A Family of Smooth Strategies for Swinging up a Pendulum

K. J. Åström

Department of Automatic Control Lund. Lund University, Sweden

J. Aracil and F. Gordillo

Escuela Superior de Ingenieros Universidad de Sevilla, Spain

Why are Pendulums Interesting?

- Good prototypes for many control problems
 - Stabilization and manual control
 - Large transitions swing up
 - Friction compensation
- Graduated difficulties
 - Pendulum, Pendulum on cart, Furuta pendulum,
 Spherical pendulum
- Well suited for interesting and instructive experiments
- Similar to many real engineering problems: power systems, phaselocked loops, Josephson junctions

Simple closed form smooth strategies for swing up and stabilization Idea: Shaping energy and damping

Contents

- 1. Introduction
- 2. Energy Shaping
- 3. Main Result
- 4. Simulations
- 5. Summary

Shaping the Potential Energy

A simple version:

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = \sin x_1 - u \cos x_1,$
 $E = \cos x_1 + \frac{1}{2}x_2^2$

Select a potential energy which gives suitable Hamiltonian

$$H_d(x_1, x_2) = V_d(x_1) + \frac{x_2^2}{2},$$

Find a control law for the original system which matches this

$$V'_d(x_1) = -\sin x_1 + u(x_1)\cos x_1,$$

A class of *compatible* energy functions

$$V_d = \cos x_1 - a_2 \cos^2 x_1 - \cdots + constant$$

The Simplest Case

Original potential energy: $V(x_1) = \cos x_1 - 1$

The feedback $u = 2a\sin x_1$ gives the potential energy

$$V_s = \cos x_1 - a \cos^2 x_1 - 1 + a$$

Minimum at the origin if a > 0.5

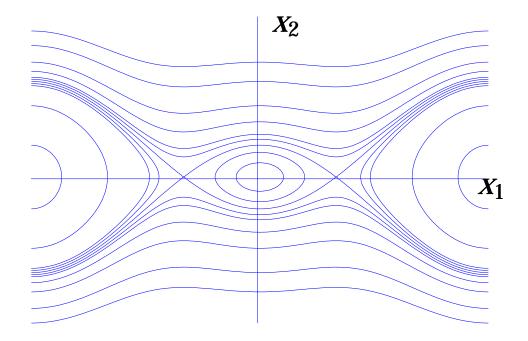
Original system (blue) a=1 (red) and a=3 (green)

Many other choices CDC/ECC Sevilla

The Hamiltonian

The feedback $u = 2a\sin x_1$ corresponds to the Hamiltonian

$$H_d(x_1, x_2) = V_d(x_1) + \frac{x_2^2}{2},$$



Easy to influence the behavior of an Hamiltonian system

Damping and Pumping

$$H_d(x_1, x_2) = \cos x_1 - a\cos^2 x_1 + \frac{x_2^2}{2} - \frac{a}{4}$$

Introduce an additional term in the control law

$$u=2a\sin x_1+v(x_1,x_2)$$

If $v(x_1,0)=0$ it will not influence the potential energy

$$\frac{dH_d}{dt} = -x_2 v \cos x_1$$

Choose v proportional to $x_2 \cos x_1$

$$v = bx_2 F(x_1, x_2) \cos x_1$$

Damping if F is positive pumping if F negative. Control law

$$u = 2a\sin x_1 + bx_2 F(x_1, x_2)\cos x_1$$

The Control Law

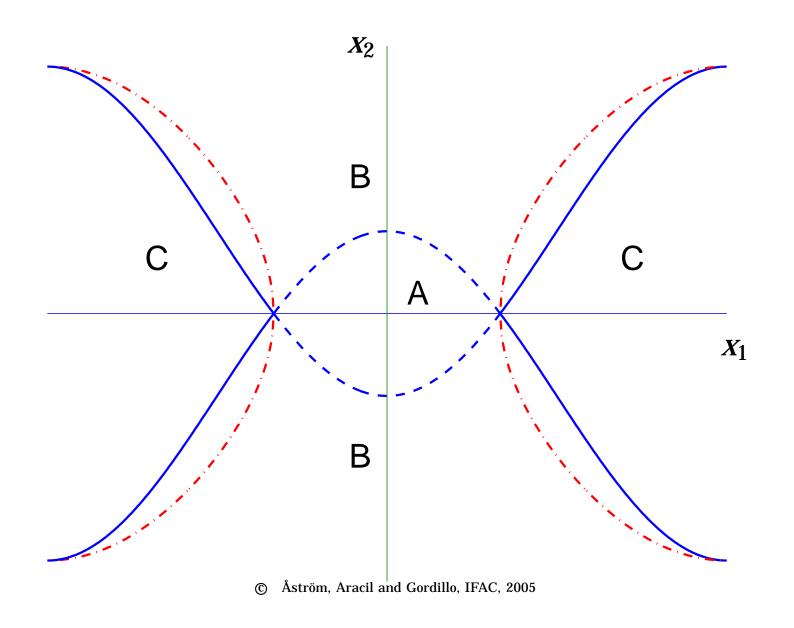
Control law

$$u = 2a\sin x_1 + bx_2 F(x_1, x_2)\cos x_1$$
$$\frac{dH_d}{dt} = -x_2 v\cos x_1$$

- $2a\sin x_1$ $spring\ term$
- $bx_2 F(x_1, x_2) \cos x_1$ damping term
- damping if F > 0
- pumping if F < 0

How to choose the smooth function $F(x_1, x_2)$?

Match critical part of Level curve $H_d(x_1, x_2) = 0$ with $F(x_1, x_2) = 0$



A Simple Approximation

Find a simple function $W(x_1)$ that matches the potential energy function V for $x_1 \ge x_1^0 = \arccos 1/2a$. We have

$$V_d(x_1^0) = 0$$

$$V_d(\pi) = -1 - a - \frac{1}{4a} = -\frac{(2a+1)^2}{4a}$$

A simple choice is

$$W(x_1) = \frac{2a+1}{4a}(2a\cos x_1 - 1).$$

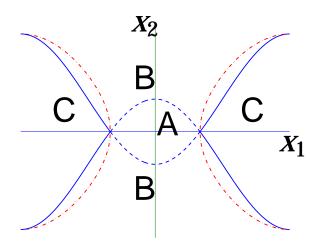
which gives

$$F(x_1, x_2) = W(x_1) + x_2^2/2$$

A Family of Control Strategies

Control law

$$u(x_1, x_2) = 2a\sin x_1 + bx_2 F(x_1, x_2)\cos x_1$$
$$F(x_1, x_2) = \frac{2a+1}{4a}(2a\cos x_1 - 1) + \frac{x_2^2}{2}.$$



- First term of u shapes the energy so that the origin is a center
- Second term introduces damping and pumping in appropriate regions
- Parameter a adjusts the width and depth of the potential well
- Parameter b adjusts the rate of damping and pumping

The Closed Loop System

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \sin x_1 - 2a\sin x_1 \cos x_1 - bx_2 F(x_1, x_2) \cos^2 x_1,$$

$$F(x_1, x_2) = \frac{2a+1}{4a} (2a\cos x_1 - 1) + \frac{x_2^2}{2}.$$

Equilibria

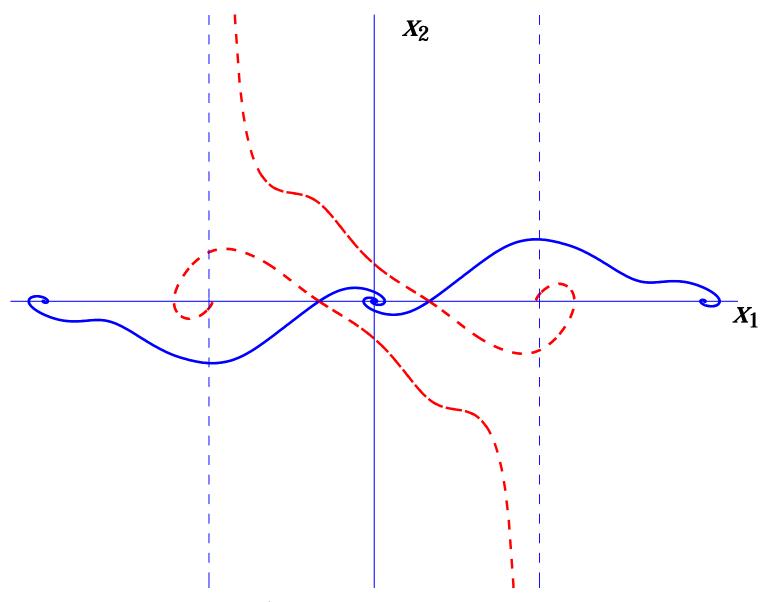
- $x_1 = 0$, $x_2 = 0$
- $x_1 = \pm \arccos 1/2a, x_2 = 0$

Large x₂

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} \approx -\frac{b}{2}x_2^3 \cos^2 x_1$$

Separatrices

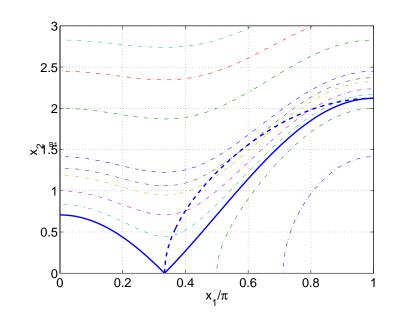


Main Result

Let $x_0 = \arccos(1/(2a))$ and introduce

$$\varphi_H(x) = \sqrt{\frac{1}{2a} + 2a\cos^2 x - 2\cos x}$$

$$\varphi_F(x) = \sqrt{\frac{1+2a}{2a}(1-2a\cos x)}, \quad x \ge x_0$$



$$\Phi(a) = \int_0^{x_0} \varphi_H(x) \cos^2(x) F(x, \varphi_H(x)) dx + \int_{x_0}^{\pi} \varphi_F(x) \cos^2(x) F(x, \varphi_H(x)) dx$$

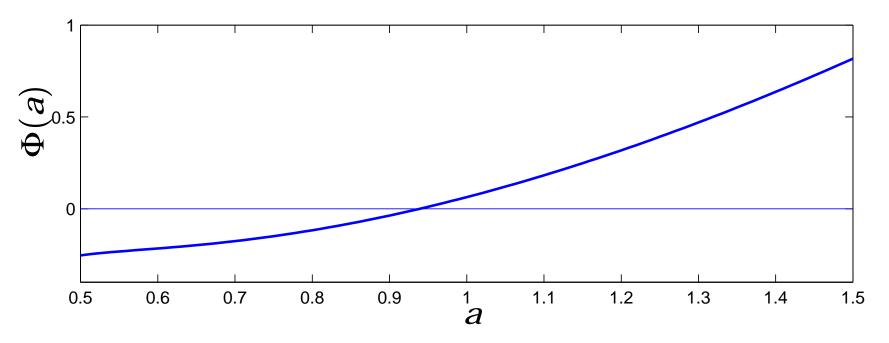
Theorem Sufficiency condition

Let a be such that $\Phi(a) > 0$ and let b > 0 then all solutions except those starting at $x_1 = \pm \pi$, $x_1 = 0$ and on the separatrices converge to $x_1 = 0$ and $x_2 = 0$.

The Function $\Phi(a)$

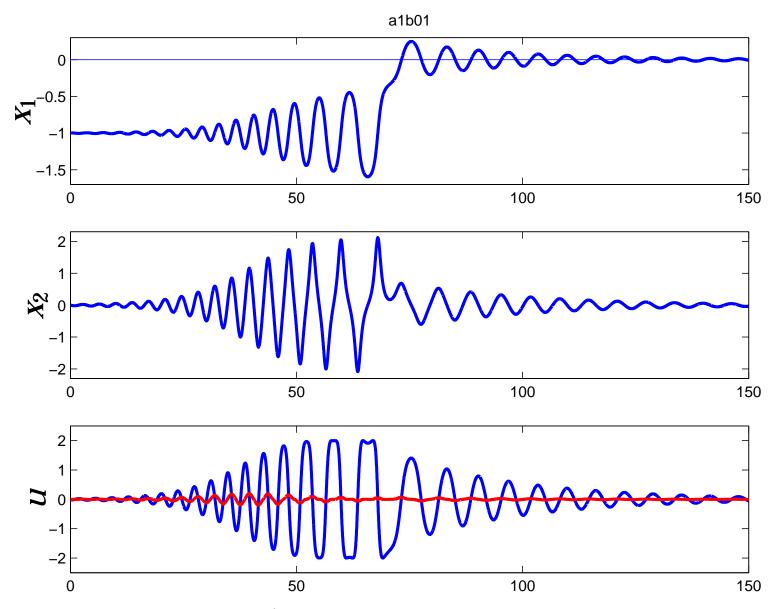
$$\Phi(a) = \int_0^{x_0} \varphi_H(x) \cos^2(x) F(x, \varphi_H(x)) dx + \int_{x_0}^{\pi} \varphi_F(x) \cos^2(x) F(x, \varphi_H(x)) dx$$

$$\varphi_H(x) = \sqrt{\frac{1}{2a} + 2a\cos^2 x - 2\cos x}, \qquad \varphi_F(x) = \sqrt{\frac{1 + 2a}{2a}(1 - 2a\cos x)}$$

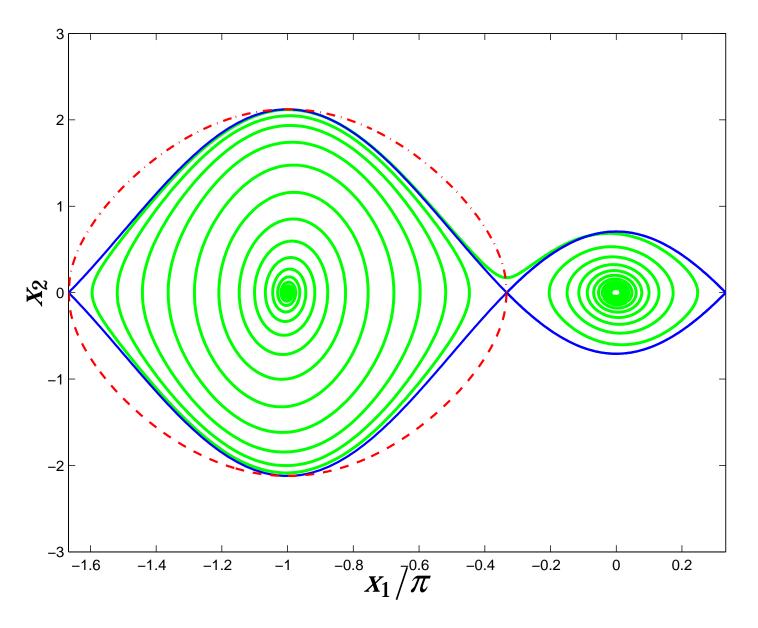


a > 0.94 (0.84) suffices! Potential well requires a > 0.5

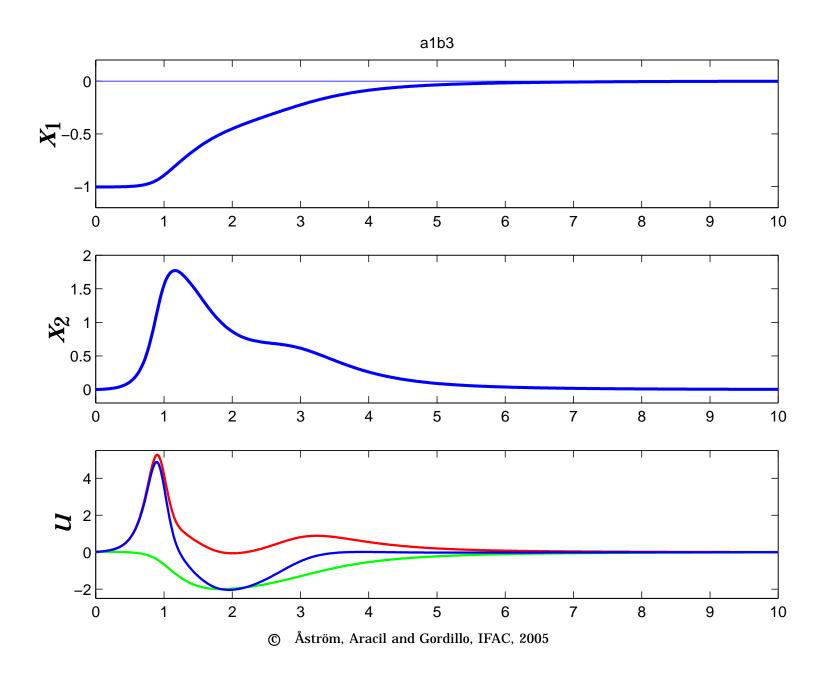
Simulated Swingup a = 1 and b = 0.1



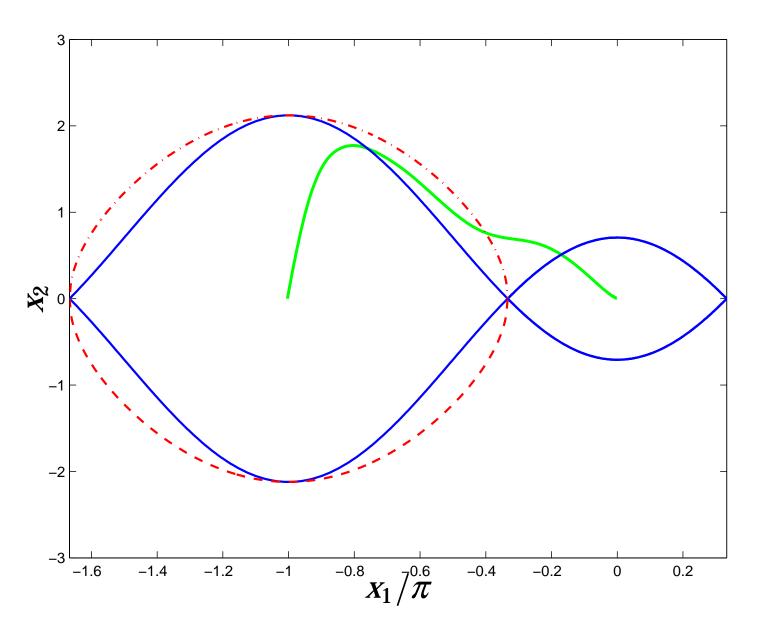
A Phase Plane



Simulated Swingup a = 1 and b = 3



A Phase Plane



Summary

- Two simple ideas
 Shape potential energy
 - Shape the damping
- The control law

$$u(x_1, x_2) = 2a\sin x_1 + bx_2 F(x_1, x_2)\cos x_1$$

$$F(x_1, x_2) = \frac{2a+1}{4a}(2a\cos x_1 - 1) + \frac{x_2^2}{2}.$$

- Parameters a and b have good physical interpretations
- Many other versions ECC/CDC Sevilla
- Magnitude of control signal
- Pendulum and cart
- Furuta and spherical pendulums