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Abstract: The fast-increasing demand and relatively slow growth of infrastructure capacity are
providing a strong motivation for research in real-time urban traffic controls that make the best
use of novel sensing in order to increase efficiency and resilience of the transportation system.
In our contribution, we focus on a class of dynamic feedback traffic signal control policies that
are based on a generalized proportional allocation rule. The proposed traffic signal controls are
decentralized (they make use of local information only), scalable (they are independent of the
network size and topology), and universal (they do not rely on any information about external
inflows or turning ratios). In spite of their fully distributed nature, we prove that such control
policies achieve a global objective, maximum throughput, in that they stabilize the urban traffic
network whenever possible under the given capacity constraints.

The traffic model we consider consists in a network of interconnected vertical queues with
deterministic dynamics driven by physical laws (conservation of mass and preservation of non-
negativity of the traffic volumes) as well as scheduling constraints (described as a set of phases,
each phase consisting in a subset of lanes that can be be given green light simultaneously).
This results in a differential inclusion for which we prove existence and, in the special case
of orthogonal phases, uniqueness of continuous solutions via a generalization of the reflection
principle. Stability is then proved by interpreting the generalized proportional allocation
controllers as minimizers of a certain entropy-like function that is then used as a Lyapunov
function for the closed-loop system.
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1. INTRODUCTION

In today’s transportation systems, traffic light control
plays a key role for traffic throughput and congestion
avoidance. In order to design such controllers, one ap-
proach is to used fix-timed controllers, as proposed in e.g.,
Miller (1963). For the controllers to be more robust under
changing arrival rates, constantly re-tuned controllers have
been developed for several cities, for example SCOOT,
see Bretherton et al. (1998). With the recent development
of cheap and reliable sensors, the stage is now set for the
introduction of feedback-based traffic light controllers.

In queuing networks, research on stabilizing feedback con-
trollers has been ongoing for some decades. While the
original back-pressure controller presented in Tassiulas
and Ephremides (1992) is not directly applicable to road
traffic networks, !, recent works Varaiya (2013b,a); Wong-
piromsarn et al. (2012) have adapted it to the purpose by
giving the back-pressure controller exogenous information
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1 The controller assumes that the vehicles are distinguishable by
their destination, and can not for instance handle when a lane is
used both for right turns and vehicles that want to proceed straight
forward.

about the turning ratios. However, the turning ratios are
often difficult predict with high accuracy. In Gregoire et al.
(2014) the dependency of the turning ratios is avoided by
letting the back-pressure controller check if the incoming
queue-lengths are above a certain threshold level and react
to that. However, this modification leads to an unspecified
shrinkage of the network’s stability region. In Le et al.
(2015) a solution is proposed on how to construct a back-
pressure controller relaying of estimates of the turning
ratios.

In this paper, we study feedback traffic signal control poli-
cies that are based on a generalized proportional allocation
rule. These controls do not require any information about
the turning ratios or the external arrival rates (a property
referred to as universality), they are independent of the
network size and topology (scalability), and make use of
local information only (decentralized) ? The stability anal-
ysis of the proportional allocation policy for data networks
was first done in Massoulié (2007) and in Walton (2014)
the stability was analyzed in a multi-commodity setting.

2 In fact, as compared to the back-pressure controllers, the gen-
eralized proportional allocation controllers proposed here requires
state information about the incoming lanes, while the back-pressure
controller requires information about the outgoing lanes as well.



We focus on the continuous-time traffic network dynamical
model first studied in Savla et al. (2013), Savla et al.
(2014), and Nilsson et al. (2015), and extend the results
proved there in several directions. First, while the analysis
in Savla et al. (2013) and Savla et al. (2014) was restricted
to acyclic network topologies and built on monotone flow
networks techniques (c.f. Como et al. (2013, 2015)), we
consider here general network topologies for which the
resulting closed-loop traffic network dynamics are not
monotone. This requires the use of different techniques
to establish stability, in particular suitable entropy-like
Lyapunov functions, similar to those used in Massoulié
(2007) for data networks and adapted to traffic networks
in Nilsson et al. (2015).

Second, in contrast to Nilsson et al. (2015) where sta-
bility of generalized proportional allocation policies was
studied in a setting where only one incoming lane to each
junction can receive green light simultaneously, we handle
the general case where several lanes can receive green
light simultaneously in each phase. Far from being trivial,
this generalization implies several additional challenges,
in particular related to the fact that the resulting traffic
network dynamics can no longer be expressed as a regular
(Lipschitz-continuous) differential equation, for which ex-
istence and uniqueness of solutions are standard facts. This
problem results from the fact that, if there are phases that
contain more than one lane, the generalized proportional
allocation controller can assign green light to empty lanes,
so that the dynamics when some lanes are empty needs
to be properly modified in order to guarantee that traffic
volumes remain nonnegative over time (equivalently, that
the nonnegative orthant in an invariant).

In this paper, we handle this issue by first formulating
the closed-loop controlled traffic network dynamics as a
differential inclusion that incorporates all the mass con-
servation, non-negativity and traffic signal control con-
straints. This is quite a natural model choice for traffic
queues and has previously been proved to be the fluid
limit of queueing networks, see e.g. Massoulié (2007), as
well as traffic networks, see Muralidharan et al. (2015).
While existence of continuous solutions then follows from
general results on differential inclusions, one of our main
contributions consists in proving existence and uniqueness
of solutions for the case where the phases are locally
orthogonal (equivalently, that each lane belongs to at most
one local phase): this is proven in Theorem 1.

Another benefit of the differential inclusion approach is
that the stability result holds for every absolutely contin-
uous solution of the differential inclusion. Such stability
analysis includes additional challenges with respect to the
case addressed in Nilsson et al. (2015): in particular, we
use an argument based on LaSalle’s principle. Numerical
simulations for small networks are also presented in order
to illustrate such theoretical results and to test a variation
of the studied controls aimed at handling finite buffer
capacity constraints.

1.1 Notation

Let R denote the set of real numbers and Ry the set of
nonnegative reals. For finite sets A and B, let |A| denote

the cardinality of A and R4 the space of real-valued
vectors whose elements are indexed by A.

Let G = (£,V) denote a directed multigraph where £ is the
set of directed links and V is the set of vertices or nodes.
For each link e = (¢,j) € &, let 7. = j € V denote the
head of the link e and o, = i € V the tail of the link e.
For each node v € V, introduce the set of incoming links
as &, ={e€ & : 1. =0}

2. TRAFFIC NETWORK DYNAMICS MODEL

We model the traffic network as a directed multigraph
G = V&), where V = {1,...,m} is the set of nodes that
represent signalized junctions and € = {1, ..., n} is the set
of links that represent lanes. To each lane, two nonnegative
variables are associated: the traffic volume x;(t) and the
outflow z;(t). While we assume no a priori upper bound on
the traffic volume x; > 0, we will assume that the outflow
is upper bounded by a constant flow capacity, ¢; > 0, so
that 0 < z; < ¢; for all ¢ € £. Traffic volumes, outflows
and capacities for each lane are all stacked up into vectors
x(t) € Ri, z(t) € Ri and c € R‘i, respectively. Moreover
the notation C' = diag (c) is used for the diagonal matrix
with the diagonal c¢. The non-negativity constraints on the
traffic volume can then be compactly written as

x>0, (1)

while the non-negativity and capacity constraints on the
outflow can be expressed as

0<z<ec. (2)

Traffic propagates among consecutive lanes according to
a routing matric R € R}™™ whose (i, j)-th entry R;; —
referred to as a turning ratio— represents the fraction of
flow out of lane i that proceeds towards lane j. Conserva-
tion of mass implies that Zjes R;; < 1foralliec &, the
quantity 1—3%" jee R;; > 0 representing the fraction of flow
out of lane 7 that leaves the network directly from lane 1.
In other terms, the routing matrix R is row-substochastic.
Inflows from the external environment are modeled by
an exogenous and possibly time-varying arrival vector
A = A(t) € R, whose entries \; > 0 describe the external
inflows on the lanes i € £.

Definition 1. The routing matrix R is: adapted to G if
R;; = 0 for all 4,5 € &£ such that ;, # ¢, i.e., Ry; =0
whenever lane ¢ does not end in the junction where lane
j starts; outflow-connected if, for every ¢ € &, there
exists some j € & with >, - Rjx < 1 and a path
1 = 19,%1,...,1; = j that starts in 4, ends in j, and is
such that IT;<;<;R;_1,; > 0; inflow-connected with respect
to an arrival vector A € R if, for every j € £, there exists
some i € £ and a path i = ig,41,...,4 = j that starts in
i, ends in j, and is such that II1<;<;R;—1,; > 0.

For a given network topology G, a routing matrix R
adapted to G, and an arrival vector A\, we consider the
traffic network dynamics

i=A+(R" - 1I)z. (3)
Observe that the i-th row of equation (3),

i‘i:Ai‘FZRjizj — Zi,
J
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Fig. 1. Three non-zero phases for network with 6 lanes.

can be interpreted as a law of mass conservation as it
equates the growth rate of the traffic volume ; to the
imbalance between the total inflow in lane 7 and the total
outflow z; from it, the former being given by the sum of
the arrival rate and the total outflow from other lanes that
is directed to lane 3.

In addition to the capacity and non-negativity constraints
(2), the outflow vector z is required to satisfy scheduling
constraints as follows. Let a feasible phase be a subset
of lanes that can be given green light simultaneously,
and let P C {0,1}¢ be the set of all feasible phases.
We shall denote by p = |P| the total number of feasible
phases and compactly represent the feasible phase set P
as a binary matrix P € {0,1}"*? whose entries P;; are
such that P;; = 1 if lane 7 is given green light during
phase j, and P;; = 0 otherwise. Throughout, we shall
assume that the empty phase (green light to no lane)
is always a feasible phase, equivalently, that the feasible
phase matrix P contains a column of all Os, that, without
loss of generality we will assume being the last, i.e., the
p-th, one. E.g., the network in Fig. 1 has n = 6 lanes and
p — 1 = 3 non-zero feasible phases: its phase matrix is

11000177
P:

O~ O

01
00
00

OO =

10
01
00

Let us denote the unit p-simplex by
U={ueRl: Tu=1}
and let
uel (4)
be a control signal whose entries are to be interpreted as
the fractions of time allocated to each phase. Considering
that 0 < z; < ¢; when lane i is given green light whereas
z; = 0 when it is not, we have that, for a given control
signal u € U the outflow vector must satisfy the constraint
0<z<CPu. (5)
Observe that (4)—(5) imply (2), but not vice versa, except
for the trivial case when P contains the all-1 phase (green
light to every lane simultaneously). Moreover, we will
assume that the outflow from a nonempty lane is always
the maximum possible given the control u, i.e., that
7' (CPu—2)=0. (6)
In fact, the constraint above, combined with (5) implies
that the inequality z; < ¢; 3°;(P;ju;) can be strict only
when x; = 0: indeed, allowing for the possibility of a strict
inequality z; < ¢; Y j(Pijuj) when x; = 0 proves necessary
in order to meet the nonnegativity constraint x; > 0.

Throughout, we will use the following definition of solution
of the traffic network dynamics and of its stability.

Definition 2. A solution of the traffic network dynamics

associated to a routing matrix R adapted to a network
topology G and a possibly time-varying arrival vector \ is

a triple of trajectories (z(t), z(t), u(t))t>0 such that x(t)
is absolutely continuous and the constraints (1)—(6) are
satisfied for almost all ¢ > 0. A solution of the traffic
network dynamics is stable if there exists a constant vector
b € R such that 2(t) < b for all ¢ > 0. The traffic network
dynamics is said to be stable if all its solutions are stable.

Proposition 1. (Necessary condition for stability). Let R
be an outflow-connected routing matrix adapted to a
network topology G and A a possibly time-varying arrival
vector. Let P be a feasible phase matrix with p phases,
the unit p-simplex, and

CPU :={z€R": 0< 2z < CPu for someuecUd}. (7)
If the traffic dynamics (1)—(6) admit a stable solution, then
the average arrival vector A(t) = + fot A(s)ds satisfies

. . _ pTy—-1% P77 —
tllffloo dist (I — R")™"A(t),CPU) = 0. (8)
In particular, if the arrival vector A € R”} is constant, then
(I-R"Y"'\eCPU. (9)

Proof. For every t > 0, one has that

z(t) = z(0) + M — (I — RT)/O 2(s)ds. (10)

Outflow-connectivity of R implies that its spectral radius
is strictly less than 1, so that the matrix (I — RT) is invert-
ible with nonnegative inverse (I — RT)™! = Y, . (RT)*.
Then, one can multiply both sides of the identity (10) by
1(I — RT)~! and rearrange terms, obtaining

(I —RTY "\ =2z(t)+<(t), (11)

where

z@:léz@m, £(t) =

t

Note that z(t) € CPU since u(s) € CPU for 0 < s <t by
(4)—(5) and C'PU is a convex set. Hence, (11) implies that
dist(A, CPU) < |le(t)]], t>0.

On the other hand, boundedness of x(0) and z(t) implies
that () vanishes as ¢ grows large, hence (8) holds true. In

particular, if the arrival vector A € R’} is constant, then
necessarily (9) holds true.

(I = RT) ™ (a(t) — 2(0)).

~+ | =

~

Proposition 1 establishes a fundamental limit for stability
that depends only on the arrival rates, network topology,
lane capacities, and phase set, but otherwise holds true for
every control strategy (e.g., time-varying, feedback, feed-
forward) and every solution of the traffic network dynam-
ics (1)—(6). In particular, it does not have any implication
on the existence and uniqueness of such solutions.

In fact, standard results from the theory of differential
inclusions (Aubin and Cellina, 1984, Theorem 4, p. 101)
guarantee that, if v € U(z) where z — U(x) C U is
closed, convex and upper semi continuous as a set-valued
map, then existence (but not, in general, uniqueness) of
continuous solutions is guaranteed. The following result
establishes existence and uniqueness of a solution to the
traffic network dynamics when using static Lipschitz-
continuous feedback controls.

Theorem 1. (Existence and uniqueness of solutions). Let
R be an outflow-connected routing matrix adapted to a
network topology G and A a possibly time-varying arrival



vector. Let P be a feasible phase matrix with p phases,
U be the unit p-simplex, and = — wu(x) € U be a static
feedback control policy that is Lipschitz-continuous on R} .
Then, for every nonnegative initial traffic volume x(0), the
traffic network dynamics (1)—(6) with v = u(z) admit a
unique solution.

The proof of Theorem 1 is provided in Section A. It relies
on a generalization of the reflection principle, Harrison and
Reiman (1981), to cases with feedback.

3. DECENTRALIZED TRAFFIC SIGNAL CONTROLS
AND PROPORTIONAL ALLOCATION POLICIES

In this section, we first introduce the notion of decentral-
ized feedback controls, and then introduce the generalized
proportional allocation policies. Let

E= U &, &néw=0,

1<k<q

k#k (12)
be a partition of the set of lanes. We refer to such a
partition (12) as compatible with the feasible phase set
P C {0,1}™ if the latter can be written as the direct sum
of the subsets of phases supported on each &, i.e., if

P=@ Pe. Pi={YeP:i=0VicE\&}.
1<k<q
(13)
For 1 < k < q, put ng = |&l, px = |Pxl|, and let
the projection matrix on the ng-dimensional subspace of
vectors in R” supported on &, be denoted by A*)| so that

q q
n=Y ng, p=[[m, v=>Y APy, yeP.
k=1 k=1

1<k<q
Then, the direct sum in (13) means that

ARy e Py, YeP, 1<k<gq.

Observe that at least one trivial compatible partition
always exists, with ¢ = 1, & = &, and Py = P. A
typical case of non-trivial partition of the lane set &
that is compatible with P is obtained when phases are
independent across different junctions: in this case, one
can choose ¢ = m equal to number of nodes in the graph
G = (V,€) and let & coincide with the set of out-links
from each node k € V.

For a partition (12) of the lane set £ that is compatible
with the phase set P, let

Z/Ik:{u(k)eRﬁ_k: 17u® =1}, 1<k<gq

be the unit py-simplex and denote by P*) € {0,1}"*P* the
binary matrix whose columns coincide with the phases in
Pr.. It follows that, for every control signal u € U, where
U is the unit p-simplex, one has that

Pu= Z PRy (k) u® e U,
1<k<q

1<k<q.

In other terms, there is no loss of generality in restricting
attention to control signals u € U of the form

k )
1<k<q
where u®) € U, and 1 < hy (j) < px, is the index such that
Pi‘:(A(k)P)i,(hk(j))a 1<i<n, 1<j<p.

(14)
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Fig. 2. An example of orthogonal phases. Here lane 1 and
2 belong to one phase, and lane 3 to another.

We will refer to feedback controls u(z) as decentralized
according to a compatible partition (12) if

k .
() = H Uik)(j)(x(k)% 1<j<p, (15)
1<k<q
where
2*) = ARy 1<k <gq,

is the vector of local state information. Notice that,
for non-trivial compatible partitions, in contrast to (14),
equation (15) imposes an actual restriction, as it constrains
the local control signal u*) on depending on local state
feedback z(*) only, as opposed to global state feedback .

Let P C {0, 1}" be a set of p feasible phases containing the
empty phase 0, and P € {0,1}"*? be the corresponding
phase matrix. We refer to P as an orthogonal feasible phase
set if all phases are disjoint, equivalently, if the every pair
of columns of P has null scalar product. For an example
of orthogonal phases, see Fig. 2. Throughout this section
we shall focus on orthogonal phase sets, while we shall
generalize our results to possibly nonorthogonal phase sets
in Section 5.

Given an orthogonal set of admissible phases P, a com-
patible partition of the set of lanes as in (12), and a vector
& € RY with strictly positive entries, define the generalized
proportional allocation control as the decentralized feed-
back control (15) with, for 1 < k < ¢,

ul) (2*)) = Sk () = & + ()T PWL,

Pk Ck(w),
(k) (k)y L (k).
uy, (x'") = ijhxj, 1<h<pg.
Vi (16)
16

The positive parameters & can be interpreted as capturing
in our continuous-time model the fact that a part of the
cycle length will be used to phase shifts such that the whole
cycle can not be utilized. Notice that their introduction
makes the feedback controls in (16) Lipschitz-continuous
in x, so that Theorem 1 can be applied in order to establish
existence and uniqueness of a solution for every initial
traffic volume vector x(0). The reason for referring to
the decentralized feedback control (15)—(16) as generalized
proportional allocation control is clarified by the following
special case.

Ezample 1. For a partition of the set of lanes as in (12),
let the feasible phase set be

P=@P P, Pe={0}U{s"V:ic&}, 1<k<q.
1<k<q

L.e., the feasible phases are those whereby at most one

lane from each subset & can be activated simultaneously.

Let us label lanes so that & = {ixn : 1 < h < ni} and

observe that pp = ng+1 for 1 < k < ¢g. We can then order

columns in P*) in such a way that the all-zero one comes



last (with index ng + 1) while, for 1 < h < nj the h-th
column of P*) has a 1 in its iy j,-th entry and all zeros
elsewhere. Then, (16) reduces to

up (%) =

Lipn

&k + Z Sﬂik,l’

1<i<ng

_ &k
&k + Z xiw’

1<i<np

1§h§nka

that shows that priority is allocated to the different lanes
in each & proportionally to their current traffic volume.

4. STABILITY

We will from now on assume that the exogenous arrival
are constant s.t. A(t) = A, then the arrival rate for each
lane at equilibrium, a € Ri, can be computed by

a=(I—R")7\.
We will moreover assume that the routing matrix R is
inflow-connected with respect to A, that implies that a =
(I -RTY"1x>0.
Theorem 2. (Stability of proportional allocation policies).
Let R be a routing matrix adapted to a network topology
G and A\ a constant arrival vector, such that R is both
outflow-connected and inflow-connected with respect to A.
Let P be a feasible phase set with p phases and corre-
sponding matrix P, U the unit p-simplex, and CPU be
the interior of C'PU. For any partition (12) of the lane set
that is compatible with P, let u(x) be the proportional
controller given by (15)—(16). Then, if

(I-R")"'xeCPU, (17)

the traffic network dynamics (1)—(6) are stable and every
solution z(t) approaches the set

X={reRf:a” (CPu(z)

as t grows large.

—(I-=R")7'\) =0}

Remark 1. In the specific case in Example 1 the solution
to the dynamics (1)—(3) converges to a globally asymp-
totically stable equilibrium z* € R‘i, which was proven
in Nilsson et al. (2015).

In order to prove the theorem, we will start by making
a few observations. In fact, the controller in (16) is the
unique solution to the following concave maximization
problem

u® (z )Eargmaxellog( Z

veli jce, 1<j<px

)Vj) + &k logyy, .

(18)
In order to simplify notation, let
@) =c Y PP viee,

1<j<pk

be the maximum outflow allowed by the controller and
let u(k)* = u](g )(x(k *) be the zero phase allocation at
equlhbrlum. It should be noted that even if the traffic
volumes at equilibrium, z*, are not necessary unique, the

zero phase allocations will always be.

In order to prove the Theorem 2 we consider the following
candidate Lyapunov function

Z Z ] ) U(k)(x)
x; og + &k log Lo ] (19)

k i€E Pk

where the outer summation runs over all partitions. The
following two properties of V' (z) was already shown in Nils-
son et al. (2015):

Lemma 1. Let V : R§ — R be defined as in (19). Then,

(i) V(x) > 0 for all z € RY;
(ii) V() is absolutely continuous on R¢ and

oV (x) hi(z)
———= =log —= 20
aZ,L' i) a; ’ ( )
for all ¢ such that z; > 0;
We are now ready to prove the theorem:
Proof. For z € R, let T = {i € £ : z; = 0} and

J ={j€&: z; >0} Define \(z) € R{’ R(z) € Rixj,

z7(z) € RY, and w(z) € RY, by
Az) == A7 + (RT) gz(I = RI;)" ')Az, (21)
R"(z):= RG 7+ (R")gz(I - R7) "(R")zz7, (22)
z%m>:kg(”g“),jejuy (23)
Consider the function
W)= —w'(@) (A= (1 - F"@)z5 (@) . (24)
Observe that for all j € J(z), z(x) = <2 then 1t

follows from (Massoulié, 2007, Lemma 7) that W( ) >
for all z € Ri with equality of and only if z;w;(z) =0 for
alli € &.

Now, let V(x) be as in (19) and let z(¢) be a solution of the
dynamics (1)—(3). Observe that, within any time interval
(t—,t4+) where no entry of x changes sign, so that the sets
7 and J remain constant, one has that the vector zz of
outflows from the lanes in Z has to satisfy

i1 =0= A+ (R")z725 + Rizer — 21
so that 27 = (I — RL,)"'(\z + (RT)z727) and
b7 =Ag+ Ry 20+ (RT) gz20 = A+ BT (2)25 — 27 .
Using Lemma 1 (ii), one gets that, for every ¢ belonging

to an open interval where the sign of all entries of x are
constant,

V(x(t) = (VV(@(t)g - ig
wT () ()\ + RT(2)z7 — Zj)
= —W(x(t)).

Since V(x(¢)) is absolutely continuous as a function of ¢,

it follows that
t
—/ W (z(s))ds
0

Vi(x(t)) =

By rearranging terms in the identity above and using
Lemma 1 (i) one gets that

/Wv — V((0)) - V(x(t)) < V((0)).



Hence, f0+oo Wi(z(s))ds < V(z(0)) < 4oo, and since

W (z(t)) > 0 for all ¢, it must hold true that
tl}IEOOW(x(t)) =0.

Then, it follows that x;(t)w;(z(t)) — 0 for all i € £ as

t — +4o00. By observing that w;(z(t)) = 0 if and only if
a; = h;(z) the theorem is proved.

5. PROPORTIONAL ALLOCATION CONTROL
WITH NONORTHOGONAL PHASES

For the non-orthogonal case, the maximization stated
in (18) can be used to determine the green light allocation.
In this case, the control signal may not be uniquely
determined, as the following example shows.

Ezample 2. Consider a partition k with three lanes (in-
dexed {1,2,3}), all with unit capacity. Let the phase

matrix be
100
PR =1110].

010

The maximization problem in (18) then becomes

u™ () € argmax  z; log(v1) + x2 log(vy + 1)
vEU),
)

z3log(v2) + &k log(vs) -
The solution to the maximization problem is:

o If vy =0,29 > 0,23 =0, then

X2 T2

0 S Ui S 5 = —u,
T2 + &k T2 + &k
T2
U3:17U17U2:17 .
T2 + &k
e For all other cases,
£L’1($1 -|—(E2 +£C3) xIs
uy = y U2 = —Up.

(1 4+ x3) (21 + 22 + 23 + &) Ty

Let us specifically point out the need of differential inclu-
sion in our model. Let 1 = 0 and z3 = 0, then

2
T2 + &k
Now suppose that a1 + ag < w1 + ug. To keep z(t) > 0,
we have to choose z1, 2o such that z; < a7 and 23 < ags.
However, choosing z; < a1 or z3 < ag, will make £; > 0
or 3 > 0, and the traffic volumes will become positive.
Let us for simplicity assume that z; = 0 and 23 = ag, then
after a sufficiently small time, z; > 0 and

xr1 + 2o
uy = > ag,
T+ 22 + &k
and z71 will immediately go back to zero again. Therefore
this solution can not be absolutely continuous. To get
an absolutely continuous solution in this case one has to
choose z1 = a; and z3 = as.

Uy + ug =

Remark 2. From Example 2 it is easy to observe that the
equilibrium does not have to be unique. It follows that
if ay > a1 + A3 the equilibrium will be 27 = 0, 25 > 0
and x5 = 0. On the other hand, if a2 < a; + a3 the
equilibrium will instead be z7 > 0, z5 = 0 and z3 = 0.
When as = a1 + a3 the equilibrium will depend on the
initial state, since there exists many possible choices of
x1 > 0,22 > 0,23 > 0 such that

Gy = Uy = xl(xl +£C2+ZL'3)
(21 + 23)(v1 + 22 + 23+ &)
a5 = Uy = x3(x1 + T2 + x3) .
(1 + x3) (21 + 22 + 23 + &)

Even if the control signal is not Lipschitz anymore, it fol-
lows from the Maximum Theorem, see (Sundaram, 1996,
Theorem 9.14), that u(x) will be upper semi-continuos.
From the same theorem it follows that u(z) is convex
valued, since the objective function in the optimization
problem (18) is a concave function in v. Hence existence
of solutions to the dynamics given by (1)—(6) together with
the controller (18) can still be ensured, while uniqueness
is still an open problem.

By observing that (18) is a convex optimization problem
for all z; > 0, h;(z) will be uniquely determined for all such
is. Hence the proof of Theorem 2 works for non-orthogonal
phases as well.

Corollary 1. The stability results stated in Theorem 2
holds for all control signals determined by (18) when P
is a feasible set of phases.

6. NUMERICAL SIMULATIONS

In this section we will simulate a small network with with
four intersections as shown in Fig. 3. For each intersection,
the phases are the same as in Fig. 1, where the orienteering
of each intersection is marked by an 1 in Fig. 3. For the
parameters used in the simulation, see Appendix B.

Fig. 3. The four intersections used for simulations.

In Fig. 4 it is shown how the traffic volume on each line
evolves with time, when all lanes start with the initial
traffic volume z;(0) = 0.1.

In Fig. 5 it is shown the green light allocation together
with the average arrival rates. We see that the fraction
of green light each lane receive at equilibrium is greater
than or equal to the average inflow at equilibrium. The
noisy behavior of the green light allocation in intersection
A and D is due to the fact that the green-light allocation
for some lanes are not well-specified when some of the
incoming lanes have zero traffic volumes, a phenomena
already exploited in Example 2.

To simulate with finite storage capacities, let the maxi-
mization problem in (18) instead be

u™ () € argmax Z fi(x;)log ( Z Pi(f)z/j)
ek ice, 1<j<pr

+ & logry,.  (25)
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Fig. 4. How the traffic volumes evolves with time in the

simulation.
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Fig. 5. The green light allocation together with the average

arrival rate (dashed). Due to the problem setting
ha(z(t)) = hs(z(t)) for all t and therefore overlapping
in the plot.

where
T;

fi(w:) = B —z.’

Here B; > 0 is the storage capacity and f;(z;) acts as
a pressure function to traffic controller. In this setting,
the controller needs information both about the traffic
volume and the buffer capacity. However, the buffer-
capacity for an incoming lane seldom changes, and be
exogenously given to the controller, without decreasing the
controller’s robustness. A similar approach has previously
been proposed for making the back-pressure controller
capacity aware, see Gregoire et al. (2015). In Fig. 6, we
run the same simulation as in the previous setting, but now
with B; = 0.15 for all lanes. Without the pressure function,
some of the densities would have gone above 0.15, as can
be seen in Fig. 4. However, by introducing the pressure
functions, all densities stay below 0.15, as shown in Fig. 6.

Viel.

Time Time
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0.15 T T 0.15 T T
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Fig. 6. How the traffic volumes evolves with time when

B; = 0.15.
7. CONCLUSIONS

In this paper we have presented a feedback based green
light policy that only requires information about the traffic
volume in order to stabilize network. We have also showed
that the proposed policy is maximally stabilizing, i.e.,
when any controller can stabilize the network, the pro-
posed one is able to stabilize as well. Further research di-
rections are comparison with the back-pressure controller
in a micro simulator, further investigation of finite storage
capacities and investigation how the controller works with
other traffic propagation models.
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Appendix A. PROOF OF EXISTENCE AND
UNIQUENESS OF SOLUTIONS

In this section, we prove existence and uniqueness of
solutions (z(t), z(t))i>o0 for the differential inclusion

i=A+(R" - 1)z, (A1)
0 < z < CPu(x), (A.2)
2T (CPu(z) —2) =0, (A.3)
x>0, (A.4)

where z — u(x) is a Lipschitz-continuous map from the
state space R’} to the control set . Throughout this
section, we will consider the space of continuous functions,
C([0,T]), with the standard sup-norm. Our first result is

an equivalent formulation of (A.1)—(A.4) in terms of the
following constraints

=X+ (RT —)CPu(zx), (A.5)
r=y— (RT = DNw (A.6)
aTw =0, (A7)

w>0, w(0) =0. (A.8)

Lemma 2. (i) For every solution (x(t), z(t))i>0 of (A.1)-
(A.4) there exists (y(t),w(t))i>o satisfying (A.5)-
(A.8).

(ii) For every (x(t),y(t),
there exists (2(t))i>0
fied.

w(t))i>o satisfying (A.4)—(A.8),
such that (A.1)—(A.3) are satis-

For a given (y(t));>0 we now define the operator
W :v(-) = T (v)(t) = sup [RTv(s) —y(s)],
0<s<t

Lemma 3. TIW) is a contraction, hence it has a unique fixed
point. Moreover, the operator

Vs oy(c) = W(y) =T (W(y), (A.9)
that maps ¥ into the unique fixed point of II%) is bounded.

We now show another useful equivalence.

Lemma 4. Constraints (A.4)—(A.8) are equivalent to (A.5),
(A.6), and
w=U(y). (A.10)

Now, define the operator
®:y—y+ (I —-RNU(y)
It then follows from Lemma 3 that & is a Lipschitz

operator. Let ¢ > 0 be its Lipschitz constant. On the
other hand, let

T:z()—=T(x)(t) =

z(0) +/0 ()\(s) + (R"

Since x +— u(x) is Lipschitz continuous from R’} to U, we
get that, for all given T' > 0, T" is a Lispschitz continuous
operator from C([0,7]) in itself, with Lipschitz constant
equal to yT' for some constant v > 0 that is independent
from T. It then follows that, for all 0 < T < (yp)71,
the composition operator ® o I' has Lipschitz constant

— I)CPu(z(s)))ds. (A.11)

L = ¢yT < 1, hence it is a contraction on C([0,T]).
Therefore, ® o I" has a unique fixed point. Let
x=®(T(x)) (A.12)
be such fixed point and put
y=T(z), w=U(y). (A.13)

Observe that (A.12)-(A.13) are equivalent to (A.5), (A.6),
and (A.10), hence, by Lemma 4, to (A.4)—(A.8). Existence
and uniqueness of solutions to (A.1)—(A.4) then follow
from Lemma 2.



Appendix B. SIMULATION PARAMETERS

For the simulations in Section 6 the following parameters
are used:
Junction A

Aa1 =050 aa1 =050 Rai,ps =04, Ra1,ps =0.6
Aa2 =030 a4a2=030 Ryop2=1

Aaz =0 aaz = 0.13
Aag =0 aa4 =0.18 Raq ps =0.2, Ragps =0.1
Aas =0 aa5 =0.05  Ras p1 =03, Ras g2 =0.7
Aas =0 ase = 0.10

Junction B
A1 =0 a1 =001 Rpi,c5 =0.2, Rg1,c6 = 0.8
Ap2 =0 aps = 0.34

)\33 =0.15 a3 = 0.15 RBg,Ag = 0.5, RBI,A4 =0.5

A4 = 0.20 apy = 0.20 RB4,A4 =04, RB4,C5 =0.1,
Rps,c6 =05

/\B5=0 CLB5=0.08

A =0 ape = 0.08 Rpg a3 =0.7, Rpe,a4 = 0.3

Junction C

)‘Cl =0.10 ac1 = 0.10 RCI,BE) = 0.57 RCI,BG =0.5
Ac2 =020 ac2 =020 Rc2,p1=0.1, Roa,p2 =0.9

)\03 = acs = 0.42
Aca =0 acqs =028 Rca,ps = 0.1, Roa,pe = 0.1
Acs =0 acs =0.02  Res p1 =05, Ros p2 =05
Ace =0 ace = 0.11

Junction D
Ap1 = ap1 =0.03 Rpias5=0.3, Rp1,46 = 0.7
)\DQZO aD2:0.19

)\D3 =0.30 ap3 = 0.30 RD3,C’3 = 0.87 RD3704 =0.2

Apsa =040 apy =020 Rpsas =02 Rps ag=04,
Rp4,c3 =0.1, Rpg,ca = 0.3

Aps =0 aps = 0.24

Ape =0 ape =0.32  Rpg,c3 =0.5, Rpg,ca =0.5

Moreover €4 = € = & = &€p = 0.2 and ¢; = 1 for all
1€€.



