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Abstract
In this paper we investigate the typical behaviour of minimum distance and ML word error probability of a serial
turbo concatenation with random interleaver, when the interleaver length N goes to infinity. Our main result
shows that the word error probability P (e) goes to zero subexponentially in N with probability one. While
it is known that log E[P (e)]/ log N converges to a constant, we prove that with probability one the sequence
log(− log(P (e)))/ log N approaches an interval [α, β] ⊂ (0, 1), thus showing that the expected error rate is
dominated by an asymptotically negligible fraction of bad interleavers. Our analysis is based on precise estimations
of the minimum distance distribution.

1 Introduction
Serial turbo codes (serially concatenated convolutional
codes with interleaver) were introduced in [3], together
with an analytical explanation of the simulation results.
The authors based their analysis on the so called
‘uniform interleaver’, a conceptual tool first introduced
in [2] in order to explain the performances of Berrou
et al.’s turbo codes [4]. Essentially the idea consists of
fixing outer and inner encoder and estimating the ML
error probability averaged over all possible interleavers.
The main result in [3] consists in an upper bound to the
average error probability which goes to zero as a neg-
ative power of the interleaver length N . The exponent
of N , called the interleaver gain, was shown to depend
only on the free distance of the outer encoder, which
turns out to be the main design parameter of serial
turbo codes. These ideas were rigorously formalized
first in [9] and then, in a more general setting, in [7],
where also a lower bound is proved differing from the
upper bound only by a multiplicative constant, thus
showing that the estimation is tight for the average
serial turbo code. Since this average based analysis
seemed to agree with simulation results in the sense that
hierarchies of the design parameters were respected,
it could be expected that a typical serial turbo code
has an analogous behaviour, i.e. there is concentration
phenomenon. From this, the quest for more precise
probabilistic estimations.

In this paper we investigate this problem, showing
that in fact there is no concentration of the ML error
probability around its average value, since the ratio
P (e)/E[P (e)] converges to zero with probability one.
More precisely we shall prove that a typical sequence
of serial turbo codes has error probability subexpo-
nentially decreasing to zero in N . The speed of this
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convergence turns out to depend (in a non deterministic
way) on the free distance of the outer encoder, which
is confirmed as the main design parameter for these
coding schemes.

Our analysis is based on a precise estimation of the
probability distribution of minimum distances, inspired
both by the the tail estimations of [10] and the deter-
ministic upper bounding techniques devised in [1].

Our result has to be considered as analogous of the
well known behaviour of ML-decoded LDPC codes
(see [8], [11]): for the (c, d)-regular LDPC ensemble
the average error probability is known to decrease to
zero as N1−c/2 for even c and N2−c for odd c, while
the error probability of a typical code goes to zero
exponentially fast. At the same time our results should
be considered in contrast with the concentration results
of [12] and [13], proved in the different context of
iterative BP-decoding.

In Sec. 2, we introduce the setting and state our main
result. Sec. 3 contains estimations of the probabilistic
distribution of minimum distances. In Sec. 4 we prove
strong probabilistic results first on the asymptotic dis-
tribution of the minimum distance sequence and then
for that of the ML word error probabilities.

2 Problem setting and main result
Throughout this paper we will deal with the following
coding scheme

kn bits−→ φo
n

Nn bits−→ πn
Nn bits−→ φi

n
Mn bits−→ Channel

where:
• the outer encoder φo

n is the termination af-
ter n trellis steps of a convolutional encoder
φo ∈ Zk×m

2 (D) with controllability index νo;
• the inner encoder φi

n is the termination after
n+νo trellis steps of a convolutional encoder
φi ∈ Zm×r

2 (D) with controllability index νi;



• the interleaver πn is a permutation of
Nn := m(n + νo) bits;

• Mn := r(n + νo + νi) is the blocklength;
• the channel is memoryless, binary-input output-

symmetric, with Batthacharyya noise parameter γ
(see [9], e.g. for the BIAWGNC γ = e−Es/N0 ).

We will denote by P (e|πn) the word error probability
of the above coding scheme, under maximum likelihood
(ML) decoding, and by dmin

n its minimum Hamming
distance. All the asymptotic results about P (e|πn) will
be stated for a sufficiently good channel, meaning that
there exists γ > 0 such that the result holds true
provided that γ < γ.

About the component encoders, we will assume that:
• φo is non-catastrophic, with free distance do

f ≥ 5;
• φi is non-catastrophic and recursive.

These assumptions are essential to our results. The
most used concatenation scheme, with two rate 1/2
systematic recursive encoders, is a particular case of our
more general setting (systematic codes are surely non-
catastrophic). Also Repeat-Accumulate and Repeat-
Convolute codes fill in our setting.

For a fixed pair of component encoders φo and φi, for
every n in N it is possible to introduce a probabilistic
structure in the above serial turbo scheme, by consider-
ing as interleaver a random variable (r.v.) Πn uniformly
distributed over the set SNn of all permutations of Nn

bits. We denote by P (e|Πn) the r.v. describing the ML
word error probability of such a random coding scheme.

Consider a sequence (Πn)n∈N of independent ran-
dom interleavers each uniformly distributed over SNn

:
from (Πn)n∈N we naturally obtain a sequence of ran-
dom coding schemes. We call this probabilistic space
the serial turbo ensemble; denote by P and E proba-
bility and expected value with respect to this space.

The well known results about the serial turbo ensem-
ble consist of estimations of the average word error
probabilities ([3], [9], [7]): there exist two positive
constants C ′ and C ′′ such that

C ′n−b(d
o
f−1)/2c ≤ E[P (e|Πn)] ≤ C ′′n−b(d

o
f−1)/2c .

In this paper we will show that the typical asymptotic
behaviour of the random sequence (P (e|Πn))n∈N is
quite different from its means and is actually subex-
ponentially decreasing to zero. Indeed, we will prove
that, with probability one, for all ε > 0:

lim
n→∞

P (e|Πn)
exp(−nα−ε)

= 0 ; lim
n→∞

P (e|Πn)
exp(−nβ+ε)

= ∞ ,

where

α := 1− 2
ddo

f/2e
, β := 1− 1

ddo
f/2e

. (1)

Notice that both α and β are increasing functions of do
f

and as do
f ≥ 5, we have 0 < α < β < 1. So the typical

behaviour does not concentrate and is much better then
the average one. However, the key design parameter do

f

is still the same, enlightened by the previous average-
based analysis.

3 Estimation of minimum distance
distribution

3.1 Properties of component encoders
In this paragraph we fix some notation and we recall
a well-known property of convolutional encoders. We
then give some estimations of the weight enumerating
coefficients of our terminated convolutional encoders.
In the next paragraphs we will apply these properties
to the component encoders of our serial scheme. As a
notation, superscripts ‘o’ or ‘i’ will refer to the outer
and the inner encoder respectively.

Following [2], we will call an error event a codeword
whose corresponding trellis state sequence, for some
t1 < t2, is zero for all t ≤ t1 and t > t2, and is non-
zero for all t1 < t ≤ t2 (our error events are [10]’s
detours). We will call the interval [t1, t2] the support of
the error event.

Note that non-catastrophic encoders are surely in-
jective and so there is a one-to-one correspondence
between input words and codewords.

Property 1: Given a non-catastrophic convolutional
encoder φ, there exists a positive µ such that any
codeword of weight d comes from an input word of
weight w ≤ µd (for systematic encoders, trivially
µ = 1).

Given the coding scheme described in Section 2, we
define outer and inner weight enumerating coefficients.
All the weights we will consider are Hamming weights
(we denote by wH(x) the weight of a word x). We
define An,o

w,h and An,i
w,h to be the number of codewords

of φo
n and φi

n respectively, having input weight w and
output weight h. We will also write An,o

h :=
∑

w An,o
w,h.

We give here some estimations of these weight enu-
merating coefficients. The following Lemmas are taken
from [10]; we have slightly rearranged their proofs,
extending their results to our more general setting and
obtaining tighter bounds in Lemma 1 when w is odd.

Lemma 1 (Lemmas 1 and 2 in [10]): There exist
some positive constants C1, C2, η, ω such that:

d∑
h=1

An,i
w,h ≤

Cw
1

ww
nbw/2cddw/2e

and, if n ≥ ηw and ωw ≤ d ≤ Mn ,
d∑

h=1

An,i
w,h ≥

Cw
2

ww
nbw/2cddw/2e . �

Lemma 2 (Lemma 3 in [10]): There exists a con-
stant C > 0 such that

An,o
d ≤ Cd

(
n

bd/do
fc

)
. �

3.2 Upper bound for the left tail
We recall the upper bound for P(dmin

n ≤ d) given
in [10] (Thm. 2.a), here improved for odd do

f and
generalized to our setting.



Lemma 3 (Lemma 6 in [10]):

P(dmin
n ≤ d) ≤

µid∑
w=do

f

1(
Nn

w

) An,o
w

(
d∑

h=1

An,i
w,h

)
�

Theorem 1: There exists a constant C > 0 such that,

P(dmin
n ≤ d) ≤

µid∑
w=do

f

Cwnw/do
f−dw/2eddw/2e

Proof sketch: The proof of this theorem follows the
proof of Theorem 2.a in [10], (whose exact statement
is the second part of the following Corollary 1) and is
obtained applying Lemma 3 and then estimating the
weight enumerating coefficients by Lemmas 1 and 2. �

Corollary 1: If (dn)n∈N is a sequence such that
dn

nβ

n→∞−→ 0, there exists a constant C > 0 such that

P(dmin
n ≤ dn) ≤ C n

(
dn

n

)ddo
f /2e

and hence P(dmin
n ≤ dn) → 0 when n →∞. �

3.3 Lower bound for the left tail
We recall some technical results given in [10] as a part
of the proof of their Thm. 2.b (whose proofs can be
generalized to our setting). We then use these results to
establish a new lower bound for P(dmin

n ≤ d), given in
the following Theorem 2.

First of all, we define some particular outer code-
words we will use in the proof. Let c∗ be a word
of the outer code which has wH(c∗) = do

f and is an
error event with support [0, a− 1] for some constant a.
We consider n > a. We define c∗j as the shift to the
right of c∗ for j trellis steps; clearly, if |j − l| ≥ a,
then c∗j and c∗l have non-overlapping supports. For
j ∈ {0, 1, . . . , n − 1 − a} and d ∈ N, we define the
events E∗

j (d) :=
{
wH(φi

n(Πn(c∗j ))) ≤ d
}

.

Lemma 4 ([10], part of proof of Thm. 2.b):
• if j and l are such that |j − l| ≥ a

P(E∗
j (d)∩E∗

l (d)) ≤

(
Nn

do
f

)
(Nn−do

f

do
f

)P(E∗
j (d))P(E∗

l (d))

• for all j, P(E∗
j (d)) =

d∑
h=1

An,i
do

f ,h(
Nn

do
f

) .
�

Note that
(Nn

do
f
)

(Nn−do
f

do
f

)
≤
(
1 + do

f

Nn−2do
f +1

)do
f n→∞−→ 1 and

hence it is surely bounded by some constant c.
Theorem 2: There exist some positive constants

C1, C2, n̄, ω such that, if n > n̄ and ωdo
f ≤ d ≤ Mn

P(dmin
n ≤ d) ≥ C1 n

(
d

n

)ddo
f /2e

− C2

[
n

(
d

n

)ddo
f /2e

]2

Proof:
Let n̄ = max{ηdo

f , a} with a as above, η as in
Lemma 1, and consider n > n̄. Let ω be as in Lemma 1.

P(dmin
n ≤ d)≥P

Nn⋃
j=0

E∗
j (d)

≥P

⋃
j∈J

E∗
j (d)

 , where

J :={a r , r ∈ Z+} ∩ {0, 1, . . . , n− 1− a}.
Note that j, l ∈ J , j 6= l implies that |j − l| ≥ a and

hence, by Lemma 4,

P(E∗
j (d) ∩ E∗

l (d)) ≤ c [P(E∗
j (d))]2 .

We use the union-intersection bound:

P

⋃
j∈J

E∗
j (d)

≥∑
j∈J

P(E∗
i (d))−

∑
j∈J

∑
l∈J\{j}

P(E∗
j (d) ∩ E∗

l (d))

≥ |J |P(E∗
0 (d))− c [|J |P(E∗

0 (d))]2 .

By Lemmas 4 and 1, we can find two positive c1

and c2 (depending on do
f ) such that, for all n > n̄ and

ωdo
f ≤ d ≤ Mn:

c1

(
d

n

)ddo
f /2e

≤ P(E∗
j (d)) ≤ c2

(
d

n

)ddo
f /2e

To conclude, note that c3n≤|J |≤c4n for some positive
constants c3 and c4. �

Corollary 2: If (dn)n∈N is a sequence such that
dn

nβ

n→∞−→ 0, there exists a constant C > 0 such that

P(dmin
n ≤ dn) ≥ Cn

(
dn

n

)ddo
f /2e

�

3.4 Deterministic upper bound
We have generalized the deterministic upper bound for
the minimum distance obtained by Bazzi et al. for
Repeat–Convolute codes ([1], Thm. 2) to our serial
concatenation scheme. Actually Bazzi et al. also study
serial turbo codes in an even more general setting ([1],
Thm. 4), but we need a different estimation, where do

f

plays the same role as the repetition parameter k in [1],
Thm. 2.

Theorem 3: There exists a constant K > 0 such that

dmin
n ≤ Knβ log n �

The details of the proof will be given in a forthcoming
paper; the outline follows the proof of Thm. 2 in [1].

4 Probabilistic conclusions
In this section we derive probabilistic results for the
sequence of minimum distances based on the estima-
tions of the previous section. Roughly speaking, we
show that minimum distances almost grow as n to some
positive exponent which is less then one and converges
in a weak way to β, while in a strong way the sequence
densely covers the whole interval [α, β], α and β being
defined in (1). Finally we show how these results can
be transferred to ML word error probabilities. We show



that typically P (e|Πn) is subexponentially decreasing
to zero, again with a speed densely covering the interval
[α, β] with probability one and weakly converging to β.

Remember that our probabilistic space is the serial
turbo ensemble generated by a sequence of independent
r.v.s (Πn)n∈N, with each Πn uniformly distributed over
SNn . The main probabilistic tool we will use in our
derivation is the Borel-Cantelli lemma ([5] Thm. 1.4.2)
which states that, for every sequence of events (An)n∈N

(i) if
∑

n∈N
P(An) < ∞, then P({An i.o.}) = 0;

(ii) if the An’s are independent and∑
n∈N

P(An) = ∞, then P({An i.o.}) = 1;

where the event {An i.o.} (‘An occurs infinitely often’)
is defined as

{An i.o.} :=
⋂
n∈N

( ⋃
l≥n

Al

)
.

We define, for every n ∈ N and x ∈ [0, 1],

Ex
n := {dmin

n ≤ Mx
n} ,

θ(x) := 1 + ddo
f/2e(x− 1) .

Observe that θ(x) is an increasing function of x, and
that θ(α) = −1, θ(β) = 0. From Corollaries 1 and 2 it
follows that, for 0 ≤ x < β, two positive constants C ′

and C ′′ exist such that

C ′nθ(x) ≤ P(Ex
n) ≤ C ′′nθ(x) . (2)

4.1 Minimum distances
Usually, asymptotics of the minimum distance of en-
sembles of codes are studied by defining the relative
minimum distance δn = dmin

n /Mn. In our case Theo-
rem 3 directly implies that deterministically δn

n→∞−→ 0
for any sequence of serial turbo codes. For this reason
we propose the following non linear rescaling

Xn :=
log(dmin

n )
log(Mn)

.

With this rescaling, (Xn)n is a sequence of indepen-
dent random variables taking values in [0, 1], since
1 ≤ dmin

n ≤ Mn. The meaning of Xn is to capture the
exponent of the sublinear asymptotic behaviour of dmin

n .
Notice that

Ex
n = {Xn ≤ x} .

Our main results about (Xn)n∈N are the two follow-
ing theorems.

Theorem 4: With probability one:
(a) (Xn)n∈N densely covers [α, β] ;
(b) lim infn Xn = α ;
(c) lim supn Xn = β .

Proof:
(a) We define for any t, n ∈ N, and s = 1, . . . , 2t,

Bs,n
t :=

{
Xn ∈

[
α + s−1

2t (β − α), α + s
2t (β − α)

] }
,

Bs
t := {Bs,n

t i.o.} , Bt =
⋂2t

s=1 Bs
t .

From (2), we have that

P(Bs,n
t ) ≥ C ′nθ(α+

s
2t (β−α)) − C ′′n

θ
�

α+
s−1
2t (β−α)

�

= C ′nθ(α+
s
2t (β−α))

(
1− C′′

C′ n
−β−α

2t

)
,

so that, since θ
(
α + s

2t (β − α)
)
≥ −1,∑

n∈N
P (Bs,n

t ) = ∞ .

Thus, part (ii) of the Borel-Cantelli lemma lets us
conclude that P(Bs

t ) = 1 for any s = 1, . . . , 2t, and
so

P(Bt) = P
(⋂2t

s=1 Bs
t

)
= 1 , ∀t ∈ N .

But then

P ({(Xn)n densely covers [α, β]}) = P
(⋂

t∈N Bt

)
= lim

t→∞
P(Bt) = 1 .

(b) By (2) we have that, for every ε > 0∑
n∈N

P(Eα−ε
n ) ≤

∑
n∈N

Cnθ(α−ε) < ∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P
( {

Eα−ε
n i.o.

} )
= 0 .

Denoting by Ac the complement of an event A, we

have {Eα−ε
n i.o.}c ⊆

{
lim inf

n∈N
Xn ≥ α− ε

}
, so that

P
(

lim inf
n∈N

Xn ≥ α

)
=P
( ⋂

k∈N

{
lim infn Xn ≥ α− 1

k

})
= lim

k→∞
P
({

lim infn Xn ≥ α− 1
k

})
≥ lim

k→∞
P
({

Eα−1/k
n i.o.

}c )
= 1 .

Since by point (a) we have P (lim infn Xn ≤ α) = 1,
point (b) follows.

(c) Theorem 3 directly implies that
lim supn Xn ≤ β . Since point (a) implies that
P (lim supn Xn ≥ β) = 1, point (c) follows.

Although Theorem 4 tells us that with probability
one a random sequence of codes from the serial turbo
ensemble has minimum distance exhibiting a chaotic
behaviour, a weak form of convergence for the se-
quence of r.v.s (Xn)n can still be observed. Formally,
we have to consider the sequence of probability mea-
sures instead of the probability space of sequences. We
will denote by Xn

P→ X the convergence in probability
(see [5] for definitions and properties). The following
result is a restating of [10]’s Theorem 2 in our setting
(and with an improvement when do

f is odd).

Theorem 5: Xn
P→ β .

Proof: For every ε > 0, Corollary 1 and Theorem 3
guarantee that

P(|Xn − β| < ε) ≥ 1− C n−dd
o
f /2eε n→∞−→ 1 .



4.2 ML Error probabilities
In order to transfer our results about minimum distances
to ML word error probabilities we use a classical
tool of coding theory known as expurgation (see [8]).
We estimate the averaged error probability conditioned
on the complement events (Ex

n)c for some proper
x ∈ [0, β). By combining these estimations with (2) we
derive strong probabilistic results about the asymptotic
behaviour of P (e|Πn).

We define the following r.v.

Yn :=
log(− log P (e|Πn))

log n
;

the idea is that Yn should capture the speed of the
subexponential asymptotic decrease of P (e|Πn).

Proposition 1: If the channel is sufficiently good, for
all x ∈ [0, β),

E[P (e|Πn) |(Ex
n)c ] ≤ exp(−Kxnx)

for some positive constant Kx.
Proof: We use the Union-Bhattacharyya bound, re-
membering that (Ex

n)c = {dmin
n > Mx

n} and then,
denoting by 1E the characteristic function of some
event E:

E[P (e|Πn)|(Ex
n)c]=

1
P((Ex

n)c)
E[P (e|Πn) · 1(Ex

n)c ]

≤ 1
P((Ex

n)c)

Mn∑
h=Mx

n

µih∑
w=do

f

µow∑
l=1

An,o
l,wAn,i

w,h(
Nn

w

) γh .

By Coroll. 1, P((Ex
n)c) n→∞−→ 1. So, for some c ≥ 1,

1
P((Ex

n)c)
≤ c .

We estimate An,i
w,h≤

h∑
j=1

An,i
w,j by Lemma 1 and

µow∑
l=1

An,o
l,w

by Lemma 2, so we can find a positive C such that:

E[P (e|Πn)|(Ex
n)c]≤c

Mn∑
h=Mx

n

µih∑
w=do

f

Cw

(
h

w

)w
2(w

n

)w
2 −

w
do

f γh.

Then we remark that the function g(s) := (a/s)s has
maximum value g(a/e) = ea/e and hence

(h/w)w/2 ≤ eh/(2e) .

Moreover, w ≤ Nn = m(n+νo) ≤ c̃n for some c̃ ≥ 1,

so (w/n)
w
2 −

w
do

f ≤ c̃
( 1
2−

1
do

f
)w

. Hence, as w ≤ µih, we
can find a constant C̄ ≥ 1 such that:

E[P (e|Πn)|(Ex
n)c] ≤

Mn∑
h=Mx

n

(C̄γ)h ≤ c̄(C̄γ)Mx
n

where the last inequality holds true, for some c̄ > 0,
if γ < 1/C̄. Notice that C̄γ < 1 also implies that
c̄(C̄γ)Mx

n ≤ exp (−Kxnx) for some positive Kx.

Lemma 5: There exists a constant K such that, de-
terministically, P (e|Πn) ≥ exp(−Knβ log n) .

Proof: We use the inequality P (e|Πn) ≥ pdmin
n , where

p is the equivocation probability of the channel (see
[6]; e.g. p = 1/2 erfc(

√
Es/N0) for the BIAWGNC).

This, together with Theorem 3, gives the result. �

Lemma 6: For any x ∈ [0, β), there exist two posi-
tive constants K and C, depending on x but not on n,
such that

P
(
P (e|Πn) ≥ exp(−Knx)

)
≥ Cnθ(x) .

Proof: Since P (e|Πn) ≥ pdmin
n , by (2) we get

P
(
P (e|Πn) ≥ pMx

n

)
≥ P

(
dmin

n ≤ Mx
n

)
= P (Ex

n)
≥ Cnθ(x) .

Lemma 7: For a sufficiently good channel, for any
x ∈ [0, β), there exist two positive constants K and
K ′, depending on x but not on n, such that

P
(
P (e|Πn) ≥ exp(−Knx)

)
≤ K ′nθ(x) .

Proof: By Proposition 1 we have, for some Kx > 0

E [P (e|Πn) |(Ex
n)c ] ≤ exp(−Kxnx) ,

so that, by Markov inequality, we get

P
(
P (e|Πn) ≥ exp(−Kx

2 nx)
∣∣ (Ex

n)c
)

≤ P

(
P (e|Πn) ≥ E [P (e|Πn)| (Ex

n)c]
exp(−Kx

2 nx)

∣∣∣∣∣ (Ex
n)c

)
≤ exp(−Kx

2 nx) .

Thus, by (2) we get

P
(
P (e|Πn) ≥ exp(−Kx

2 nx)
)

= P
(
P (e|Πn) ≥ exp(−Kx

2 nx)
∣∣Ex

n

)
P(Ex

n)+

+ P
(
P (e|Πn) ≥ exp(−Kx

2 nx)
∣∣ (Ex

n)c
)

P((Ex
n)c)

≤ P(Ex
n) + P

(
P (e|Πn) ≥ exp(−Kx

2 nx)
∣∣ (Ex

n)c
)

≤ Cnθ(x) + exp(−Kx

2 nx)

and the claim immediately follows with K = Kx/2,
and for some K ′ ≥ C. �

Theorem 6: For a sufficiently good channel, with
probability one it holds true:

(a) (Yn)n∈N densely covers [α, β];
(b) lim infn Yn = α;
(c) lim supn Yn = β.

Proof:
(a) The proof is rather technical and will be given

in a forthcoming paper. The main ideas are similar to
those of the proof of Thm. 4 (a).

(b) For every ε > 0, by Lemma 7 we get∑
n∈N

P
(
P (e|Πn)≥exp(−Knα−ε)

)
≤
∑
n∈N

K ′nθ(α−ε)<∞

Then point (i) of the Borel-Cantelli lemma implies

P
({

P (e|Πn) ≥ exp(−Knα−ε)
}

i.o.
)

= 0



so that

P (lim infn Yn ≥ α− ε)

≥ P
({
{P (e|Πn) ≥ exp(−Knα−ε)} i.o.

}c) = 1 ,

and
P (lim infn Yn ≥ α)
= P

(⋂
k∈N {lim infn Yn ≥ α− 1/k}

)
= lim

k→∞
P (lim infn Yn ≥ α− 1/k) = 1 . (3)

Moreover, by Lemma 6∑
n∈N

P (P (e|Πn)≥exp(−Knα))≥
∑
n∈N

Cnθ(α) = ∞

and thus, by point (ii) of the Borel-Cantelli lemma:

P (lim infn Yn ≤ α)
≥ P

({
P (e|Πn) ≥ exp(−Knα)

}
i.o.
)

= 1

(c) Lemma 5 implies that, deterministically

lim supn Yn ≤ β .

Moreover, for every ε > 0, by Lemma 7 we have

P
(
P (e|Πn) ≥ exp(−Knβ−ε)

)
≤ Cnθ(β−ε) n→∞−→ 0 .

Thus a subsequence (Πnk
)k∈N exists1 such that∑

k∈N
P
(
P (e|Πnk

) ≥ exp(−Knβ−ε
k )

)
< ∞ ,

so that part (i) of the Borel-Cantelli lemma implies

P (lim supn Yn ≥ β − ε)
≥ P

({
P (e|Πn) ≥ exp(−Knβ−ε)

}
i.o.
)

≥ P
({

P (e|Πnk
) ≥ exp(−Knk

β−ε)
}

i.o.
)

= 1 .

By essentially the same derivation as in (3), we obtain
P (lim supn Yn ≥ β) = 1 .

Theorem 7: For a sufficiently good channel
Yn

P→ β .
Proof: This follows from Lemmas 5 and 7.

4.3 Other ensembles
From the same fixed component encoders φo and φi,
it is possible to construct different ensembles, intro-
ducing other probabilistic structures for the interleaver
sequence. For instance, instead of a sequence of in-
dependent interleavers (Πn)n∈N with Πn uniformly
distributed over SNn

as in our serial turbo ensemble, we
can consider a sequence of interleavers (Π′

n)n∈N such
that each Π′

n is still uniformly distributed over SNn ,
but possibly dependent on {Π′

i, i = 1, . . . , n− 1}.
A close look at our proofs shows that independence

among the Πn’s is required only when using point
(ii) of the Borel-Cantelli lemma. Hence, for the new

1Given any real sequence (an)n∈N such that lim
n→∞

an = 0, you
can find an increasing sequence of naturals n1 <n2 <. . . such thatP

k∈N
|ank | < +∞ .

ensemble based on (Π′
n)n∈N we can state that, with

probability one:
• lim infn X ′

n≥α; lim supn X ′
n =β ,

• lim infn Y ′
n≥α; lim supn Y ′

n =β ,

while X ′
n

P→ β and Y ′
n

P→ β.
This means that introducing some dependence among

the uniform interleavers cannot make performances
worse while it could possibly improve them. It would be
interesting to develop an analysis for these hierarchical
structures.

5 Conclusions
We have analyzed the asymptotic behaviour of mini-
mum distances and ML error probabilities of the serial
turbo ensemble. We have proved that a typical sequence
of codes from this ensemble has minimum distance
sublinearly growing in the interleaver length and ML
error probability subexponentially decreasing to zero.
Both these asymptotic behaviours are characterized
by a random parameter densely covering the interval
[α, β], where α and β are increasing functions of the
free distance of the outer encoder. This shows that
there is no concentration of error probability around
its average, which decreases only as a negative power
of the interleaver length ([3],[9],[7]).
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