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The History of MPC

» A.l. Propoi, Use of Linear Programming methods for
synthesizing sampled-data automatic systems, 1963
Automation and Remote Control

» Used industrially since 1970s, see for example
J. Richalet, Model predictive heuristic control —
application to industrial processes, Automatica, 1978.

» Many industrial products: DMC (Aspen Tech), IDCOM
(Adersa), RMPCT (Honeywell), SMCA (Setpoint Inc),
SMOC (Shell Global), 3dMPC (ABB), . ..

» Strong theory development since about 1980 (linear) and
1990 (nonlinear)

The General Problem

Consider a nonlinear discrete time system
x(t+1) = fx(t),u(?), =x(0)=xo

with x(¢) € X, u(¢) € U. Find control law u = (x) minimizing
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Tuolo,w) = 3 £(x(t),u(t))

t=0

The minimal value is denoted V(o).

For simplicity, we will assume that 0 € X, 0 € U, £(0,0) =0
and £(x,u) > 0 with equality for x = 0, u = 0.

Conclusions of Lecture 1

v

Dynamic programming — Off-line controller optimization

» Main limitation: Complexity of optimal value function

v

Relaxed Dynamic Programming (with error bounds)
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Next: On-line optimization — Model Predictive Control

Model Predicitive Control (Receding Horizon Control)

At time ¢:

1. Measure the state x(t)

. Use model to optimize trajectory for¢ + 1,...,t + N
. Apply the optimization result u(¢) to the system

. After one sample, go to 1 to repeat the procedure
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Why is MPC popul ar?

» Models support understanding

» Systematic multi-input-multi-output design

» MPC controllers can handle constraints

» Systematic treatment of nonlinearities

The MPC Control Law

Consider
N-1
Viv(wo) = inf 3 £(x(t),u(2)
t=0

where infimum is taken over x(¢) € X, u(t) € U satisfying
x(t+1) = f(x(¢),u(t)) and x(0) = xo.

The MPC control law
iy (x) = argmin{Viy_y((x, 1)) + £(x, 1)}

gives the cost

VY (x0) = D £y (8), in (e (1))
t=0

Notice that Vi < Vo < ... < Vy < ... < Vo < V&Y



Example 1 — Double Integrator

N-1
V(o) = inf 3" (=0 + u(1)")
" =0

x(t+1)={(1) ﬂ x““m u(t) x(°)=x°:H
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Major Issues of MPC Theory

» Can we guarantee stability?
» Can we guarantee performance?

» What prediction horizon is needed?

Example 2 — Things can go bad

N-1 N-1
ing(\x(t)P +u(t)?) iur}foZ(\x(t)l2 +u(t)?)
=0 =0

x(t+1) = [(1) ﬂ () + m u(t)  x(t+1)= [(1) ﬂ ©(t) + [‘12] u(t)

u
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Marginally unstable for N < 2. Exponentially unstable for 3 < N < 5!

The effect of unstable zeros

Consider and input-output map Y (z) = G(z)U (2) where G(z)
has a real unstable zero at z = a. If U is a step, the step
response y(0), y(1),¥(2),..., with Zeta-transform Y (z), satisfies

0=Y(@)=) o)
t=0

so y(t) must take both positive and negative values. Moreover,
this must happen before the exponential decaying a~* becomes
dominating.

Hence an unstable zero implies that the response to control
action initially goes in the “wrong” direction. The time constant
of the unstable zero puts a bound on how fast the feedback
loop can become.

Example 1 — Double Integrator

N-1
o 2 2
Viv(an) = inf 3 (0 + 10000 (")
1 1]

x(t+1) = {0 1] x(t) + m u(t) (0) = xo = m
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Longer horizon required. Why?
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Long horizon need not help!

For the system

21(t+1) =u(t)
xo(t + 1) = —2x1(¢) + u(z)

the cost function

is minimized by the control law u(¢) = 2x1(¢), which gives the
unstable dynamcs

xl(t + 1) = 2x1(t)
The transfer function from u to x9 has an unstable zero at z = 2!

Bike example

A (linearized) torque balance for a bicycle can be approximated
as

Ay 2 '
o

jA B

d%e mVyl dp
JW =mglo + b <Vo,3 + aa>




Klein's Bicycle with Rear Wheel Steering

Richard Klein at UIUC has built several UnRidable Bicycles
(URBs). We have versions in Lund

Transfer function

0
amev, —5F a

P(s) =

bJ o, mgt
2 M9
J
mgt
Poleat p = 7w3 rad/s

RHP zero at z = %

Pole independent of velocity but zero proportional to velocity.
There is a velocity such that z = p and the system is
uncontrollable. The system is difficult to control robustly if z/p is
in the range of 0.25 to 4.

Example 2 — Things can go bad

inf > (<) +u(2)) ind 3" ({0 + u(0?)

2(t+1) = [(1) ﬂ () + m w(t)  x(t+1)= B ﬂ () + [‘12] u(t)

U
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No finite unstable zero. Unstable zero at z = 1.5.

MPC with Equilibrium Terminal Constraint

N-1
Iy (xo,u) =Y L(x(t),u(t))  Vi(xo) = inf oy (x0,u)

t=

subjectto x(¢) € X, u(t) € U, x(t + 1) = f(x(t),u(t)),
x(0) = x0 and the terminal constraint x(N) = 0.

un (x) := argmin, {Vy_1(f (x,u)) + £(x,u)}
The terminal constraint gives Vi (x) < Vy_1(x).

X
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UCSB Version
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MPC with Equilibrium Terminal Constraint

N-1
(o) = 3 L) u(®) V(o) = inf Iy (xo,u)
t=0 7

subjectto x(¢) € X, u(t) € U, x(t + 1) = f(x(2),u(t)),
x(0) = xo and the terminal constraint x(N) = 0.

un(x) == argmin, {Vy_1(f(x,u)) + 4(x,u)}
The terminal constraint gives Vi (x) < Vy_1(x). Hence

V(%) = £(x, un (%)) + V-1 (f(x, iy (x)))
2 U(x, un (%)) + VN (f(x, (%))

so Vy is a Lyapunov function that proves stability!
Moreover V,, < VEN < Vy.

Control of a Quadruple Tank

The transfer matrix from (u1,u2) to
(ylyyz)

7ic (A-=7r)a
1+ sTy (1+sT1)(1+sTs)
(1—=y1)ce V2C2
(1 +sTe) (1 +sTy) 1+ sTy

has unstable zero if and only if

0<7r+7r:<1

Is there a step response with
wrong direction?
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