
pyParticleEst

A Software Framework for Nonlinear Estimation
Jerker Nordh

Department of Automatic Control, Lund University
jerker.nordh@control.lth.se

github.com/jerkern/pyParticleEst

Introduction
Particle filters and smoothers have been successfully applied to

a large number of challenging nonlinear estimation problems, such
as target tracking, indoor navigation, simultaneous localization and
mapping (SLAM) and radio channel estimation.

The particle based methods allow estimation of both nonlinear sys-
tems and non-Gaussian noise distributions. In contrast to e.g. the Ex-
tended and Unscented Kalman filters (EKF/UKF) they can also handle
multi-modal distributions.

While the usefulness of these methods is widely recognized there
is very little software support for applying them to new problems.
Typically a particle filter is written from scratch for each new appli-
cation, although of course individual researchers reuse code they’ve
written before. For the typical particle filter this is not a big issue,
since the amount of code required is rather small, there is however a
few caveats to avoid to achieve the best possible performance.

The complexity of the implementation quickly increases when more
advanced methods are to be used, eg. different variants of back-
ward simulators or Rao-Blackwellized filters/smoothers. Most of this
complexity is not problem specific and the implementation could be
reused to reduce the effort needed when solving new problems and
reduce the risk of software bugs. Providing such a framework to facil-
itate reuse is the focus of the work presented here.

Capabilities
Filters: PF, APF

Smoothers: FFBSi, FFBSi-RS, FFBSi-RSAS, MH-FFBSi, MHBP,
MH-IPS

Parameter estimation: PS+EM

Model classes: LTV, NLG, MLNLG (Rao-Blackwellized),
Hierarchical (Rao-Blackwellized)

Example

10 20 30 40 50 60 70
−20

−10

0

10

20

True
Particles
Filter mean
Smoother mean

xt+1 = f (xt) + vt = 0.5xt + 25
xt

1 + x2
t

+ 8 cos 1.2t + vt, vt ∼ N(0, Q)

yt = g(xt) + et = 0.05x2
t + ek, ek ∼ N(0, R), x0 ∼ N(0, P0)

c l a s s Model (nlg . Nonl inearGauss ianIn i t ia lGauss ian) :
def i n i t (s e l f , P0 , Q, R) :

super (Model , s e l f) . i n i t (Px0=P0 , Q=Q, R=R)

def get g (s e l f , p a r t i c l e s , t) :
return 0 . 0 5 * p a r t i c l e s * * 2

def g e t f (s e l f , p a r t i c l e s , u , t) :
return (0 . 5 * p a r t i c l e s +

2 5 . 0 * p a r t i c l e s /(1+ p a r t i c l e s * * 2) +
8*math . cos (1 . 2 * t))

Future work
The framework will continue to be expanded with interesting new

methods and model classes, outside contributions are also welcomed.
There is also an interest in collaborations and to provide assistance

with using the software to solve new and challenging problems.

Acknowledgements: The author is a member of the LCCC Linnaeus Center and
the eLLIIT Excellence Center at Lund University.

Implementation
Overview

• Licensed as LGPL, free for commercial use and can be integrated
into proprietary software. Changes to the library itself have to be
published.

• Implemented in Python, provides a completely free environment
that supports a large number operating systems and hardware plat-
forms.

• Uses Numpy/Scipy for efficient numerical computations

Design

• Object-oriented, models are defined by specializing base-classes and
reusing common characteristics

• Algorithms define a set of interfaces that are required for that algo-
rithm

• Provides a set of base-classes reducing the implementation burden
for typical model classes such as LTV, NLG, MLNLG

• Easy to incorporate new algorithms and model classes

Particle Filter
The particle filter (PF) is an application of sequential importance

sampling. It proposes N samples from the dynamics model, these
samples are then reweighted using the information obtained from the
measurements.

1. Draw x
(i)
0 from p(x0), i ∈ 1..N

2. Set w
(i)
0 = 1

N, i ∈ 1..N

3. For t = 1..T − 1

(a) For i = 1..N

i. Sample x
(i)
t+1 from p(xt+1|x

(i)
t)

ii. Set w
(i)
t+1 = w

(i)
t p(yt+1|x

(i)
t+1)

(b) Normalize weights, ŵ(i) = w
(i)
t+1/ ∑j w

(j)
t+1

(c) For i = 1..N

i. Sample x
(i)
t+1 ∼ p(xt+1|yt+1) by drawing from the categori-

cal distribution defined by (x
(k)
t+1, ŵ(k)), k ∈ 1..N

ii. Set w
(i)
t+1 =

1
N, i ∈ 1..N

This algorithm is typically improved by not performing the resam-
pling step (3c) at every iteration, but only when some prespecified
criteria on the weights is fulfilled.

A variant of the Particle Filter is the Auxiliary Particle Filter (APF)
which incorporates the information of the measurement already in the
proposal step (3ai) by only drawing samples from particles where the
measurement is predicted to be likely.

Particle Smoother
Most particle smoothers work through the concept of backward

simulation (FFBSi). In FFBSi the particle estimates generated from
the filter are reused when creating backward trajectories by randomly

choosing the ancestor according to ω
(i)
t|T, which for normal statespace

models can be calculated as ω
(i)
t|T = ω

(i)
t|t p(xt+1|x

(i)
t). This reduces the

degeneracy of the estimate of xt|T that is typical for the particle filter
when t ≪ T.

Evaluating the weights ω
(i)
t|T for the categorical distribution in the

backward step is computationally expensive, therefore a number of
methods have been proposed to reduce the time complexity, one is
to use rejection sampling (FFBSi-RS) another is to use a Metropolis-
Hastings sampler (MH-FFBSi)

Additionally there exists methods which not only reuse the point es-
timates from the forward filter but also propose new values, two such
methods are the Metropolis-Hastings Backward Proposer (MHBP)
and the Metropolis-Hastings Improved Particle Smoother (MH-IPS)

Reglermöte, Linköping, 2014

