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Example 1: A vehicle formation

X1 X2 x3 X4

Each vehicle obeys the independent dynamics

x1(t) x 0 0 0] [x1(2) Byuq(t) + wi(2)
X9 (t) 0 = 0 0 X9 (t) + B2u2 (t) + wo (t)
x3(¢) 0 0 = 0f |x3(¢) Bsus(t) + ws(2)
x4(t) 0 0 0 =| [x4(2) Bauy(t) + wa(t)

The objective is to make E|Cx; 1 — Cx;|? small fori = 1,...,4.

Example 3: River Water Flow

w1 ui
j 17
X1
le l*uz
X2
x1(t) = 0 0 0] [x1(2) Biui +w;
w; U %a(t) #ox 00| |x2(t) Bous + wy
Tl l73 .7233(t) 0 %= % 0 xg(t) Bsus + ws
x3 .72,'4(#) 0 0 = = x4(t) Byug + wy
223 Uy
T lﬁ
X4

Can Systems be Certified Distributively?

Componentwise performance verification without global model?

Building theoretical found ations for distributed control

Process

Controlle

We need methodology for
» Decentralized specifications
» Decentralized design
» Verification of global behavior

Example 2: A supply chain for fresh produc ts

X1 X2 X3 X4

Fresh products degrade with time:

xl(t) = 0 0 0 xl(t) —ul(t) + wl(t)
X2 (t) _ 0 « 0 0 X2 (t) ul(t) — Uy (t)
%3(t) 0 0 = O] |x3(2) us(t) — us(t)
X4 (t) 0 0 0 = X4 (t) us (t) + wy (t)
Example 4: Irrigation Channels
w1 \ “ wy \ Y2 ws \ us Wy \ Ua
X1 X2 X3 X4
x1(t) x % 0 0] [x1(2) u1(t) + wi(t)
xz(t) w % % 0 |xg (t) " [72] (t) + w2 (t)
X3 (t) 0 * * x X3 (t) us (t) + ws (t)
32?4(t) 0 0 = = X4 (t) U4(t) + W4(t)
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50 year old idea: Dual decomposition

min[Vi(z1,22) + Va(22) + Va(23, 22)]

= max min [Vl(zl,vl) + Va(22) + Vs(z3,v3) + p1(2z2 —v1) + ps(z2 — 1)3)}

DPi ZiyVi
The optimum is a Nash equilibrium of the following game:
The three computers try to minimize their respecive costs
Computer 1 min,, ,, [Vi(z1,01) — p1vi1]
Computer 2:  min,, [Va(z2) + (p1 + p3)22)
COmpUter 3: Inil'lz:],l,3 [V3(23,U3) —p3U3]
while the "market makers” try to maximize their payoffs

Between computer 1 and 2: max,, [p1(z2 — v1)]

Between computer 2 and 3: max,, [p3(zz —vs)]

Global stability of saddle algorithm

min V (x) = maxmin[V (x) + pT Rx]
Rx=0 p x

G, H > 0 adjustment rates

% =—G[(8V/6x)T + RTp]
p=HRx

| _ [-G(6?V/ox?) —GRT] [x
bl HR 0 P
V = |ifg + bl
%V =TG4+ pTH p
= T [(6*V /9x?)% + RTp] + pT (Rx)
=—xT(PV/x¥)x <0

Important Aspects of Dual Decomposition

v

Very weak assumptions on graph

No need for central coordination

v

» Natural learning procedure is globally convergent

» Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for control synthesis by prescriptive games

Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

» Network serving about 1 million inhabitants
» 20 main water reservoirs

» 30 pumping stations

» 13 peripheral subnetworks

Challenges for control

» Minimize cost for pumping

» Bounds on reservoirs

» Bounds and delays in pumping power
» Prediction of consumption

Optimal control using dual decomposition and saddle algorithm
Subnetworks separated by two variables: Water flow and price

The saddle point algorithm

Update in gradient direction:

Computer 1: {ji :_—8‘5’21//8214_ N
Computer 1 and 2: p1=2z2—u1

Computer 2: 29 = —0V3[0z2 — p1 — p3
Computer 2 and 3: P3s =22 — U3

Computer 3:

23 = —0V3/923
U3 = —8V3/8z2 + p3

Globally convergent if V; are convex!
Lyapunov function: Y, || + >, |vi| + >_; |pil
[Arrow, Hurwicz, Usawa 1958]

A long history

The saddle algorithm:
Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:
Mesarovic, Macko, Takahara 1970

Singh, Titli 1978

Findeisen 1980

Major applic ation to water supply network:
Carpentier and Cohen, Automatica 1993

Decentralized Bounds on Subopt imality

Given any p1, ps, Z1, 22, Z3, the distributed test
Vi(21,22) —p122 < alellivfll [Vi(z1,v1) — p1v1]
Va(22) + (p1 +p3)22 < angn [Va(22) + (p1 + p3)22]

V3(23,22) — p3Za < alealivgl [V3(23,v3) — p3vs]
implies that the globally optimal cost JJ* is bounded as

J* S Vl(él,éz) + Vz(ég) + V3(§3,§2) S ad*

Proof: Add both sides up!
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A control problem with graph structure

X1 X2 X7-1 xJ

O=———+0=— —0O=—+0

x1(7 + 1) An An 0 x1(7) uy(7)

JCQ(T-‘rl) _ A21 xz(T) n ug(‘[)
: Ag-ys| | :

xy(t+1) 0 Agyyy Ay | 12907 us(7)

J
Minimize the convex objective S >~ £;(x;(7), ui(7))
i=1
£(x(7)u(7))
with convex constraints x;(7) € X;, u;(r) € U; and x(0) = %.

Decomposing the Cost Function

N
. T
max min > D Vi(xiyui) +p; (Ui - Zj;éiAijxj)]
7=0 i=1
N

= m;leminZ [Zi(xi,ui) +piTUi - xlT (Zj#iAjz‘ipj) ]
=0

— UiX;
13

20 (x3,14,07)
so, given the sequences {p;(¢)}Y,,, agent i should minimize
what he expects others to charge him
——

N N N
T T T
D blwu)+ D oplui = ) af <Zj¢iAjin )
7=0 7=0 7=0

N——— S—
local cost what he is payed by others

subject to x; (¢ + 1) = Ajx;i(¢) + v;i(¢) + u;(¢) and x;(0) = %;.

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the
decentralized finite horizon problem

N
glinz 12 (x;(t), ui(2),vi(2))
(i —

Two sources of error: Finite horizon and non-optimal prices

~ Y

Fixed or flexible parameters N;, K;, ;?

Fixed parameters

» Simpler implementation
» Gives distributed LTI controllers
» Can be analyzed off-line or on-line

Flexible parameters

» Useful to handle hard state constraints
» Can speed up on-line computations
» Can slow down on-line computations

Decomposing the problem

Minimize SN ¢(x(z), u (7))

subject to
x1(7+1) Aj1x:1(7) v1(7) ui(7)
x2(r + 1) Agoxy(1) v2(7) uy(7)
N = M + . + N
xy(T +1) Aggxy(T) vy(7) uy(7)

where x(0) = x and
v = 304 Aij%)

holds for all 7.

Distributed Optimization Procedure

Local optimizations in each node

N
ViN,p(;Ci) = Ilfuxn Z 28 (x5(7),u;(7),vi(7))
=0

can be coordinated by (local) gradient updates of the prices
PH(E) = phE) + 7 [oh(0) — X, At (0)]

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions
on the step size sequence yik.

A Distributed MPC Algorithm

At time ¢:

1. Measure the states x;(t) locally.
2. Use gradient iterations to generate
> price prediction sequences {p;(¢,7)}Y,

> state prediction sequences {x;(t,7)};
> input prediction sequences {u;(¢,7)}Y;

warm-starting from predictions at time ¢ — 1.

3. Apply the inputs u;(t) = u;(¢,0).

Important parameters: Prediction horizons N;, number of
gradient iterations K; and gradient step sizes ;.

Hydro Power Valley

Benchmark in EU-project HD-MPC coordinated from Delft

Equipped with
10 turbines (T, Ty, Dy, . .., Dg, Cyz, Cy;) and 2 pumps (Cyp, Cyp)
3 reservoirs (lakes)
6 dams and reaches

Objectives: Follow power-reference. Avoid flooding.



Hydro Power Valley - modeling

Modeling:

1. Saint Venant PDE (mass and volume balance)

2. Spatial discretization (MOL) = non-linear ODE:s (249
states, 12 inputs, used as simulation model)

3. Linearization, discretization (h=30 min) and model
reduction = MPC-model (32 states, 12 inputs)

Simulation results

Control horizon: N = 10 (5 hours)

Figure: Power reference tracking (left) and Dam water levels (right)

Theorem on accuracy of distributed MPC

Suppose x(t + 1) = Ax(t) + Bu(t) for ¢t > 0 and for some p that

VNOPE) (1)) + (1 — @)ty (xi(), wi(2))

i

> Vip(t") (xi(t+1)) + Zf(t") (2i(8), i (#), 2 A0 ()

for all i and ¢. Then

Notice: Failure of inequality hints on update of N; or K;!
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Hydro Power Valley - control

Difficulties:

» Non-linear power-production p(¢) = u(t)TS;x(2)
- Linearize around nominal working point (xo, uo),
Ap = ul'SAx + xI'STAu

> Non-linear constraints; uc,uc, = 0,i = 1,2
- We have uc, > 0 and uc, <0, penalize —uc,uc,

Cost function:

5 (3 [5e] # a] or ] -

t=

with P = [ul'S «fST)

Notation

For a distributed accuracy test, let Vi”(xi) be an upper bound on

Inin ZO € (xi(7), wi(7),vi(7))
=

Such an upper bound can for example be computed by
minimization over a finite time horizon with a terminal constraint
at the origin.

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control
problems via independent decision-makers in every node,
acting in their own interest!

» Optimal strategies independent of global graph structure!
» States are measured only locally
» Linearly complexity (given horizon and iteration scheme)

» Distributed bounds on distance to optimality

Controller Tuning for Large Tri-diagonal Plant

Minimize V = E Y7 (|2 + [uif?)

xl(t + 1) 0.6 0.1 0 X1 (t + 1) ul(t) + wl(t)

wE+1)| o3 xg(t+1) us(t) + wa(t)
: 01 Z :

xn(t+1) 0 0.3 06| [xn(t+1) un(£) + wa(t)

We will optimize a tri-diagonal control structure



Computing the closed loop control performance

We are applying the control law u = —Lx to the system
x(t + 1) = Ax(¢) + Bu(t) + w(t)
where w is white noise with variance W. Define
I(L) =E (|l + lul})
Then the gradient with respect to a particular element L;; is
(Vid)ij = 2RLE [x;x] | + 2B"E [pix] |
where p(¢) is the stationary solution of the adjoint equation

plt—1) = (A— BL)"p(t) — (@ + L'RL)x(z)

Gradient iteration for the wind park

cost =
14.9887
L =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Gradient iteration for the wind park
cost =
7.8184
L =
0.0310 0.0595 0 0 0
-0.0168  0.1002  0.1151 0 0
0 0.0345 0.1357 0.0986 0
0 0 0.0636 0.0831 0.1351
0 0 0 0.0102 0.1295
Gradient iteration for the wind park
cost =
7.4004
L =
0.0576 0.0583 0 0 0
0.0115 0.1224 0.1381 0 0
0 0.0373  0.1500  0.1153 0
0 0 0.0546 0.1068 0.1566

0 0 0 0.0168 0.1594

A distributed synthesis procedure

1. Measure the states x;(¢) for ¢ = ¢,..., 6 + N
2. Simulate the adjoint equation
T
pit—1) =) (A—BL);;p;(t) — 2(Qxi(t) — Y LERju;(t))
JEE: JEE;

for ¢ = ¢p,...,t, + N by communicating states between nodes.

3. Calculate the estimates of Eu;x! and E p;x! by

t+N t+N

(E uixJT)est = ﬁ Z ui(t)xj(t)T (Epix}')est = ﬁ Z pi(t)xj(t)T

t=ty t=ty

4. For fixed step length ¥ > 0, update
(k+1) _ 7 () . AT T AT
Ly = L) + 2rR; (BuiT) + BT (Epiaf)

i
Let ¢,.1 = ¢, + N and start over.

est

Gradient iteration for the wind park

cost =
10.5429
L =
0.0327 0.0400 0 0 0
-0.0007 0.0560 0.0527 0 0
0 -0.0069 0.0434 0.0315 0
0 0 -0.0207 0.0131 0.0437
0 0 0 -0.0033 0.0373

Gradient iteration for the wind park

cost =
7.6192
L =
0.0404 0.0685 0 0 0
-0.0086 0.1076 0.1193 0 0
0 0.0382 0.1421 0.1094 0
0 0 0.0593 0.0991 0.1449
0 0 0 0.0131 0.1348

Gradient iteration for the wind park

cost =
7.2493
L =
0.0712 0.0654 0 0 0
0.0061 0.1224 0.1443 0 0
0 0.0341 0.1550 0.1166 0
0 0 0.0773 0.1409 0.1580
0 0 0 0.0418 0.1601



Gradient iteration for the wind park

cost =
6.9736
L =
0.0936 0.1056 0 0 0
0.0331 0.1775 0.1341 0 0
0 0.0563 0.1500 0.1215 0
0 0 0.0700 0.1564 0.1567
0 0 0 0.0567 0.1646

Gradient iteration for the wind park

cost =
6.7464
L =
0.1438 0.1208 0 0 0
0.0470 0.2031 0.1632 0 0
0 0.0749 0.1909 0.1046 0
0 0 0.0779 0.1843 0.1388
0 0 0 0.0445 0.1732

Control of a Large Deformable Mirror

Case study of a 1 m diameter deformable mirror, for adaptive
optics in large telescopes. Used to correct for aberrations
introduced by the atmosphere.

Using finite element method a spatially discretized model.

ME+CE+KE=F

» 6128 discretization points, each with 6 degrees of freedom.

» 372 force actuators.
» 1136 position sensors.

Method data and performance

Method data

» The sparsity of feedback matrix L is 0.63 %.

» Time horizon in gradient computation is 1000 time
samples.

» 1000 update iterations are performed.

The computation time for the method becomes 16.6 hours.
70 % of this time is spent on calculating matrix inversions in the
system simulation.

Gradient iteration for the wind park

cost =
6.8211
L =
0.1390 0.1070 0 0 0
0.0357 0.1821 0.1549 0 0
0 0.0668 0.1797 0.1098 0
0 0 0.0633 0.1685 0.1413
0 0 0 0.0589 0.1754

Performance Versus Number of Gradient Iterations

Expected total cost

T T T T :
| Cost of system, N=2_ ||
| ~ — — Cost of system, N=5

| Cost of system, N=20
1 —— Optimal cost
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A distributed controller with 100 agents, using only local data.
Fewer gradient iterations gives faster convergence, but worse
stationary performance.

Control Performance

The controller is used on the mirror when using a simulated
atmosphere. Strehl ratio is a common measure in adaptive
optics. Defined by S = e~7<\)/1)” where (¢) is the RMS error
at time ¢.

Strehl ratio
°
@

0 0002 0004 0.006 0008 001 0012 0014 0.016 0018 0.02
Time in seconds



Lecture Summary

Dynamic Programming (Explicit MPC)
» Heavy off-line computations and memory requirements
» Extremely fast on-line

Model Predictive Control

» Heavy on-line computations
» Wide range of applications

Distributed MPC

» Simplifies on-line computations
» Reduces communication needs

Gradient methods for large-scale systems

LCCC Focus Periods at Lund University

Invited world-leading researchers from Control, Computer
Science, Economics, Communication, Mathematics, . ..

In the past:
» Multi-agent coordination and estimation

Distributed decisions via games and price mechanisms
» Adaptation and learning in autonomous systems

v

» Distributed model predictive control and supply chains
Upcoming:

» System design meets equation-based languages
(September 19-21, 2012)

» Information and control in networks (October 2012)

» Formal verification of embedded control systems (April-13)

See www.lccc.lth.se and announcements.




