

MPC differs from most other control strategies in the way the control ac-
tion is calculated. A finite horizon optimal control problem is solved at each
sampling instant. The first step in the calculated control sequence is ap-
plied to the plant, while the resulting steps are discarded. The calculations
are then repeated at the next sampling instant. This principle is known
as receding horizon control. A great advantage with solving the optimal
control problem on-line is that it makes it possible to handle MIMO plants
and constraints explicitly. Two obstacles that need to be considered are the
computation time required to solve the optimal control problem at each
sampling instant, and that a model of the plant is required.

Traditionally, MPC has been applied to plants with rather slow dynamics
so that the computation time is negligible compared to the sampling inter-
vals used. One typical application is process control. The ability to handle
constraints explicitly and the MIMO-capabilities of MPC make it a suitable
choice for this type of applications. However, MPC has also been applied
to plants with much faster dynamics such as air planes and combustion
engines.

1.2 MPCtools

MPCtools is a freely available MaTLaB/Simulink-based toolbox for simula-
tion of MPC controllers. It is developed by Johan Akesson at the Depart-
ment of Automatic Control, Lund University. In combination with MATLAB,
MPCtools allows the user to create and simulate MPC controllers. The con-
trollers may also be applied to physical plants and nonlinear models via
Simulink.



1.3 Files needed

The following files are available through the course homepage, and needed

mpc_controller.m
mpc_tank_simulated.mdl

Also, you need to download MPCtools, which is freely available and can be
found through the course homepage.

Once MaTLAB is started, the directory where MPCtools is located needs to
be added with the following code

>>addpath(’/path/to/MPCtools-1.0")

2. Modeling

The quadruple-tank process is depicted in Figure 1. The goal is to control
the water levels in the lower tanks by applying voltage to the two pumps.
The flow through pump 1 is divided between tanks 1 and 4 and the flow
through pump 2 is divided between tanks 2 and 3. The tubes connected to
the lower tanks are narrower than those connected to the upper tanks so
that only 30% of the flows from the pumps enter the lower tanks. Because
of this, the system has nonminimum-phase behaviour (zeros in the right
half plane). Additionally, the pumps have limited capacity and you should
avoid flooding the tanks. In summary, the quadruple tank process is a
nonminimum-phase MIMO system with constraints on the control signals
as well as on the states.
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Figure 1 The quadruple-tank process.



2.1 Nonlinear Model

For tank i, the cross-section is denoted A; [cm?], the cross-section of the
outlet is denoted a; [cm?] and the water level is denoted A; [cm]. The con-
trol signals, uy [V] and ugy [V], control the flow through the corresponding
pumps. The flow through pump i is given by q; = k;ju; [ecm3s™!] where
k; [em3s~1v~1] is a constant. The flow is then divided by y; [1] and ¥ [1] so
that y1k1u; enters Tank 1 and (1 — y1)kju; enters Tank 4. The flows into
Tank 2 and 3 are given by similar expressions with ys, k9, and ugy instead.

Process specific constants are shown in Table 1

Name | Value Unit
A; 4.9 cm?
a; 0.03 cm?
k; 1.6 | cm?V1g!
Yi 0.3 1
ke 0.5 Vem™!

Table 1 Process specific constants.

The water levels in the tanks are described by the following nonlinear

equations?.
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2.2 Linear Model

The measured heights are converted into voltages by a factor k. [V em™1].
After a linearization around a stationary operating point (h?, hg, hg, hg, u(l), u

the following state-space representation is obtained, where Ax = x — x°,

0

Ay = y— 9% and Au = u — u®. The state vector x contains the heights

T
hi...h4 and we have u = (ul ug] .

!These equations are readily derived using a mass balance and Bernoulli’s law for each

tank.
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The choice of 71 and 5 will affect the zeros of the system. Throughout this
laboratory exercise we will have y; = 0.3 which yields a nonminimum-phase
system.

Since the tanks have limited heights (16 cm) and the pumps have limited
capacity (10V) the constraints in Table 2 will be used in this laboratory
exercise.

Signal | Min | Max | Unit
u; 0 10 A"
h; 0 15 cm

Table 2 Constraints on the control signals and water levels.

3. Controller Design
Start MaTLAB and open the file
mpc_controller.m

The goal of this section is to understand what this file does and to make
some initial parameter choices. We will do this by going over the different
parts of the file.

3.1 Model

The first part of the file defines the linear process model with y; = 0.3,
h(l) = hg = 10cm. A linearized state-space model is then discretized with
sample time T [s]. It is worth noting that three C-matrices and two D-
matrices are defined; C,q, C,q, Ceq, D,q, and D.q. The subscripts ’y’, ’2’,
and ¢’ correspond to measured, controlled, and constrained outputs re-

spectively, while ’d’ indicates that the model is given in discrete time.

Au,



% Discretize model
[Ad, Bd, Cyd, Dzd]l=ssdata(c2d(ss(A,B,C,D),Ts));

Czd = Cyd;
Ccd = kcxeye(4);
Dcd = zeros(4,2);

In this case C,qy = Cyq which means that the controlled outputs z are the
same as the measured outputs y. Since all states are constrained, C,.; is
set to the identity matrix times the conversion factor k. so that z. = k. Ax;
D.; is set to zero since there is no direct term from the control signals to
the constrained outputs.

Exercise 1 Consider the linearized model and the stationary point. The
controller measures the deviations from this point. What measurement
does the controller receive when the tanks are empty? What measurement
does the controller receive when the tanks are full? Which output from
the controller generates the maximum (minimum) allowed voltage (10 V
and 0V respectively) to the pumps? The measurement constant is k., =
0.5 Vem™!. Use the constraints of Table 2, rather than the real tank heights
in this exercise.

3.2 Constraints

The second part of the file defines the parameters needed for the MPC-
controller. First, the constraints are defined.

% Constraints

% limit delta u

du_max = []’;

du_min = []’;

% limit absolute value of u
u_max = []7;

u_min = []’;

% limit controlled outputs
z max = []7;

[1’;

z_min

Exercise 2 First make sure that you understand what the different con-
straints mean. Then enter values so that the constraints in Table 2 are
satisfied. Note that the constraints should be entered in terms of devia-
tions from the linearization point. Will there be any limitation du,,,, and
du,,;, on the maximum and minimum control signal change?

3.3 Prediction Parameters
Next, the prediction parameters need to be defined.

Exercise 3 As a starting point, enter the following values. Make sure
that you understand what the parameters mean. Draw a figure with time
on the x-axis which shows H, and H,.

% Prediction parameters
Hp=30; % Prediction horizon
Hu=10; % Horizon for varying input signal



Hw=1; % First penalty sample
zblk=2; Y blocking factor
ublk=2; ¥ blocking factor

3.4 Weighting Matrices

Exercise 4 Enter the following values for the weighting matrices; @ and
R for the controlled outputs and the control signals, and W and V for the
Kalman filter design®. Also, explain what this choice of matrices means
in the optimization problem. Assuming that zp and uyy, are scalar (that
is, symmetric spacing between the samples included in the optimization
problem), the cost function considered for MPC can be written as

H,—1
JR) =D |2k +i- 2w + Holk) — r(k+i- zpn + HulE)|[3
=0
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where the notation ||x||%, means x” @x. The Kalman filter updates the state
estimate according to

&(k+1) = Agx(k) + Bqu(k) + K(y(k) — Cyqx(k))

where the gain matrix K can be computed with knowledge about the co-
variance matrices W and V of the states and the measurement noise re-
spectively.

% Weights
Q=diag([1 11);
R=diag([1 11);
W=diag([1 1 1 1]);
V=0.1*diag([1 1]1);

Finally, a controller is created using the following command

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...
du_max,du_min,u_max,u_min,z_max, ...
z_min,Q,R,W,V,Ts,2,’qp_as’);

The second last argument is set to 2, which means that the controller in-
cludes a Kalman filter in order to estimate the unmeasured states. The last
argument specifies which solver to use for the optimization problem. MPC-
tools includes an active set solver, gp_as, an interior point solver, gp_ip, and
also supports use of of the function quadprog in the Optimization Toolbox.
For further reading, see Akesson [2006] and the references therein.

2If all states were available for measurement, the W and V matrices would not be
needed.



4. Simulation Experiments
Open the file
mpc_tank_simulated.mdl

The block named MPCController uses the object md which we created in the
previous section. Every time you make changes to the controller pa-
rameters, you need to rerun the file mpc_controller.m. We will now
simulate various MPC controllers to see the effects of different parameter
choices.
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Figure 2 The reference trajectory is specified in these blocks.

Exercise 5 The reference trajectory is specified in the blocks depicted in
Figure 2 with final values set to hirefi=h1+1, h2ref1=h2+3, hiref2=3, and
h2ref2=1. Run the simulation. The water levels should remain in [0, 15] cm
and the control signals in [0, 10] V. If there are constraint violation, try to
explain them.

Exercise 6 Now change z_max so that the maximum allowed water level
in Tank 2 is 14cm (instead of 15cm) and run the simulation. How does
this affect the results?

Exercise 7 Restore the constraints on the water level and change u_max
so that the maximum allowed value of ug is ug = 5V instead of ug = 10V.
Does the controller still manage to follow the reference trajectory?

Exercise 8 Restore the constraints on the control signal. The MPC is
based on a linearized model, wheareas the real proecss is de fact non-linear.
Deviations from the linearization point introduce a model error, which can
be viewed as a disturbance. The controller you have designed will not be
able to suppress the effects of this, since it lacks integral action. One way
of achieving integral action is to use a disturbance observer. To do this,
the second last input argument to MPCinit needs to be set to 4 instead of
2. Also, the weighting matrix W must contain weights for the disturbance
states as well. A suitable starting point is



W=diag([1 1 1 1 1 1]);

md = MPCInit(Ad,Bd,Cyd,Czd,Dzd,Ccd,Dcd,Hp,Hw,zblk,Hu,ublk, ...
du_max,du_min,u_max,u_min,z_max, ...
z_min,Q,R,W,V,Ts,4,’qp_as’);

Exercise 9 Tryvarying the @- and R-matrices. Are the results consistent
with your expectations for the following configurations?

Q=diag([4 1]); R=diag([1 11);
Q=diag([4 11); R=100*diag([1 11);
Q=diag([1 40]); R=diag([1 11);
Q=daig([1 40]); R=diag([1 100]);

Choose a configuration that you find yields good results.

Exercise 10 The choice of Hp is very important in order to preserve
performance and even stability. The blocking factor zblk may be used in
order to reduce the complexity of the optimization problem. To see the
effects of Hp, try (at least) the following configurations and comment on
the results. Note that the computation times may be quite extensive for
some configurations.

Hp=30; zblk=2;
Hp=90; zblk=6;
Hp=10; zblk=1;

Exercise 11 The sample time T affects the choice of Hp. To see this,
change the sample time to 75 = 0.1s and repeat the experiments in the
previous exercise.
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