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Abstract—Many notions of network centrality can be formu-
lated in terms of invariant probability vectors of suitably defined
stochastic matrices encoding the network structure. Analogously,
invariant probability vectors of stochastic matrices allow one to
characterize the asymptotic behavior of many linear network
dynamics, e.g., arising in distributed averaging algorithms for
estimation or control as well as opinion dynamics in social
networks. Hence, a central problem in network science and
engineering is that of assessing the robustness of such invariant
probability vectors to perturbations possibly localized on some
relatively small part of the network. In this work, upper bounds
are derived on the total variation distance between the invariant
probability vectors of two stochastic matrices differing on a
subset JV of rows. Such bounds depend on three parameters: the
mixing time and the entrance time on the set ¥ for the Markov
chain associated to one of the matrices; and the escape probability
from the set VW for the Markov chain associated to the other
matrix. These results, obtained through coupling techniques,
prove particularly useful in scenarios where )V is a small
subset of the state space, even if the difference between the two
matrices is not small in any norm. Several applications to large-
scale network problems are discussed, including robustness of
Google’s PageRank algorithm, distributed averaging, consensus
algorithms, and the voter model.

Index Terms—Stochastic matrices, invariant probability vec-
tors, robustness, resilience, large-scale networks, PageRank, cen-
trality, distributed averaging, consensus, voter model.

I. INTRODUCTION

How much can the invariant probability vector
m=maP

of an irreducible row-stochastic matrix P be affected by
perturbations localized on a relatively small subset W of its
state space V? Such a question arises in an increasing number
of applications, most notably in the emerging field of large-
scale networks.

As an example, many notions of network centrality can be
formulated in terms of invariant probability vectors of suitably
defined stochastic matrices. In particular, Google’s PageRank
algorithm [6]] assigns to webpages values corresponding to the
entries of the invariant probability vector 7w of the matrix P
obtained as a convex combination of the normalized adja-
cency matrix of the directed graph describing the hyperlink
structure of the World Wide Web (WWW), and of a matrix
whose all entries equal the inverse of the total number of
webpages [23[], [10]. A well-known problem in this context
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is rank-manipulation, i.e., the intentional addition or removal
of hyperlinks from some webpages (hence, the alteration of
the corresponding rows of P) with the goal of modifying the
PageRank vector [4]], [22], [13]. A natural question is then,
to what extent a small subset WV of webpages can alter the
PageRank vector 7. Similar robustness issues have been raised
for accidental variations of the WWW topology occurring,
e.g., because of server failures or network congestion problems
[20].

The problem is of central interest also in the context of
distributed averaging and consensus algorithms [35]]. There,
linear systems of the form (¢t + 1) = Pz(t), or their
continuous-time analogues, are studied, e.g., as algorithms for
distributed optimization [41], [42], [S], control [21], [34], [Z],
synchronization in sensor networks [36], or reputation man-
agement in ad-hoc networks [27], as well as behavioral models
for flocking phenomena [43], [14], or opinion dynamics in
social networks [[15[], [[16], [L8]], [L]. Equilibria of such systems
are consensus vectors, i.e., multiples of the all-one vector,
and standard results following from Perron-Frobenius theory
guarantee convergence to a consensus vector with all entries
equal to T = 7x(0). Depending on the specific application,
the natural question is to what extent the consensus value
T is affected by perturbations of P corresponding, e.g., to
malfunctioning of a small fraction of the sensors, or conser-
vative/influential minorities in social networks [2]].

Other applications can be found in the context of interacting
particle systems [25]], [26]. In particular, in the voter model on
a finite graph [L1]], [12], [3} Ch. 14], [17, Ch. 6.9], the proba-
bility vector of the final consensus value is determined by the
invariant probability vector of the stochastic matrix associated
to the simple random walk on the graph. Perturbations in this
case may model the presence of inhomogeneities or ‘zealots’
[31]], [32]], namely agents with an asymmetric behavior in the
way they influence and are influenced from their neighbor
agents.

The above-described problems all boil down to estimating
the distance between the invariant probability vector 7 of an
irreducible stochastic matrix P and an invariant probability
vector # = 7P of another stochastic matrix ]5, to be inter-
preted as a perturbed version of P. In some applications, P
may be reversible, equivalently be obtained by normalizing
the rows of a symmetric nonnegative matrix W, and 7 can be
explicitly computed in terms of the row sums of W. However,
even in these cases, the considered perturbations will typically
be such that P is not reversible and thus 7 does not allow for
a tractable explicit expression.

Remarkably, standard perturbation results based on sensi-



tivity analysis [37], [38], [391], 28], [8], [2], [29], [30], [2] do
not provide a satisfactory answer to this problem. Indeed, they
provide upper bounds of the form

|7 — ||, < &p||P =P, (1)

for some p,q € [1,00], where kp is a condition number
depending on the original stochastic matrix P only. Such
condition numbers are lower bounded by an absolute positive
constant (e.g., 1/4 for the smallest of those surveyed in [9]])
and typically blow up as the state space ) grows large.
Therefore, such results do not allow one to prove that the
distance || — 7||,, vanishes in the limit of large network size,
even if P and P differ only in a single row, unless ||P — P||,
itself vanishes.

In this paper, we obtain upper bounds on the total variation
distance ||7 — || := %||7 — |1 of the form

7 — 7l <9(m) , ®

Yw - Tyy
(see Theorem [3) where:

e 0 :]0,4+00) — [0,1] is a continuous, nondecreasing
function such that #(0) = 0 (see for its definition
and Fig. [T] for its graph);

e Tmix 18 the mixing time of the matrix P, defined as

Tmix = inf {t >1:
u,vEV

1
max ||P! — P! || < } . 3

e Ty is the entrance time on the set W, defined as

* . u
Ty = min T 4)
w u€V\W w

where 7y, for u € V, are the solution of the linear system
T = 1+Z Py, u € V\W

veV
&)
and thus coincide with the expected hitting times on the
set W for a Markov chain with transition probability
matrix P;
e Y stands for the escape probability from W defined as

t
- ! =
Yw = sup min — E E H Pe, e,
>0 WEW: 1
20 %050 k=1 g=w,EeV\W 1<I<k
£1,€p—1EW

=0, ueW,

(6)
where the second summation runs over all (k + 1)-tuples
¢ that start with £y = w, end with some &, € V\ W, and
have all intermediate entries § € W, for 1 <[ < k. As
shown in (24), the argument of the minimization in (6]
coincides with the probability that a Markov chain with
transition probability matrix P started at w exits from W
before time ¢, normalized by t.

As opposed to the aforementioned sensitivity results, all
derived from algebraic arguments, our proofs rely on coupling
techniques, combined with an argument similar to the one de-
veloped in [1]] in the context of ‘highly fluid’ social networks.
Because of the properties of (- ), the bound implies that
the total variation distance || — || vanishes provided that
Tmix /(Gw - Tyy) does. As we will show, this finds immediate

application in the PageRank manipulation problem. More in
general, our results prove useful in many of those large-scale
network applications where classical sensitivity-based results
fail to provide a satisfactory answer.

Mixing properties of stochastic matrices have been the
object of extensive recent research [3], [33l], [24], and several
results are available allowing one to estimate the mixing time
Tmix Of a stochastic matrix P, e.g., in terms of the conductance
or other geometrical properties of the graph associated to P.
It is worth pointing out that a connection between mixing
properties and robustness of stochastic matrices is already
unveiled by the perturbation results of [29]], [30], where @)
is proven for p = 1, ¢ = oo, and condition number kp
proportional to 7. Of a similar flavor are Seneta’s results
[38]], [39] estimating the condition number xp in terms of
ergodicity coefficients. Also the estimates proposed in [2] for
symmetric P can be rewritten as (I) with for p = ¢ = 2 and
K p equal to the inverse of the spectral gap of P. As compared
to these references, the fundamental novelty of our bound @)
consists in measuring the size of the perturbation in terms of
1/(Fw - 75) instead of the distance ||P — P||,, thus enabling
one to obtain significant results in scenarios where WV is small
but P — P is not necessarily small in any norm.

In fact, of the parameters appearing in the righthand side of
(2), the escape probability 4y is the only one truly depending
on the perturbation P — P, and is indeed easily estimated in
typical cases when W is a small subset of V. On the other
hand, the entrance time 7y,,, which depends on P and W
only, may result the hardest to get lower bounds on in typical
applications where P is sparse and VY remains small as the
state space grows large. While Kac’s formula ([24, Lemma
21.13])

Z Z ﬂzuRm;(T)Q/)V + 1) =1 (7)

weW veY

readily implies the upper bound 7, < 1/m(W), where
(W) == > ,ew Tw, lower bounds on 7y, typically involve
finer details of P than just w(W). In the last section of this
paper, we will propose an analysis of 7y, for networks with
high local connectivity, which finds natural application when
the graph associated to P is a d-dimensional grid, and W is
localized and its size remains bounded (or grows very slowly)
as the network size grows large. Results for more general
graphs, in particular, for random, locally tree-like networks
will be the object of a forthcoming work.

The rest of this paper is organized as follows. Section
introduces three motivating examples formalizing some of the
applications mentioned at the beginning of this Introduction.
In Section we present our main result which is stated as
Theorem [3] Section discusses in detail the application
of our result to the PageRank manipulation problem. Section
focuses on stochastic matrices whose support graph has
high local connectivity and discusses lower bounds of the
entrance time 7y,,. This allows for efficient application of
Theorem [3] to networks with a finite dimensional structure.
Explicit examples on toroidal grid graphs are presented.

Before proceeding, let us collect here some notational
conventions to be used throughout the paper. When referring



to a graph G = (V, £), we will always use the convention that
E CV xV,i.e., that its links are directed. Then, G undirected
means that if (u,v) € € then (v,u) € £ as well. Given u € V,
put &, = {v : (u,v) € £} and let d,, := |E,]| be the (out-)
degree of node u. Vectors and matrices will be considered
with entries from a set V of finite cardinality n := [V|. A
summation index v is always intended to run over the whole
V, while a summation index w is intended to run over a
specified subset YW C V. The all-one column vector will be
denoted by 1. For a matrix A, A’ will stand for its transpose
and supp(A) := {v : A,. # 0} for the set of its nonzero
rows. We refer to a probability vector as a nonnegative row
vector p such that ull = 1 and to a stochastic matrix P as a
nonnegative square matrix P such that P1 = 1. A probability
vector is said invariant for a stochastic matrix P if uP = p.
A stochastic matrix P is said irreducible if the associated
support graph Gp = (V,Ep), where (u,v) € Ep if and only
if P,, > 0, is connected. It is a standard result that every
irreducible stochastic matrix P admits a unique probability
vector m = wP. The total variation distance between two
probability vectors p and 7 is denoted by

1
=l = 5 3 o = .
v

Given a stochastic matrix P, it is natural to consider discrete-
time Markov chains V(t), t = 0,1,..., with state space V
and transition probability matrix P. L.e., for all u,v € V and
t>0,PV(t+1) =v|V(t) =u) = Py Foru eV, P, and
E, will stand for the probability and expectation conditioned
on V(0) = u. We will also use the notation P, :== ) 1,P,
for a probability vector . We will denote the hitting time
on a subset W C V by Ty := inf{t > 0: V(t) € W}.
It is a standard result that the expected hitting times E,, [Ty ]
coincide with the solution 734, of equation (3)).

II. THREE MOTIVATING APPLICATIONS

In this section we present three motivating examples for-
malizing some of the application problems discussed in the
Introduction. Througout, n := |V| will stand for the network
size.

A. PageRank manipulation

Let G = (V, €) be the directed graph describing the WWW,
whose nodes v € V correspond to webpages and where there
is a directed link (u,v) € £ whenever page u has a hyperlink
directed to page v. Define a stochastic matrix () by putting
Quy = 1/nforallvifd, =0, and, if d,, > 1, letting Q,, = 0
if (u,v) ¢ € and Qo = 1/d,, if (u,v) € E. Given an arbitrary
probability vector p and a parameter § in the interval (0, 1),
consider the equation

m=(1-B)rQ+Bpu. @®)

Since the matrix W := (I — (1 — 8)Q) is strictly diagonally
dominant, hence nonsingular, equation admits exactly one
solution ™ = ﬂuWﬁl. As we will discuss in a moment, such
m turns out to be a probability vector. It is known as the
PageRank vector and was first introduced by Brin and Page

[6] to measure the relative importance of webpages. In the
original PageRank version, ;o = n =1 is chosen as the uniform
distribution over the set of webpages, while typical values of
B used in practice are about 0.15. More general choices of the
probability vector p lead to the definition of the personalized
PageRank[19], which is used in context-sensitive searches.

Consider now a (relatively small) set of webpages W C V),
and assume that the set | J,, .y, Ew of hyperlinks originated
from these webpages can be modified arbitrarily in order to
change 7. Let G = (V,€) be the modified WWW graph, Q
the corresponding stochastic matrix, and 7 the corresponding
modified PageRank vector solving the equation

7= (1-8)7Q+Bu. ©)

A standard result [24, Proposition 4.2] allows one to write the
total variation distance between 7 and 7 as

17 = || = max {7 (U) — 7(U)} . (10)
The identity above shows that the maximum, over all subsets
of webpages U, of the difference between the aggregate
centralities that PageRank assigns to &/ in the WWW graph G
and, respectively, in its modified version Q , coincides with the
total variation distance between the PageRank vectors 7 and
.

We now give a different characterization of the PageRank
vector and reformulate the perturbation problem. First, we
introduce the stochastic matrix

P:=(1-8)Q+p1lu.

We claim that P has a unique invariant probability vector
and that it coincides with the PageRank vector 7. To see this
equivalence, first notice that, if 7 solves (8], the fact that @
is a stochastic matrix and p a probability vector, imply that

7l =(1-p)7mQl+ pful =(1—-p5)rl + 3,

so that 71 = 1. Now, if v is any row vector such that v1 = 1,
we have that

vP = (1-B)vQ+prip=(1-pB)rQ+fu,

so that v = v P if and only if v coincides with the solution 7 of
(8). An analogous argument shows that the modified PageRank
vector 7 coincides with the unique invariant probability vector
of the stochastic matrix

P:=(1-8)Q+plpu.

Hence, estimating the impact that an arbitrary change of the
hyperlinks from a subset VW of webpages has on the aggregate
PageRank of an arbitrary subset ¢/ of webpages boils down
to bounding the total variation distance between the invariant
probability vectors 7 and 7 of the stochastic matrices P and P,
respectively. Observe that, since the matrices ) and Q differ
only on the rows indexed by elements of W, so do P and P.
In Example of Section [IIll we will prove an upper bound
on ||T — m|| depending only on the size of W (as measured
by 7 and ), and on the value of the parameter 5 € (0, 1).



B. Faulty communication links in distributed averaging algo-
rithms

Consider a sensor network described as a connected undi-
rected graph G = (V, £), whose nodes and links represent sen-
sors and two-way communication links, respectively. Assume
that each sensor v initially measures a scalar value y, and the
goal is to design a distributed algorithm for the computation
of the arithmetic average

Y :%Zyv

A possible solution [35]] is as follows. Let d € RY be the
degree vector in G. Initialize the state of every sensor v € V

as 1
%, 2(0) = — .

d,
Then, at every time instant ¢ = 0, 1, .. ., let every sensor v € V

update its state according to the recursion

x,(0) = an

[, (t+1), 2, (t+1)] =

v(u,v)EE
(12)

What makes the above iteration particularly appealing in large-
scale network applications is the fact that it requires sensors to
exchange information with their neighbors in G only, and that
each sensor v needs to know its degree d, only with no need
for global knowledge about the network structure or size.

In order to analyze the algorithm let us rewrite (T1]) and (I2)
in matrix notation. Let P be the stochastic matrix associated
to the lazy random walk on G, i.e., P = (I + Q)/2, where I
denotes the identity matrix and Q.. = 1/d,, if (u,v) € £ and
Quv =0 if (u,v) ¢ €. Let

13)

(where division between two vectors is meant componentwise)
and consider the iteration

z(t+1)=Pax(t), 2(t+1)=

Observe that the unique invariant probability vector 7 of the
matrix P is given by

Pz(t). (14

=9

218

;o veEV,

1
iy
n v
is the average degree. Moreover, irreducibility and acyclicity
of P (implied by P,, > 0 for all u) imply that

Ty —

5)

where

+Y t—oo y Yy
= P'= IrZ =12
x(t) =P p — 7Td 5
]lt—>oo ]l 1
t)y=P'= ZFlr- =1=
so that )
Z”(t) DXy wev.

Therefore, the iterative distributed algorithm defined by (13)-
(T4) effectively computes the average y of the vector y.

1 1
S 5015 3 [ault), 50

The example can be generalized to those weighted graphs
whose nodes all have in-degree equal to the out-degree (hence,
in particular, undirected weighted graphs). Indeed, for these
graphs, the invariant probability vector 7 of the associated
stochastic matrix P admits the explicit form (13).

Now, let 7 C &£ be a subset of directed communication links
which stop working and G := (V, £), where £ := £\ F, be the
directed graph obtained from G by removing such links. Let
d be the vector of in-degrees in G and define P = (I +Q)/2,
where @ is a stochastic matrix with Q.,, = 1/d, if (v,u) € £
and qu =0 otherw1se Consider the following recursion,
analogous to .D and (14), with d and £ replaced by d and
&, respectively:

_1
C’Z‘,
= P(t).

(16)

Ft+1)=Px(t)  Z(t+1)

Then, provided that G remains strongly connected, an argu-
ment as the one before shows that

jv(t) t—o00 ~
ER0) =7, YveV,

a7

where ~

(y/d)

w(1/d)

and 7 is the unique invariant probability vector of P. In other
words, the perturbed dynamics (I6)-(T7) achieve consensus
on a perturbed value .

We are now going to show that the absolute error |§ — y|
can be upper bounded in terms of the total variation || — 7||
and the fraction | F|/|€| of failed communication links. To see
this, first we express the perturbed consensus value as

ﬁ'y/cz B
#1/d

g:

Yy+er+eg
1+es+es’

:g:

512i2(221>yv, 62—d2 —WUZN—,
5322;2(2@ E4—dz 1

_ 1) 7
Now, using the facts that CZU > lifor all v (since Q’ is
connected) and that |€] = )" d, = nd, one gets that

|F

_7TU

=] = .
|€1|§dmllylloo» le2| < dllylloo||T — 7] ,
it =11 _
les] < dm, leal < dl|m ==, 19l < |[Ylloo -

It follows that

=7y = |e3y+eay—e1 — el
< |gl(les] + lea]) + [e1] + [e2]
< 2d||ylleo (IFI/IE] + |7 —7)
so that 7 -7 7|
y—y — .
<2 ({411 =) a8)
Y] oo €]



Formula (18) shows that, provided an upper bound on the
average degree d, in order to guarantee that the value §
computed by the distributed averaging algorithm on the per-
turbed graph G is close to the average y of the sensors’
measurements, it is sufficient that both the fraction |F|/|£]
of failed communication links and the total variation distance
|7 — x|| are small.

C. Voter model with influential agents

Let G = (V,&) be a connected undirected graph (with no
self-loops). Nodes are to be interpreted as agents possessing
a binary opinion. Opinions are changing with time as the
consequence of interactions in the network. Precisely, for
ueVandt=0,1,...,let X,(t) € {0,1} be the opinion of
agent u at time ¢. Dynamics takes place as follows: at every
time t = 0,1,..., a single directed link (u,v) is activated,
chosen uniformly at random from &, and its tail node u updates
its state X, (t) by copying the head node v’s current state
X, (t). Assembling all opinions on one vector X (t) € {0,1}V
we obtain that X (¢) is a Markov chain whose transitions
can be compactly described as follows. For u # v € V,
let Ev) e RY*Y have all entries equal to zero but for
Eq(ﬁf) = —Ef;ﬁ;”) = 1. Then, given X (t), we have that

X(t+1)=(I+E™)X(t)

with probability 1/|&|, for all (u,v) € £. This is an instance
of the voter model [25]], [26], [11], [12]. In a social network
interpretation, this may be thought of modeling a society
where every pair of individuals whose corresponding nodes are
neighbors in G have the same chance to influence each other.
It is a standard result that, with probability one, this dynamics
achieves consensus in some finite time. More precisely, there
exists some random consensus time 1, which is finite with
probability one, and a random consensus value Y € {0,1},
such that

X,(t)=Y, YoeV,vt>T. (19)

The main asymptotic quantity of interest is the probability
distribution of the consensus value Y conditioned to the initial
condition X (0). Specifically, we define

y:=P(Y = 1|X(0)).

Now, let us consider the following variant to the model.
Consider a direct subgraph G = (V,€), where £ = £\ F
is obtained from £ by removing a subset 7 C & of directed
links. We assume that G remains strongly connected. Consider
the Markov chain X (t) over {0,1}Y such that, given X (t),

R(t+1) = (1 + B X ()
with probability |£| 1, for all (u,v) € £, and X (t+1) = X ()
with probability |F|/|€|. The social network interpretation is
that
W= {u:

is a set of influential individuals, whose interactions with some
of their neighbors in G are asymmetric, as they influence
such neighbors without being influenced in turn from them. A

(u,v) € F for some v}

similar model is discussed in [2] in the framework of opinion
dynamics over continuous space. Observe that, analogously
to the voter model on G, strong connectivity of the graph G
implies that, with probability one, the process X (t) achieves
a consensus in finite time on a binary random variable Y. We
can similarly define the conditional probability

7 :=PY =1|X(0)).

The absolute difference |§j — y| measures the effect of
the influential individuals in the final consensus value. We
now give a different characterization for y and y in terms
of invariant probability vectors of suitably defined stochastic
matrices and propose a characterization of |j — y| in terms of
their total variation difference.

Let us define the stochastic matrix

| Z Ew)

(u,v)e€

Pi=T+—

Then, E[X (t+ 1)|X(¢)] = PX(t) forall t =0,1,..., so that
an inductive argument proves that
E[X ()| X (0)] = P*X(0) t>0. (20)

Since G is connected and undirected, P is irreducible and
symmetric, so that its unique invariant probability vector is
the uniform one
::J;ﬂ/
n

It then follows from (2I)) that, for all ¢ > 0,

Eﬁz&mmﬂ

X(0)[X(0)]
— xP'X(0)
= 7X(0)

= %ZXU(O)

a property that is sometimes referred to as as conservation of
the average magnetization [40] in the statistical physics jargon.
Finally, it follows from @I) and (21) that

wE[

2y

— E[Y|X(0)] =

= %ZXU(O)

Similarly, ~
y=7X(0),

where 7@ = 7P is the unique invariant probability vector of
the stochastic matrix
Y e

(u v)eE

Pimlt g

Clearly, if the initial conditions of the two processes coincide,
i.e., if X(0) = X(0), then

19—yl <|l7x =l
In fact, while the inequality above is valid for every initial
state value X (0) = X(0) € {0,1}Y, the identity (T0) implies
that such inequality is tight in the sense that there exists one
value z € {0,1}V (the one with z,, = 1 foru € & and z, = 0



Fig. 1. Graph of the function 6(x) defined in (22).

for v € V\U, where U is such that ||7 — || = 7(U) — 7 (U))
such that, if X (0) = X(0) = x, then |§ — y| = ||7 — 7.

It follows that the problem of estimating the difference
between the probability vector of the eventual consensus
value for the voter model on G and G is equivalent to the
one of estimating the total variation distance between the
invariant probability vectors of the stochastic matrices P and
P, respectively.

III. PERTURBATION RESULTS

Let P be an irreducible stochastic matrix on the finite state
space V and let # = wP be its unique invariant probability
vector. Let P be another stochastic matrix (not necessarily
irreducible) on the same state space V), to be interpreted as a
perturbation of P, and let 7 = 7P be an invariant probability
vector of P (not necessarily the unique one).

The following result provides an upper bound on the total
variation distance between 7 and 7. It is stated in terms of the
function 6 : [0, +00) — [0, 1]

O(x) := { {fln (/) T < z* (22)

where z* = 0.31784 ... is the smallest positive solution of
e?/z = exp(1/z). (The graph of 6(-) is plotted in Figure )

Lemma 1. Ler P and P be stochastic matrices on a finite
set V. Let P be irreducible with invariant probability vector
7 and mixing time Tmix @), and 7 be an invariant probability
vector for P. Then,

|77 = 7| < 0(Tmix - T(WV)) ,

for all W C V such that W 2 supp(P — P).

Proof Let V(t) and V(t) be two Markov chains on V which
start and move together with transition probabilities P,, until
the first time T}, = T}y they hit W, and move independently
with transition probabilities P,, and ISW, respectively, ever
after. Since P and P coincide on V \ W, one has that the
marginal transition probability matrices of V(t) and V(t)
coincide with P and }5, respectively. Then, for all A C V),

and ¢ > 0, one has that
#(A) = Px(V(t) €A

= P:(V(t) e ATy >t)+Px(V(t) € A, Ty < t)

IN

Px(V(t) € A) +Px(Ty < t)

< 7w(A) 4 exp(—|t/ Tmix]) +t7 (W),

where the first identity uses the invariance of 7, and the last
inequality follows from || P! —7|| < exp(— [t/ Tmix]) (Which
is a standard consequence of the submultiplicativity property
of the maximal total variation distance, see, e.g., (4.31) in [24])
and the bound
t
Pz (Tw < t) <

9

|
—

Px(V (i) € W) = t7(W),

I
=}

which is implied by the union bound and, again, invariance
of 7 for P. Therefore, using the characterization (T0) of the
total variation distance, one gets that

17—l = max {7 (A) — 7(A)} < exp(—[t/ Tmix ])+17 (V)

for all ¢ > 0. The claim now follows by choosing

t= max{ \\Tmix log Tmlxefr(VV)J ,0} ,

such a choice being suggested by the minimization of the
function

x> exp(—x/ Tmix —1) + z7(W)
over continuous nonnegative values of z. ]

Lemma [I] shows that it is sufficient to have an upper
bound on the product Ty -7(W) in order to obtain an upper
bound on the total variation distance ||7 — 7||. In particular,
assuming that an upper bound on the mixing time Ty iS
available, e.g., from an estimate of the conductance of P,
one is left with estimating 7(W). Observe that 7(W) is
typically unknown in the applications. Below, we derive an
upper bound on 7(W) in terms of the entrance time 7y,
and of the escape probability 7y, defined in @) and (6),
respectively. These two quantities can be given the following
probabilistic interpretation. Consider a Markov chain f/(t) on
V with transition probability matrix P, and let

Ty == inf{t >0: V(t) ¢ W}

and
Ty\w =inf{t >0: V(t) € V\ W}

be, respectively, the hitting tim~e on, and the exit time from,
the set VW. Then, since P and P coincide outside WV, one has
that the expected hitting times satisfy

E,[Tw] = 7% = Eo[Tw], veV. (23)

In fact, the entrance time 73, = min{7y;, : v € V' \ W} only
depends on the choice of the subset W D supp(P — P) and on
the original matrix P (in particular, on the rows of P indexed



by v ¢ W), but not on finer details of the perturbation P—P.
On the other hand, for every w € W and k > 1 one has that

('bw(k) = P“’(Tv\w = k) = Z H Pﬁl—lfz ;
So=w,&eV\W 1<i<k
&1, 8k—1EW

so that the escape probability defined in (6)) satisfies

P (TV\W < t)
Aw =sup min — ¢w(k) =sup min —————=,
t>1 weEW: t>1 weW: t
T >0 1<k<t T >0

(24
Notice that the escape probability 7,y depends only on those
rows of the perturbed matrix P whose indices lie in W
(because so does the distribution of TV\W) and, when P is
not irreducible, on the choice of the invariant measure 7. In
particular, one has that 4y, = 0 if and only if V \ W is not
accessible under P from some state w € W such that Tw > 0.

We are now in a position to prove the following result.

Lemma 2. Let P be a stochastic matrix on a finite set V, and
7 = 7P an invariant probability measure. Then,

1
TW) < ——, (25)
w - TW
forall WCYV.
Proof Observe that, for ¥ > 1 and w € W,
ZPMTW = Y Pumy >myee(l).  (26)

u€V\W

Then, it follows from Kac’s formula applied to P and 7,
the identity @]) and the inequality (26), that

1
W Z Z T vaW Z = Z Tlw ¢1u

(27)
Now, observe that
Z%w’pw’wgzﬁvpvw:ﬁwa weWw.
w/'eW veV
Then, for all k£ > 1, one gets that
Zﬂ-w ¢w k+1 Zzﬂ-w’ ww(bw Zﬁ- ¢w

It follows that, for all ¢ > 0,
1
YRRNTED NAEDS

Then, and (28) imply that

1 7Tw 1
= > T n (bw
7(W) w Z t kz:l
1 t
> T%E%EE Puw (k) -

Since t > 1 is arbitrary, the inequality above implies that
1
(W)

thus proving the claim. ]

ZT{/&V"?Wa

/

Fig. 2. The graph of Example for m = 7. The perturbation set W = {0}
is shaded in gray.

Lemmas [I] and 2] immediately imply the following result:

Theorem 3. Let P and P be stochastic matrices on a finite
set V. Let P be irreducible with invariant probability measure
m and mixing time Tywix, and T be an invariant probability
measure for P. Then,

|ﬁ—wn<e(~““*),
W Ty

Sfor all W C V such that supp(ﬁ’ —-P)Ccw.

Theorem E] implies that, in order for the total variation
distance ||7 — 7|| to be small, it is sufficient that, for some set
WD supp(]3 — P), the ratio

Tmix
YW Toy
is small. While the term 1/7y,, is a measure of ‘how large’
the set W is, hence it is expected to play a central role in
estimating ||& — ||, one might wonder what the roles of the
mixing time Tnix and of the escape probability 7,y are. The
following two simple examples show that having control of
each of the terms 7y, and T,ix is indeed necessary in order
to bound the total variation distance || — 7|

Example 1. Consider the stochastic matrix P with all entries
equal to 1/n, and perturb it in a single node w by putting
Puw=1—q, and P, = a/(n—1) for all v # w, for some
a € (0,1 —1/n). Then, Thix = 1, 173y, = n, and y = «,
so that Theorem 3| guarantees that an — oo is a sufficient
condition for ||& — w|| — 0 as n grows large. On the other
hand, it is easily verified that m, = 1/n for all v, while T, =
1/(na+1), and 70, = na/((n — 1)(na+ 1)), for all v # w.
Hence,
l—a—-1/n

no+1
which shows that an — oo is indeed also a necessary
condition for ||& — || — 0 as n grows large.

|17 =7l =

Example 2. For a positive integer m, define the stochastic
matrix P on the set V := {—-m,—m + 1,...,m — 1,m} by
putting Py, = 1/mifu#vandu-v >0, Py, =0ifu-v <0
or u =, and Py, = 1/(2m) for all v # 0. Then, one has

that
1
T = ———= Ty =

0.
m-+1 v

2m 42’



Perturb P on W = {0} by putting, for some 0 < a < 1/2,
Py, = (1/2 4+ asgn(v))/m for v # 0 and Py, = 0.
Straightforward computations show that Ty, = m, while
Yw = 1. On the other hand, the bottleneck bound [24)
Theorem 7.3] implies that Tmix > 1/(4mg) > m/2, so that
Theorem 3| is useless as it only provides the trivial conclusion
that || — || < 1. In fact, observe that

Ty — Ty =

m+1$gn(v)7 veV,

so that
«

.m—i—l

is arbitrarily close to « for large m.

|7 ==l = m

IV. BACK TO THE APPLICATIONS

In this section, we discuss applications of Theorem (3| first
to the PageRank manipulation problem, and then to stochastic
matrices associated to networks with a finite-dimensional grid
structure.

A. PageRank manipulation (continued)

For a stochastic matrix (), a probability vector i, and some
B € (0,1), let P and 7 be as in Section Let Q be a
perturbation of @, and P = (1 — 3)Q + Slu. Clearly, one
has that W := supp(@ -Q)2 supp(]5 — P). Moreover, one
easily gets the following estimate of the escape probability

Jw >min Y Puy > B(1 - p(W)).
veEV\W

(29)

On the other hand, the mixing time can be easily bounded
by considering a coupling of two Markov chains, U(t) and
V(t) defined as follows. Before meeting, U (t) and V' (t) move
independently according to the transition probability matrix ¢
with probability (1 — 8) and jump to a common new state
chosen according to p with probability /3. Then, starting from
the first time they meet, i.e., for

t>T,:=inf{t>0: Ut)=V(t)},

U(t) = V(t) move together with transition probability matrix
P. For every t > 0 and u,v € V, [24, Theorem 5.2] implies
that

1P = Pi I <P(Te > t|U(0) = u, V(0) =v) < (1-B)",

so that
-1 " 1
- g —
log(1—p)| = 8
Finally, let 7, := Y, 1,7y be the expected hitting time
of the Markov chain with initial probability distribution x4 and
transition probability matrix P. For all v, one has that

1-p5

Tmix < ’V +1. (30)

Ty <D _(1=B) B+ my) = —— + 7y
t>0 B
Using Kac’s formula (7), the above implies that

1 ™ 1
=1 — Y Py < = b
o)~ 22 sy P S g

It follows that

7%2,875\)27%1.

By combining (29), (30), and (31)) with Theorem [3] one gets

that
I -l <0 (gt ).
A2 = p(W))
In particular, the above implies that the alteration of a set of
rows W of vanishing aggregate PageRank 7(W), and pu(W)
bounded away from 1, has a negligible effect on the whole
PageRank vector 7 (in total variation distance).

€29

B. Networks with high local connectivity

Applications of our results to examples like the distributed
averaging algorithm with faulty links or to the voter model
with influential agents amount to working with perturbations
of lazy random walks on graphs, i.e., of stochastic matrices of
the form P = (I +Q)/2, where [ is the identity matrix and @
is the stochastic matrix defined by Q.. = 1/d, if (u,v) € €
and @y, = O otherwise. The minimal hitting time 73, can
be, in general, difficult to be estimated in typical applications
when P is sparse and WV is a small subset of V. In this section,
we propose some initial results under two assumptions: one
is that the set JV is not only small but localized in the graph.
The second one is that the graph has high local connectivity
so that removing W does not drastically alter distances in the
remaining part of the graph. The typical graphs for which this
holds are the d-dimensional grids (with d > 3). We believe
that both assumptions can be considerably weakened at the
price of a deeper analysis. This is the subject of undergoing
research which we aim at presenting in another paper.

We start with a simple example to be generalized later on.

Example 3. For integers m > 2 and d > 1, let P be the
transition probability matrix of the lazy random walk on a d-
dimensional toroidal grid of size n = m®. Le., the node set
V = 72 coincides with the direct product of d copies of the
group of integers modulo m, and, for all u,v € V, Py, = 1/2,
P, = 1/(4d) ifZlgigd|ui —v| =1, and P, = 0 if
D oi<icg Ui — vi| > 2. For some w € V and o € (0,1),
consider a perturbed stochastic matrix P coinciding with P
outside w, and such that Py, < 1. Put W = {w}. It is
immediate to verify that

’S/W =1~ wa .
On the other hand, Kac’s formula ([7) implies that

1 1 1,
rmtoiid ¥ merikn,
vilv—w|=1

Tw 4d

where last equality follows from a basic symmetry argument.
Moreover, standard results (24, Theorem 5.5] imply that

Tmix < Can/d
for some constant Cy depending on d but not on n. Then,
Theorem [3] implies that

QCd n2/d
n—1/,"

|w—ﬁ|<e( £
1— Puw




Fig. 3. The external boundaries 8% and 0,,, of a node set W. A simple
path in V\ W from u € 9,,, to v € 8{,"\/ is shaded in gray.

The above guarantees that the total variation distance ||m—7||
vanishes as n grows large provided that d > 3.

In the previous example, 7y,, was exactly computed in terms
of 7(W) using Kac’s formula and the spatial symmetry in
the neighborhood of the perturbed set W = {w}. For general
W, such symmetry argument breaks down. Below we propose
a way to overcome this difficulty in a general situation where
W is localized and its boundary is sufficiently well connected
in V \ W. Define the external boundaries of W as

oy ={veV\W: P, >0 for some w € W},
O ={veV\W: P,, >0 for some w € W}.
(See Figure [3]) Clearly,

Tyy = min{7yy, : v € O} . (32)
On the the other hand, let
Ty 1= max{m, : vE R}, (33)
and observe that, from Kac’s formula (7)),
oy > zw:zv: %Pwvr{jv = ﬁ 1. (34)

Now, for all u € 8;,, and v € 95}, let I', , be the (possibly
empty) set of simple paths in V \ W starting in u and ending
in v. For all paths £ = (u = £0,&1,...,&§ = v) € Ty, let
Pe = [li<i<i Pei_re;- Define

Aw = min max P, 35)

u,v €Y o
where the minimization is intended to run over all u € 8;,
and v € 0,,, such that u # v, and we use the convention that
the minimum over an empty set equals 1, and the maximum
over an empty set equals 0. Then, the following result holds
true.

Proposition 4. Let P be an irreducible stochastic matrix on
a finite set V, and  its invariant probability vector. Then, for

all WCYV,
1
s [ —— — 1
W= W(w(W) )

where Ay is defined as in (33).

Proof Let u € 0;,, and v € 95}, be such that 734, = 73, and
Ty = Tyy- For € = (u = &0,&1,...,&§-1,4 = v) € Ty, let
1¢ be the indicator function of the event N!_{V (t) = &}.
Le., 1¢ is the indicator function of the event that the first [
steps of the Markov chain V'(¢) started at u are along the path
&. Then,

T;V:T;/LV ZEU[Tw]lg] :Pg(Tf/)\;ﬁLl) 2P§T§V‘ (36)

The claim now follows from (34), (36), and the arbitrariness
of £ €T, m

The above result turns out to be useful in those contexts
where the set VW is sufficiently localized so that its boundary
is tightly connected outside of WV and \yy remains bounded
away from 0.

Example 4. Let P be the lazy simple random walk on a d-
toroidal grid as in Exampleand let W = H?Zl [a;, i +s—1]
be a hypercube. It is immediate to check that any pair of nodes
in 8;,“\) = 0,y can be connected by a path of length s + d
outside W, so that Ay > (4d)7(s+d). On the other hand,
nw(W) = |W| = s%, so that Proposition |4| implies that

e (w&w - 1) = e (5 1)

Since the mixing time satisfies Tmix < Cqn?®/? for some

positive constant Cy independent from n [24] Theorem 5.5],
we have that

*

(4d)®s?

Tmix /
<C
= 741 —sd/n

=
with C!, == Cy(4d)?.

It remains to be estimated the escape probability from
W which is the (only) term depending on the perturbation.
Assume that P is irreducible, and put

p2/d—1 7

5=min{Pum TweEW, Pwv>0}.

Since from every w € W there is a path leading to OW of
length at most |W| = s%, one gets that

Sd

1 -
Fw > min =Py, (Ty\w < s%) >

W: Ty >0 Sd Sd '

Multiplying the two estimations and noting that the dominating
d
term in the size of the perturbation is given by §~°, we
immediately obtain from Theorem |3| that, if
W] d—2
<
ogn dlogd!

lim sup I
n
then || — || — 0 as n grows large.

V. CONCLUSION

Invariant probability vectors of stochastic matrices play
a central role in a large number of multi-agent network
models including distributed averaging algorithms, opinion
dynamics, and centrality measures such as PageRank. This
paper investigates the fundamental question of how such
invariant probability vectors are resilient to perturbations of
the network. The main result provides an estimate of the total



variation distance between the invariant probability vectors of
two stochastic matrices in terms of the mixing time of one
of the matrices and of the size of the perturbation set W
measured as the product of two quantities: the entrance time on
W and the escape probability from W. Explicit applications to
network models have also been discussed in detail. Among the
relevant issues which have not been addressed by this paper
and deserve to be considered for future research are:

o The estimation of the entrance time of the perturbation

set remains the most challenging problem in applying
our result. In particular, we would like to extend our
estimation to small but scattered perturbation sets as well
to other general classes of networks such as locally tree-
like graphs.

In many applications of network centrality, the total
variation distance between two probability vectors may
not be the most relevant measure of the effect of a
perturbation. E.g., the maximal ratio of the centralities
assigned to the same node in the unperturbed and in the
perturbed network would be of great potential interest in
such cases.

When a network is perturbed locally, we expect the effect
of the perturbation to decay as a function of the distance
from the perturbation set. This is not captured by the total
variation analysis and may require an essentially different
approach.
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