Distributed Computing Il

Jorn W. Janneck

Computer Science Dept.

Lund University

Introduction to Cloud Computing

homework solution

Ore prsmer s chvon to be the cavler

He Q caunf, stirting at Q.
1§ the Caunter gees mfo the room:
/)(the Su»'#\ s yo:

More it chowe

Lrcrement the canmt.
When the cont reches 99 (100~ hiwse /f)

fell e warden evtyome tos ters,

/)L the swifch is clam
Leae .

(f ony ather Pﬁwgaeshb%erwm-
ff e swifcA 60@&0‘\0'&;\? has rot

wemaa it up-
Meve rFup

Ofhewrse leove H. (Emma Fitzgerald)

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

al discoveries on the island of Paxos reveal that ment fune

corling

etic propensity of its time 1 malntained

tary record, despite the i

The I

to the design of dis

MO Lt

Categeries and Subject Descriprors: C2.4
Systema— Network «
11 [Admi
[l
Additional Key Weords and Ph

ral Terms: Design,

e commit, voting

This submission was re
office. Despite its age, the editor-in-chief felt that it was warth publishing. Becanse the
author is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative 5 ~ellent model
for how to implement a distributed computer system in an asynchronous environment.

ently discovered behind a filing cabinet in the TOCS editorial

Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.
The anthor does give a brief discussion of the Paxon Parliament's relevance to dis-

tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer s tists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997]. I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Avenue,

1l Equipment Corporation, 130 Lytt

1.
o copy without fee all ar
e o

il Qs ¢

nted provided that the copie
ACM copyright notice and the

ying is by permissi

nacle or dis direct ¢

the
and for

ive

" Computing Machinery. To copy otherwise, slish, requires :
ape ific permission.

1 ACM O000-0000, O00-0000 00,10

Victor: Paxos

consensus & data structures

Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications

lon Stoica', Robert Morris?, David Liben-Nov

vell’, David R. Karger!, M. F

shoek!, Frank Dabek?,

Hari Balakrishnan®

Abstraei—
A Tundamental problem that confrants peer-lo-peer m}.pm

efficient location of the node that stores a desired da paper
presemts Chord,a distribaled Inokup protocal that ddresse ths problems
Chord provides suppart for just sne operation: given a ke

node. Data location can be easily implemented oo
ting a key with each data item, and storing the key/data pair at
e node o which the ke
and leave the sysiem, and can answer queries even if the sysiem s contin-
analysis and sinvukations shw
ate maintained by

L INTRODUCTION

er-lo-peer systems and App]uulmlwdn' distributed systemms
without any centralized control or hierarc] ganiza in
which each node runs software with cqun'd]cnl functionality.
A review of the features of recenl peer-lo-peer applications
yields a long list: redundant storage, permanence, selection of
nearby servers, anonymity, search, authentication, and hierar-
chical naming. Despite this rich set of leatures, the core oper-
ation in most peer-to-peer systems is efficient location of data
items. The contribution of this paper is a scalable protocol for
Tookup in a dynamic peer-to-peer system with frequent node ar-
rivals and departures.

The Chord protocol supports just one operation: gi

tem

A Chord node requires information about O(lag V) other

nodes for efficient routing, but performance degrades gracefully
when that information is out of date. This is important in prac-
tiee because nodes will join and leave arbitrarily, and consis-
tency of even ((log V) state may be hard to maintain. Only one
picce of information per node need be correct in order for Chord
Lo guarantee correct (though possibly slow) routing of quer
Chord has a simple algocithm for maintain;
 dynamic envirenment.
The contributions of this paper are the Chord algorithm, the
proof of its correctness, and simulation results demonstrating
the strength of the algorithm. We also report some initial results
on how the Chord routing protocol can be extended 1o ke into
account the physical network topalog;
application of Chord and how Chord behaves on a small Internet
testbed are referred 10 Dabek er al. [9]. The results reported by
Dahek er al. are consistent with the simulation results presented
his paper.

The rest of this paper is structured as follows. Section IT com-
pares Chord to related work. Section 11 presents the system
model that motivates the Chord protocoel. Section IV presents
the Chord protocol and proves several of its properties. Sec
ton V presents simulations supporting

+. Finally, we summarize our contributions in Sec-

e

i this information

Readers interested inan

our cluims about Chord's

it maps the key onto a node. Depending on the
Chord, that node might be responsible for storin,
ated with the key. Chord uses consistes
keys to Chord nodes. Consistent hashing tends o balance load,
since each node receives roughly the same number of ke;
requires relatively litle movement of keys wh
leave the system

Previous work on consistent hashing assumes that each node

1 the system, an approach

is aware of most of the other nodes
that dves not scale well w large numbers of nodes. In con-
trast, each Chord node needs “routing” information about only
4 few other nodes. Because the routing wble is distributed, o
Chord node communicates with other nodes i order to perform
a lookup. In the steady state, in an N-node system, each node
maintains information about enly Oflog V) other nodes, and re-
solves all lookups via Ofloz V) messages to other nodes. Chord
‘maintains its routing information as nodes join and leave the sys-

puer

for

Science

lioss in reverse .A]ph.ﬂxlx.l\ orde

This research was sponsored by the Defense Ad:
Agency (DARPA) andl the Space ad Naval Warkare Systems Ceates,
under conlract NG6OD1-00-1-8933,

tion VIL.

I RELATED WOl

Three features that distinguish Chord from many other peer-
to-peer lookup protocols are its simplicity. provable correciness,
and provable perforny

To clarify comparisons with related work, we will assume in
section a Chord-based application that maps keys onto val-

A wvalue can be an address. a document, or an arbitrary
data itern. A Chord-based application would store and find each
value at the node to which the value's key maps.

DNS provides a loakup service, with host names s keys and
IP addresses (and ather host information) as values. Chord could
provide the same service by hashing each host name 1o a key [7].
Chuord-based DNS would require no special servers, while ordi-
nary DNS relies on a set of special ot servers. DNS requires
manual 12 of the routi (HE records)
that allows elients 1o navigate the name server hierarchy; Chord

automatically maintains the correctness of the analogous rout-

¢ information. DNS only works well when host names are
structured o reflect administrative boundaries; Chord impose:
no naming structure. DNS is specialized 1o the task of fin
numed hoss or services, while Chord can also be used 10 find

Manfred: DHT

consensus

agreement
all correct processes end up with the same value

termination
all correct processes will eventually make a decision

(strong) validity

the value decided upon is one of the input values
weak validity

if all processes receive the same input value,
all correct processes will decide on it

2PC (two-phase commit)

phase 1

propose & vote

phase 2

commit or abort

=i

agreement?
. o validity?

termination?
Ps + ./

robustness?

3PC (three-phase commit)

phase 1

propose & vote

Vi

agreement?

phase 2

prepare to commit or abort

prepare commit()
aboﬁ

validity? \L / / \\ / /
termination? /

/vote(éYl /
a0
done()

how does robustness
differ from 2PC? y

phase 3

commit

/

Q

o

>
—~~
~

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

