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a b s t r a c t

Iterative distributed algorithms are studied for computing arithmetic averages over networks of agents
connected through memoryless broadcast erasure channels. These algorithms do not require the agents
to have any knowledge about the global network structure or size. Almost sure convergence to state
agreement is proved, and the communication and computational complexities of the algorithms are
analyzed. Both the number of transmissions and the number of computations performed by each agent of
the network are shown to grownot faster than poly-logarithmically in the desired precision. The impact of
the graph topology on the algorithms’ performance is analyzed as well. Moreover, it is shown how, in the
presence of noiseless communication feedback, one can modify the algorithms, significantly improving
their performance versus complexity trade-off.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many scenarios of current applicative interest can be modeled
as large networks of identical anonymous agents, which have
access to some partial information, and aim at computing an
application-specific function of the global information. The main
requirements are that the network be reconfigurable and scalable,
and the computation be completely distributed, i.e., each agent
can only communicate with a restricted group of neighbors while
processing the available information. A special instance, which has
been the object of recent extensive work, is the average consensus
problem, in which a large number of agents aim at computing
the arithmetic average of some initial scalar measurements. While
most of the literature on consensus algorithms has modeled
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communication constraints in the average consensus algorithm
by a communication graph in which a link between two nodes
is assumed to support the noise-free transmission of a real value,
there is a clear demand for more realistic communication models.
In fact, some recent work has addressed the cases of quantized
communication (Aysal, Coates, & Rabbat, 2008; Carli, Bullo, &
Zampieri, 2010; Frasca, Carli, Fagnani, & Zampieri, 2009; Kar &
Moura, 2010; Li, Fu, Xie, & Zhang, in press), or transmission
affected by additive noise (Huang & Manton, 2009; Kar & Moura,
2009; Rajagopal & Wainwright, 2008). However, to the best of our
knowledge, there has been no contribution yet toward the design
of consensus algorithms on networks in which the communication
links are modeled as digital noisy channels. The latter models
of communication are particularly significant as, in practice,
bandwidth limitations imply that the channels have finite capacity.
For such digital noisy networks, information-theoretic bounds
on the performance of distributed computation algorithms have
been established in Ayaso, Shah, and Dahleh (in press) and Como
and Dahleh (2009). Related problems of distributed computation
have been considered, for instance, in Giridhar and Kumar (2006),
Hendrickx, Olshevsky, and Tsitsiklis (2009) and Ying, Srikant, and
Dullerud (2007).

In this paper, we study iterative distributed averaging al-
gorithms for networks whose nodes can communicate through
memoryless erasure broadcast channels. In order to compare
the performance of different algorithms, we define suitable
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complexity measures, which account for the number of channel
transmissions (communication complexity), and, respectively, of in-
node computations (computational complexity) required to achieve
a desired precision. These performance measures are particularly
relevant, as they allow for directly estimating the energy con-
sumption of such distributed computation systems, aswell as their
time complexity. Related measures to evaluate distributed algo-
rithms have been proposed in various settings; see, for instance,
(Denantes, Benezit, Thiran, & Vetterli, 2008; Kushilevitz & Nisan,
1997; Martínez, Bullo, Cortés, & Frazzoli, 2007). The algorithms
proposed in this paper combine the classical iterative linear con-
sensus algorithm with coding schemes for the reliable transmis-
sion of real numbers on noisy channels, recently proposed in Como,
Fagnani, and Zampieri (2010). They involve a sequence of trans-
mission phases, of increasing duration, in which the agents at-
tempt to broadcast their state, i.e., their current estimate of the
global average, to their neighbors, alternated to averaging steps,
in which the agents’ states are updated. These algorithms are fully
distributed, and they do not require the agents to have any global
knowledge of the network structure or size. Our main result –
stated as Theorem 4 – shows that such algorithms drive the agents
to state agreement – or consensus – which can be made arbitrarily
close to the true average. The number of channel transmissions and
the number of in-node computations are shown to grow at most
poly-logarithmically in the desired precision. We also show how
communication feedback, when available, allows one to modify
the algorithms, achieving asymptotic average consensus (i.e., state
agreement on the average of the initial observations), and re-
ducing the computational and communication complexities—see
Theorem 5.

The remainder of this paper is organized as follows. In
Section 2,we formally state the problemand introduce the relevant
performance measures. In Section 3, we revise some results on
the transmission of continuous information through digital noisy
channels. In Section 4, we present our algorithms and present
the main convergence and complexity results. In Section 5, we
discuss how to efficiently modify our algorithms in the presence
of communication feedback. Section 6 contains some concluding
remarks, and all proofs are collected in the Appendix.

Before proceeding, let us establish some notation to be used
throughout the paper. We denote by N,Z+, and R, respectively,
the sets of naturals, nonnegative integers, and real numbers. The
set of the smallest t naturals is denoted by [t] := {1, 2, . . . , t}. The
transposes of a vector v ∈ Rn and amatrixM ∈ Rn×n, are denoted
by v∗ and M∗, respectively. Given two matrices M , M ′, we denote
byM ⊙ M ′ their entrywise product. With the symbol 1we denote
the n-dimensional vector all of whose entries equal 1. A directed
graph G = (V, E) is the pair of a finite vertex set V and of a set
E ⊆ V × V of directed edges. For a vertex v ∈ V , we denote by
N +
v := {w ∈ V : (v,w) ∈ E}, and N −

v := {w ∈ V : (w, v) ∈ E},
respectively, the sets of its out-neighbors and in-neighbors. Given
a matrix M ∈ Rn×n, we define the induced graph GM by taking
V = {1, . . . , n} and putting an edge (j, i) in E if i ≠ j and Mij > 0;
M is adapted to a graph G if GM is a subgraph of G.

2. Problem setting

In this section, we present a formal statement of the problem,
and introduce the main performance measures. We consider a
finite set of agents V of cardinality n, and assume that each agent
v ∈ V has access to some partial information consisting in the
observation of a scalar value θv . The full vector of observations is
denoted by θ = (θv)v∈V . We consider the case when all θv ’s take
values in the same bounded intervalΘ ⊆ R. Such an interval may
represent the commonmeasurement range of the agents, possibly
dictated by technological constraints, and assumed to be known
a priori to all the agents. For ease of exposition, we shall assume
throughout that Θ coincides with the unitary interval [0, 1].1For
the network, the goal is to compute the average of such values,

y := f (θ) = n−1
−
v∈V

θv,

through repeated exchanges of information among the agents and
without a centralized computing system. Communication among
the agents takes place as follows. At each time instant t = 1, 2, . . . ,
every agent v broadcasts a binary signal av(t) ∈ {0, 1} to its out-
neighborhoodN +

v . Every agentw ∈ N +
v receives a possibly erased

version bv→w(t) ∈ {0, 1, ?} of av(t). Here, the symbol ? represents
a lost binary signal. We denote by bv(t) = (bw→v(t))w∈N −

v
and

b′
v(t) = (bv→w(t))w∈N +

v
the vector of signals received by agent v

at time t and, respectively, the vector of signals received fromagent
v by its out-neighbors. At time t , each agent v ∈ V makes an es-
timate ŷv(t) of y. The compact notation a(t) = (av(t))v∈V, b(t) =

(bv(t))v∈V , and ŷ(t) = (ŷv(t))v∈V is used for the full vectors
of transmitted signals, received signals, and estimates at time t ,
respectively.

We assume the communication network to be memoryless,
i.e., that b(t) is conditionally independent from the initial
observations θ and the previous transmissions {a(s), b(s) : 1 ≤

s < t}, given the currently broadcasted signals a(t). Further, we
assume that, given a(t), for every v ∈ V andw ∈ N +

v ,

bv→w(t) =


? w.p. ε
av(t) w.p. 1 − ε.

Here ε is some erasure probabilitywhich, for simplicity, is assumed
to remain constant in t, v and w.2 Distributedness of the compu-
tation algorithm is then modeled by constraining the transmitted
signal av(t) to be a function of the local information available to
agent v at the end of the (t − 1)-th round of communication, and
the estimate ŷv(t) to be a function of the information available to
agent v at the end of the t-th round of communication.We consider
two different local information structures, corresponding to the
cases when there is no communication feedback, and when there
is causal communication feedback, respectively. When there is no
communication feedback, the local information available to agent
v at the end of the t-th round of communication consists of its ini-
tial observation, as well as of the signals received by v up to time t:

iv(t) := {θv, bv(s) : 1 ≤ s ≤ t} .

On the other hand, when there is causal communication feedback,
the local information available to agent v at the end of the t-th
round of communication also includes all the signals received so
far from v by its out-neighbors:

i′v(t) :=

θv, bv(s), b′

v(s) : 1 ≤ s ≤ t

.

The assumption of noiseless communication feedback may be rea-
sonable, for example, to describe a simple situation of variable-rate
quantized transmission, where each agent is allowed to broadcast
one bit noiselessly to its neighbors with probability 1 − ε, and
cannot broadcast any bit with probability ε. Observe that the case
ε = 0 reduces to one-bit-quantized transmission, which has been
already considered in the literature; see (Frasca et al., 2009; Li et al.,
in press).

The communication setting outlined above can be conveniently
described by a directed graph Gε = (V, E), whose vertices are the
agents, and such that an ordered pair (v,w) with v ≠ w belongs

1 This causes no loss of generality, as the case of general bounded intervalΘ can
be easily reduced to the unitary one by means of an affine transformation, with the
error estimates continuing to holdmodulo a rescaling of the constants by the length
ofΘ .
2 It is not necessary, for the validity of our results, to assume mutual

independence of the received signals {bv→w(t)}w given av(t). On the other hand,
the assumption that the channel is memoryless remains crucial.
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to E if and only if w ∈ N +
v (or, equivalently, if v ∈ N −

w ), i.e., if
v transmits to w with erasure probability ε < 1. Throughout the
paper, we assume that the graph Gε is strongly connected, i.e., that
there exists a directed path connecting any pair of its vertices. A
distributed computation algorithm on the communication graph
Gε = (V, E) is specified by a pair A = (Φ,Ψ ) of double-indexed
families of maps Φ = {φ(t)v : v ∈ V, t ∈ N}, and Ψ = {ψ (t)

v : v ∈

V, t ∈ N}. When there is no communication feedback, one has

φ(t)v : Θ × {0, 1, ?}N −
v ×[t−1]

→ {0, 1},

ψ (t)
v : Θ × {0, 1, ?}N −

v ×[t]
→ Θ,

and av(t) = φ(t)v (iv(t − 1)) , ŷv(t) = ψ (t)
v (iv(t)). On the other

hand, in the case when causal communication feedback is avail-
able, one has

φ(t)v : Θ × {0, 1, ?}(N
−
v ∪N +

v )×[t−1]
→ {0, 1},

ψ (t)
v : Θ × {0, 1, ?}(N

−
v ∪N +

v )×[t]
→ Θ,

and av(t) = φ(t)v

i′v(t − 1)


, ŷv(t) = ψ (t)

v


i′v(t)


.

In the rest of this paper, we shall propose and study some
distributed computation algorithms that can be framed in the
above general setting. In order to analyze their performance, we
will study the distance of the estimates ŷv(t) from the average of
the initial values y:

e(t) = ŷ(t)− y1.

Namely, we define two complexity figures, the communication
complexity and the computational complexity. The communication
complexity of a distributed algorithmA on a graph Gε is measured
in terms of the function

τ(δ) := inf{t ∈ N : n−1E

‖e(s)‖2

≤ δ, ∀s ≥ t},

where δ ∈]0, 1]. In other words, τ(δ) denotes the minimum
number of binary transmissions each agent has to perform in
order to guarantee that the averagemean squared estimation error
does not exceed δ. Instead, the computational complexity of an
algorithm A on a graph Gε is measured as follows. For every t ∈ N,
and v ∈ V , we denote by κv(t) the minimum number of binary
operations required by agent v to evaluate the functionsφ(t)v (·) and
ψ (t)
v (·). Then, we define

κ(δ) := max


τ(δ)−
t=1

κv(t) : v ∈ V


, δ ∈]0, 1].

Hence, κ(δ) denotes the maximum, over all agents v ∈ V , of the
total number of binary operations required to be performed, in
order to achieve an average mean squared estimation error not
exceeding δ.

3. Reliable transmission of continuous information through
digital noisy channels

When the communication graph is complete,with all the agents
connected throughbinary erasure broadcast channels, the problem
reduces to that of reliable transmission of continuous information
through digital noisy channels, which has been recently addressed
in Como et al. (2010). While referring to Como et al. (2010)
for general information-theoretical limits and complexity versus
performance trade-offs, we give here some results which will be
used in what follows.

Let θ be a random variable taking values in the unitary in-
terval Θ = [0, 1], according to some a priori probability law.
Consider a memoryless binary erasure channel with erasure prob-
ability ε ∈ (0, 1). At each time t ∈ N, the channel has input at ∈

{0, 1} and output bt ∈ {0, 1, ?}, with bt conditionally independent
from x, {as, bs : 1 ≤ s ≤ t−1}, given at , and such that bt = at with
probability 1 − ε, and bt = ? with probability ε. The goal is to de-
sign a sequence of encoders Υ = (Υt : Θ → {0, 1})t∈N, and of de-
coders Λ =


Λt : {0, 1, ?}t → Θ


t∈N, such that, if at = Υt(x), bt

is the corresponding channel output, and θ̂t := Λt(b1, . . . , bt) the
current estimate, themean squared errorE[(θ−θ̂t)

2
] isminimized.

The computational complexity of the sequential coding scheme
(Υ ,Λ) is measured, for every time horizon ℓ ∈ N, in terms of the
total number kℓ of binary operations required to compute Υt(x)
andΛt(b1, . . . , bt) for all 1 ≤ t ≤ ℓ.

Here, in particular, we consider two specific classes of
sequential transmission schemes described and analyzed in Como
et al. (2010). The first class is that of random linear tree codes,
referred to by the superscript L. These codes have exponential
convergence rates with respect to the number of channel uses, and
computational complexity proportional to the cube of the number
of channel uses. The second class is that of irregular repetition
codes (superscript R). Such codes have linear computational
complexity, but subexponential converge rates. The performance
of these two classes of codes is summarized in the following
lemmas.

Lemma 1 (Como et al., 2010, Corollary 6.2). There exist a sequence
of linear encoders Υ L, and a sequence of decoders ΛL, such that, if
θ̂ℓ = ΛL

ℓ(b1, . . . , bℓ), then, for all ℓ ≥ 0,

E

(θ − θ̂ℓ)

2


≤ β2ℓ
L , kLℓ ≤ Bℓ3, (1)

where βL ∈ (0, 1), and B > 0 are constants depending only on the
erasure probability ε.

Lemma 2 (Como et al., 2010, Proposition 5.1). There exist a sequence
of linear encoders Υ R, and a sequence of decoders ΛR, such that, if
θ̂ℓ = ΛR

ℓ(b1, . . . , bℓ), then, for all ℓ ≥ 0,

E

(θ − θ̂ℓ)

2


≤ β
2
√
ℓ

R , kRℓ ≤ 2ℓ, (2)

where βR ∈ (0, 1) is a constant depending only on the erasure prob-
ability ε.

4. Distributed averaging without communication feedback

In this section, we present two iterative distributed averaging
algorithms, working on a strongly connected graph Gε , without
explicit communication feedback. Both algorithms are based on a
sequence of transmission phases, indexed by j ≥ 1, alternated to
averaging steps. Each agent v ∈ V maintains a scalar state xv(j),
j ≥ 0, which is initialized to the original observation θv . The state
xv(j) has to be thought as v’s estimate of y at the beginning of the
(j + 1)-th phase. During the j-th transmission phase, each agent
broadcasts ℓj binary signals to its out-neighbors. These binary
signals represent an encoding of the state xv(j − 1). At the end
of the j-th phase, each agent estimates each of its in-neighbors’
states from the signals received from it, and it updates its state to a
convex combination of these estimates and its own current state.
The process is then iterated.

4.1. Algorithms

We now provide a formal description of the algorithms. Let P
be a doubly stochastic, irreducible matrix adapted to Gε , with non-
zero diagonal entries. Let (ℓj)j∈N be a sequence of positive integers,
each ℓj representing the length of the j-th transmission phase, and
define hj :=

∑
i≤j ℓi, for all j ∈ N and h0 = 0. Further, let Υ andΛ

be sequences of encoders and decoders as introduced in Section 2.
Then, the proposed distributed algorithms consist of the following
steps. First of all, each agent v ∈ V initializes its state, setting
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xv(0) = θv . Then, for all j ∈ N and v ∈ V:

Communication phase: v broadcasts an encoded version of its
state xv(j−1) to its out-neighbors; namely, for all hj−1 <
t ≤ hj, it transmits the binary signal

at = Υk (xv(j − 1)) , k = t − hj−1. (3)

State update: at the end of the j-th communication phase, v
estimates the state of all its in-neighbors, based on the
received signals {bv(t)}

hj
t=hj−1+1; for each w ∈ N −

v , let
x̂(v)w (j − 1) be the estimate of xw(j − 1) built by agent v;
then

x̂(v)w (j − 1) = Λℓj


bw→v(hj−1 + 1), . . . , bw→v(hj)


. (4)

Then, v updates its own state according to the following
consensus-like step:

xv(j) =

−
w∈N −

v

Pvw x̂(v)w (j − 1)+ Pvvxv(j − 1). (5)

Observe that the above-described algorithms can be framed in the
general setting described in Section 2. Indeed, for all j ≥ 1, one has

φ
(v)
hj−1+k(iv(hj−1 + k)) = Υi (xv(j − 1)) 0 < k ≤ ℓj,

ψ
(v)
hj−1+k(iv(hj−1 + k)) = xv(j − 1) 0 ≤ k < ℓj.

Notice that state xv(j− 1) represents the estimate that agent v has
of y along all j-th phase, i.e.,

ŷv(t) = xv(j − 1), ∀hj−1 ≤ t < hj. (6)

In what follows, we consider two implementations of the
algorithm. In the first implementation, referred to as algorithmAL,
we use linear tree codes Υ = Υ L,Λ = ΛL, and phase lengths
ℓLj = SLj for some SL ∈ N. In the second implementation, referred
to as algorithmAR, we use repetition codesΥ = Υ R,Λ = ΛR, and
phase lengths ℓRj = SRj2, for some SR ∈ N. Observe that, thanks to
(1), one has, for algorithm AL,

E


x̂(v)w (j − 1)− xw(j − 1)
2

≤ α
2j
L , (7)

for every j ∈ N, v ∈ V , and w ∈ N −
v , where αL := β

SL
L . Similarly,

for algorithm AR, Eq. (2) guarantees that

E


x̂(v)w (j − 1)− xw(j − 1)
2

≤ α
2j
R , (8)

for every j ∈ N, v ∈ V , andw ∈ N −
v , where αR := β

√
SR

R .
It should be mentioned that other choices could have been

made for the communication phase lengths, as well as for the
coding schemes used during each of them. For instance, block
codes of different lengths could have been used during each phase.
Our choice of using the same anytime transmission scheme for
every agent during each communication phase has the advantage
of fewer memory requirements (only one transmission scheme
has to be memorized by each agent), anonymity (each agent uses
the same transmission scheme, and the state updating rules only
depend on its position in the graph), and adaptivenesswith respect
to the erasure probability ε. In fact, it is not required to know the
actual value of ε in order to design Υ andΛ; see Remarks 3 and 5
in Como et al. (2010).

4.2. Performance analysis

We now present results characterizing the performance of the
algorithms AL and AR introduced in Section 4.1. Throughout,
we assume that Gε is a strongly connected graph, and that P is
a doubly stochastic, irreducible matrix which is adapted to Gε ,
and has positive diagonal entries. Notice that this implies that
P∗P is doubly stochastic and irreducible. It then follows from the
Perron–Frobenius theorem that P∗P has the eigenvalue 1 with
multiplicity 1 and corresponding eigenvector 1, and all its other
eigenvalues have modulus strictly smaller than 1. Hence, P has
largest singular value equal to 1 and all other singular values
strictly smaller than 1. We denote by ρ := ρ(P) < 1 the second
largest singular value of P , and assume that ρ ≥ ρ, where ρ > 0 is
some a priori constant.3

Observe that the vector of the estimation errors on y made by
the different agents, e(t) = ŷ(t) − y1, is constant during each
transmission phase, i.e.,
e(t) = e(hj), ∀hj ≤ t < hj+1 (9)
for any j ≥ 0. To analyze the performance of our algorithms, it is
useful to introduce a suitable decomposition of e; for all j ≥ 0, we
can write that
e(hj) = z(j)+ ζ (j)1,
where

z(j) = x(j)− (n−11∗x(j))1 (10)
represents the difference between the current estimates and the
average of the current states, whereas

ζ (j) = n−11∗x(j)− y = n−11∗(x(j)− x(0)) (11)
accounts for the distance between the current average of the
estimates and the average of the initial conditions. Now, observe
that the state dynamics (5) may be rewritten in the following
compact form:
x(j + 1) = Px(j)+ (P ⊙∆(j + 1))1, (12)
where x(0) = θ, and where ∆(j) = (∆vw(j))v,w∈V is defined, for
all j ∈ N, by

∆vw(j) :=


x̂(v)w (j − 1)− xw(j − 1) ifw ∈ N −

v

0 ifw ∉ N −

v .

Notice that, in general, ∆vw(j) has non-zero mean, and it is not
independent from xw(j), and therefore from the errors introduced
by the previous transmission phases {∆(i) : 1 ≤ i < j}. We have
the following result.

Proposition 3. Consider the stochastic system (12), driven by a noise
process {∆(j) : j ≥ 1} satisfying

E[∆vw(j)2] ≤ α2j, j ≥ 1,

for some 0 < α < ρ . Then, for all j ≥ 0,

E[ζ 2(j)] ≤ α2(1 − α)−2, (13)

n−1E[‖z(j)‖2
] ≤ ρ2j(1 − α/ρ)−2. (14)

Proof. See the Appendix. �

The following result characterizes the performance of both
algorithms AL and AR.

Theorem 4 (No Communication Feedback). For any choice of the
initial phase length SL (respectively, SR), there exists a real-valued
random variable ŷ such that

E

(y − ŷ)2


≤ α2(1 − α)−2, (15)

3 Thismay be enforcedwithout using global information, by assuming that Pvv ≥

(1+ρ)/2. Note that this assumption is for purposes of analysis only, and the agents
do not need to know ρ to run the algorithms. The assumption entails aminimal loss
of generality in that it rules out the case ρ = 0: related results which cover this case
can be found in Carli, Como, Frasca, and Garin (2009).
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where α = β
SL
L (respectively, α = β

√
SR

R ) and such that the estimates
of algorithm AL (respectively, AR) satisfy, with probability 1,

lim
t→∞

ŷv(t) = ŷ, ∀v ∈ V. (16)

Moreover, it is possible to choose the initial phase length SL (respec-
tively, SR) in such a way that the algorithm AL (respectively, AR) has
communication and computational complexities satisfying

τL(δ) ≤ C1 + C2
log3 δ−1

log2 ρ−1
, κL(δ) ≤ C3 + C4

log7 δ−1

log4 ρ−1
,

and, respectively,

τR(δ) ≤ C5 + C6
log5 δ−1

log3 ρ−1
, κR(δ) ≤ C7 + C8

log5 δ−1

log3 ρ−1
,

for all δ ∈]0, 1], where {Ci : i = 1, . . . , 8} are positive constants
depending only on ε.

Proof. See the Appendix. �

Observe that, by (15), the mean squared distance between the
asymptotic estimate ŷ and the actual value y is upper bounded by a
constant which, quite remarkably, is independent of either the size
of the network or the consensusmatrix P , and depends only on the
length of the first transmission phase. Moreover, Theorem 4 shows
that both the algorithms AL and AR have communication and
computational complexities growing at most poly-logarithmically
in the desired precision. The bounds on the communication
(respectively, computation) complexities suggest that for the
agents it may be sufficient to use fewer channel transmissions
in order to achieve a desired precision when running algorithm
AL than when running AR, and that the opposite happens if the
number of computations is considered. This behavior has been
confirmed in a number of simulations we have run implementing
the algorithms, an example of which is reported in Carli et al.
(2009). Furthermore, in Theorem 4, both complexities depend on
ρ, the second largest singular value of thematrix P . As thematrix P
is adapted to the communication graph Gε , the dependence of the
bounds on ρ captures the effect of the network topology.

5. Distributed averaging with communication feedback

In this section, we discuss how to efficiently modify the
algorithms of Section 4 when there is communication feedback.
The key point is that, in the presence of noiseless communication
feedback, it is possible to modify the algorithms AL and AR and
make them average preserving. These modified algorithms will be
shown to converge to average consensus with probability 1, and to
have lower communication and computational complexities than
their feedbackless counterparts.

We consider distributed averaging algorithmswith the iterative
structure described in Section 4. Specifically, we use the same
communication phase rule (3) of Section 4.1, and modify the
state update step as follows. Observe that, at the end of the j-th
communication phase, not only can agent v estimate the state of
all its in-neighbors as in (4), but it can also use its knowledge of the
signals {bv→w(t)}

hj
t=hj−1+1 received by its out-neighbors w ∈ N +

v

in order to compute their estimates x̂(w)v (j − 1) of its own current
state. Then, in the presence of communication feedback, the state
update step (5) can be replaced by the following one:

xv(j + 1) = xv(j)−

−
w∈N +

v

Pwv x̂(w)v (j)+

−
w∈N −

v

Pvw x̂(v)w (j).

Notice that this requires every agent v to know not only the entries
of the v-th row of the matrix P , but also those of the v-th column
of P . Clearly, such algorithms can be framed in the setting described
in Section 2. Indeed, for all j ≥ 1, one has

φ
(v)
hj−1+k(i

′

v(hj−1 + k)) = Υk (xv(j − 1)) , 0 < k ≤ ℓj

ψ
(v)
hj−1+k(i

′

v(hj−1 + k)) = xv(j − 1), 0 ≤ k < ℓj.

The above state update equation may be written in the compact
form
x(j + 1) = Px(j)+ [(P ⊙∆(j + 1))− (P ⊙∆(j + 1))∗]1.
Observe that 1∗

[(P ⊙∆(j))− (P ⊙∆(j))∗]1 = 0, so that, since P is
a doubly stochastic matrix, one has 1∗x(j+1) = 1∗Px(j) = 1∗x(j).
It follows that n−11∗x(j) = n−11∗x(0) = y for any j. Hence,
ζ (j) = 0, e(hj) = z(j), ∀j ≥ 0. (17)
Now, we consider two implementations of the above-described al-
gorithms. Such implementations have increasing communication
phase lengths, analogously to those introduced in Section 4. In the
first implementation, referred to as algorithm A′

L, linear codes are
used in the communication phase, and the length of the j-th phase
is ℓj = SLj for some SL ∈ N. The second implementation, namedA′

R,
uses repetition codes in the communication phase, and the length
of the j-th phase is ℓj = SRj2 for some SR ∈ N. The following result
characterizes the performance of the algorithmsA′

L andA′

R, show-
ing that, with probability 1, the estimates of all the agents converge
to the actual value y, and estimating the communication and com-
putational complexities.

Theorem 5 (With Communication Feedback). For any choice of
the initial phases length SL (respectively, SR), the estimates of the
algorithm A′

L and A′

R satisfy, with probability 1,

lim
t→∞

ŷv(t) = y, ∀v ∈ V.

Moreover, it is possible to choose the initial phase length SL (SR,
respectively) in such a way that algorithm A′

L (respectively, A
′

R) has
communication and computational complexities satisfying

τ ′

L(δ) ≤ C ′

1 + C ′

2
log2 δ−1

log2 ρ−1
, κ ′

L(δ) ≤ C ′

3 + C ′

4
log4 δ−1

log4 ρ−1
,

and, respectively,

τ ′

R(δ) ≤ C ′

5 + C ′

6
log3 δ−1

log3 ρ−1
, κ ′

R(δ) ≤ C ′

7 + C ′

8
log3 δ−1

log3 ρ−1
,

for all δ ∈]0, 1], where {C ′

i : i = 1, . . . , 8} are positive constants
depending only on ε.
Proof. See the Appendix. �

The bounds in Theorem 5 exhibit a better dependence on the
desired precision δ with respect to their analogues in Theorem 4.
On the other hand, the dependence on ρ is the same. The reason
lies in the average-preserving property which can be guaranteed
when communication feedback is available. In this case, as shown
by Theorem 5, it is not necessary to determine the initial phase
length as a function of final desired precision, since the estimates
produced by both A′

L and A′

R converge to y with probability
1. In contrast, when communication feedback is not available,
it is not possible to guarantee that the average of the agents’
estimates is preserved. This is the reason why, in Section 4, we
had to adjust the initial phase length as a function of the desired
precision δ, inducing a worse dependence on δ of the bounds on
communication and computational complexities of the algorithms
AL and AR shown in Theorem 4.

6. Conclusion

In this paper, for the first time we have considered the
averaging problem on networks of digital links, and established
suitable performance figures to evaluate its algorithmic solutions,
in terms of communication and computation complexities. The
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main contribution of the paper has consisted in proposing and
analyzing a family of average consensus algorithms, based on
encoding/decoding schemes with precision increasing with time:
the increase is meant to compensate the effect of errors in digital
communications. Depending on the application, one might prefer
to avoid such increase, and to compensate the accumulation of
errors by applying a decreasing gain strategy, as proposed in
Huang and Manton (2009) and Rajagopal and Wainwright (2008)
for networks whose links support the transmission of a real
number affected by additive noise. Compared to ours, these results
show almost sure convergence to average consensus, with mean
square error decreasing as the inverse of time, under slightly more
stringent assumptions on the noise (mainly, independence of the
additive noise). This guarantees communication and computation
complexities growing polynomially in the desired precision, as
opposed to the poly-logarithmic dependence of our algorithms.
Also, we have investigated how to make use of communication
feedback, when available, in order to make the algorithms average
preserving, and improve their performance. The question is open
whether a logarithmic algorithm can be designed for average
consensus on digital networks, and how much global information
it would require to be run by the agents.
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Appendix. Proofs

Proof of Proposition 3. Let us first consider the quantity ζ (j)
defined in (11). It is straightforward to verify that ζ (0) = 0, and
the recursion ζ (j + 1) = ζ (j) + ξ(j + 1) is satisfied, with ξ(j) :=

n−11∗(P ⊙ ∆(j))1. For j ≥ 0, ξ(j) is a random variable whose
secondmoment can be upper bounded using the Cauchy–Schwarz
inequality:

E[ξ(j)2] = n−2E

−
v,w

Pvw∆vw(j)

2


= n−2
−
v′,w′

−
v,w

∆v′w′∆vwE[∆v′w′(j)∆vw(j)]

≤ n−2
−
v′,w′

−
v,w

Pv′w′Pvw


E[∆v′w′(j)2]E[∆vw(j)2]

≤ n−2

−
v,w

Pvwαj

2

= α2j. (A.1)

It follows again from the Cauchy–Schwarz inequality that E[ξ(s)ξ
(r)] ≤ E[ξ(s)2]1/2E[ξ(r)2]1/2 ≤ αs+r , for all 1 ≤ s, r ≤ j.
Therefore,

E[ζ 2(j)] =

−
1≤s,r≤j

E[ξ(s)ξ(r)] ≤

−
1≤s,r≤j

αr+s

=

−
1≤s≤j

αs

2

≤
α2

(1 − α)2
.

Now, consider z(j) defined in (10). Observe that z(0) = u(0), and
the recursion z(j + 1) = Pz(j)+ u(j + 1) is satisfied with u(0) :=

x(0) − n−11Tx(0)1, and, for j ≥ 1, u(j) := (P ⊙ ∆(j))1 − ξ(j)1.
Notice that ‖Px‖ ≤ ρ‖x‖ for all x ∈ Rn such that 1∗x = 0. Since
1∗u(j) = 0, we have

‖Pu(j)‖ ≤ ρ‖u(j)‖. (A.2)

On the other hand, again from the Cauchy–Schwarz inequality, for
all u, v, w ∈ V , we have that

E[∆vw(j)∆vu(j)] ≤ E[∆vw(j)2]
1
2 E[∆vu(j)2]

1
2 ≤ α2j,
so the random vector u(j), for j ≥ 1, satisfies the following bound:

E[‖u(j)‖2
] = E[‖(P ⊙∆(j))1‖2

] − nE[ξ(j)2]

≤

−
v

E

−
w

Pvw∆vw(j)

2


=

−
v

−
w,w′

PvwPvw′E[∆vw(j)∆vw′(j)]

≤ nα2j. (A.3)

Moreover, recall that θv ∈ Θ for any v ∈ V , whereΘ is an interval
of unitary length. As a consequence, one has |θv − y| ≤ 1 for any
v ∈ V , so

E[‖u(0)‖2
] = E[‖z(0)‖2

] =

−
v

E[(θv − y)2] ≤ n. (A.4)

Consider now E[‖z(j)‖2
] = E


‖
∑

0≤s≤j P
j−su(s)‖2


. By succes-

sively applying the Cauchy–Schwarz inequality, (A.2)–(A.4), we get

E[‖z(j)‖2
] ≤

−
0≤s,r≤j


E[‖P j−su(s)‖2]E[‖P j−ru(r)‖2]

≤

−
0≤s≤j

ρ(j−s)


E[‖u(s)‖2]

2

≤ n

−
0≤s≤j

ρ(j−s)αs

2

≤ n


ρ j
−
s≥0


α

ρ

s
2

= nρ2j

1 −

α

ρ

−2

,

which completes the proof. �

Proof of Theorem 4. We begin by estimating the difference x(j +
1)− x(j), for j ≥ 0. Toward this goal, let ξ(j) := n−11∗(P ⊙∆(j))1.
Then, we may rewrite

x(j + 1)− x(j)
= x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j + 1)1 − x(j)
= x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j)1 + ξ1 − x(j)
= z(j + 1)− z(j)+ ξ(j)1.

By successively applying the triangle inequality, Proposition 3, and
(A.1), we get

E[‖x(j + 1)− x(j)‖2
] ≤ E[(‖z(j + 1)‖ + ‖z(j)‖ + ‖ξ(j)1‖)2]

≤ 3

E

‖z(j + 1)‖2

+ E

‖z(j)‖2

+ nE

ξ(j)2


≤ 3n(ρ2(j+1)

+ ρ2j)(1 − α/ρ)−2
+ 3nα2j

≤ 9n(1 − α/ρ)−2(max{ρ, α})2j = 9n(1 − α/ρ)−2ρ2j.

Hence, one can estimate the probability of the event Ej :=
‖x(j + 1)− x(j)‖2

≥ ρ2j

byMarkov’s inequality, obtainingP


Ej


≤ 9n(1 − α/ρ)−2ρ2j. Therefore,
∑

j≥0 P

Ej

is finite, and the

Borel–Cantelli lemma implies that, with probability 1, the event
Ej occurs for finitely many j ∈ Z+. This implies that, with prob-
ability 1, the sequence {x(j)} is Cauchy, and hence convergent.
Hence, there exists a Rn-valued random variable x∞ such that
limj x(j) = x∞ with probability 1.

On the other hand, define g(x) = x − n−11∗x1. Then, it
can be deduced from (14), again using Markov’s inequality and
the Borel–Cantelli lemma, that g(x(j)) = z(j) converges to 0
with probability 1. Then, from the continuity of g , it follows that
g(x∞) = 0, i.e., x∞ = ŷ1 for some scalar random variable ŷ. In or-
der to verify that (15) holds, observe that ζ (j) = n−11∗x(j) − y
is bounded and convergent to ŷ − y with probability 1. Hence,
limj E[ζ (j)2] = E


(ŷ − y)2


. Then, from (14) we have α2(1−α)−2
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≥ limj E[ζ (j)2] = E

(ŷ − y)2


. Therefore, (16) follows by simply

recalling that ŷv(t) = xv(j), for hj < t ≤ hj+1.
In order to prove the second part of the claim, first recall that

αL = β
SL
L , with βL depending only on ε. Hence, αL ≤ ρ/2 for all

SL ≥ (log ρ−1
+ log 2)/ logβ−1

L . Then, for δ ∈]0, 1], let u :=
√
δ/2.

It follows from (9) and (7), and Proposition 3, that, for

n−1
‖e(t)‖2

≤ δ, ∀t ≥ hj (A.5)

to hold, it is sufficient that

αL(1 − αL)
−1

≤ u, ρ j
≤ u/2. (A.6)

The leftmost inequality in (A.6) is satisfied provided that SL ≥

log(2u−1)/ log(β−1
L ), and the right inequality is satisfied if j ≥

log(2u−1)/ log(ρ−1). Now, recall that hj =
∑

1≤i≤j ℓi = SL
∑

1≤i≤j

i ≥ 1/2SLj2. It follows that

hj ≥
SL
2

log2 u
log2 ρ

≥
1

2 logβL

log3 u
log2 ρ

implies (A.5). Then, the upper bound on τL(δ) easily follows. In or-
der to prove the bound on κL(δ), observe that (1) implies that, for
every v ∈ V ,−
1≤t≤hj

κv(t) ≤

−
1≤i≤j

Bℓ3i = BS3L
−
1≤i≤j

i3 ≤ BS3L j
4.

Finally, the bounds on τL(δ) and κL(δ) follow from analogous
arguments. �

Proof of Theorem 5. From (17), one has ζ (j) = 0 for all j. On the
other hand, in the same way as in the proof of Theorem 4, one can
argue that limj z(j) = 0 with probability 1. Hence limt e(t) = 0
with probability 1, which is equivalent to the first part of the claim.

Now, let us consider algorithm A′

L, and notice that the proof of
Proposition 3 allows us to obtain the following bound for the case
with feedback, analogous to (14):

n−1E[‖z(j)‖2
] ≤ 2ρ2j(1 − α/ρ)−2.

Also recall that one has αL ≤ ρ/2 for all SL ≥ log(2ρ−1)/ logβ−1
L .

Hence, for any such SL,

n−1E[‖e(t)‖2
] = n−1E[‖z(j)‖2

] ≤ 2ρ2j (1 − α/ρ)−2
≤ δ

for all t ≥ hj, if j ≥ log(8/δ)/ log(ρ−2). The upper bound on
τ ′

L(δ) then follows in view of ℓj = SLj. The upper bound on
κ ′

L(δ) follows using (1). The bounds on τ ′

R(δ) and κ
′

R(δ) follow from
similar arguments. �
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