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Abstract—We extend Burnashev’s [5] classic result for the
error exponent of discrete memoryless channels with feedback
to the case of Markov channels with ISI and feedback. This is a
nontrivial extension of our previous work [6] where we treated
the case of Markov channels with feedback but without ISI. Tools
from stochastic control theory are used to treat the case with ISI.

I. INTRODUCTION
It is well known that even perfect causal output feedback

cannot increase the capacity of a discrete memoryless chan-
nel (DMC) [10]. Feedback, though, can help improving its
reliability function. A classical result due to Burnashev [5]
characterizes the reliability function of a DMC with a simple
single-letter formula in the variable-length block-coding case.
It is remarkable that in this framework, differently from when
feedback is not available or when fixed-length coding is
enforced, the reliability function is exactly known at any rate
below capacity, and that it has nonzero slope approaching ca-
pacity. Recently, the problem of channel coding with feedback,
and Burnashev’s approach in particular, have attracted renewed
interest from the researchers; see [12], [13], [8], [2], [6].
The present paper deals with a generalization of Burnashev’s

result to discrete Markov channels with perfect channel state
information (CSI) both at the transmitter and at the receiver. In
[6] we have presented some results for the special case when
there is no intersymbol interference (ISI). Here we extend
those results to deal with Markov channels with ISI. For this
class of channels, under suitable ergodicity assumptions, we
are able to exactly characterize the reliability function in the
single-letter form

EB(R) = D

(
1− R

C

)
. (1)

In (1), R denotes the rate measured with respect to the average
delay, while the capacity C and the Burnashev coefficient
D are quantities defined as the solution of simple finite
dimensional optimization problems involving the stochastic
kernel describing the channel (see (3) and (6)). Our main result
is contained in Theorem 1 stated at the end of Section II.
In order to prove the achievability of the exponent (1),

we propose a simple two phase iterative transmission scheme
based on the one first considered by Yamamoto and Itoh [14]
for DMCs. The analysis of this scheme is presented in Section
III and essentially relies on known results about the capacity

of Markov channels with CSI [11], and the error exponent of
binary hypothesis tests for irreducible Markov chains [9],[7].

Proving the converse result, instead, is more involved. This
is because a lower bound on the error probability of any
variable-length block-coding scheme has to be obtained. We
follow Burnashev’s original proof [5] and the ideas proposed
in [2] (see also [13]). Specifically we provide two different
bounds for the error probability, involving respectively the
channel capacity C and its Burnashev coefficient D, corre-
sponding to two distinct phases which can be recognized in
any sequential transmission scheme. Similarly to the mem-
oryless case, martingale theory techniques, and in particular
Doob’s optional sampling theorem, are repeatedly used jointly
with more standard information theoretic results as Fano’s and
log-sum inequalities.

The main issue when moving from the memoryless setting
to the Markov setting consists in the necessity of considering
the random dynamics of the state sequence. When there is
no ISI, it has been shown in [6] that it is sufficient to
track the evolution of empirical measures associated to the
state sequence, a random process taking values in a finite-
dimensional space, whose dynamics are independent of the
transmitted message. When ISI is allowed, it turns out that
both mutual information and maximal information divergence
can no longer be optimized pointwise, since the dynamics of
the state sequence now depend on the transmitted message
through the channel input symbol. This implies that tracking
the empirical measure of the state sequence only is no longer
sufficient. To treat this issue we follow techniques developed
in controlled Markov process theory. It is necessary to consider
the empirical measure associated to the pair of the state
sequence and the channel input distribution induced by the
causal encoder. This empirical measure process takes values in
an infinite dimensional space. However, due to the finiteness of
both input and state sets, this space turns out to be compact so
that many of the topological issues are simplified. In particular
we follow Borkar’s [4] convex analytical approach and derive,
using the Hoeffding-Azuma inequality, a result generalizing
the known theory of the average cost optimization problems
to stopping time horizons. These arguments are presented in
Section V.
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II. PROBLEM SETTING AND MAIN RESULT

A. Stationary ergodic Markov channels
Throughout the paper X , Y , S will respectively denote

input, output and state set, all finite. For any finite set A,
P(A) will denote the space of probability measures over A.

Definition 1 A stationary Markov channel is described by:
• a stochastic kernel consisting in a family
{P ( · , · | s, x)∈P(S × Y)|s ∈ S, x ∈ X} of probability
measures over S × Y , indexed by elements of S and X ;

• an initial state distribution μ in P(S).

For a stationary Markov channel as in Definition 1, let
PS(s+| s, x) :=

∑
y P (s+, y| s, x) be the S-marginals.

We will consider the associated stochastic kernel
{Q( · | s,u) ∈ P(S)| s ∈ S,u ∈ P(X )}, where for every
channel input distribution u in P(X )

Q(s+ | s,u) :=
∑
x∈X

PS(s+ | s, x)u(x) , s, s+ ∈ S . (2)

Given π :S→P(X) (we refer to such a map as a determinis-
tic stationary policy), denote by Qπ :=

(
Q

(
s+ | s,π(s)

))
s,s+

the state transition stochastic matrix induced by π. For
f : S → X we shall write Qf in place of Qδf(·) . Through-
out the paper we will restrict ourselves to ergodic Markov
channels, satisfying the following ergodicity assumption.

Assumption 2 For every f : S → X , Qf is irreducible.

Assumption 2 can be relaxed or replaced by other equivalent
assumptions. Here we limit ourselves to observe that it in-
volves only on the S-marginals {PS} of the Markov channel,
and it is easily testable since it only requires a finite number
of finite directed graphs to be strongly connected.
Since taking a convex combination does not reduce the sup-

port, Assumption 2 guarantees that for every π : S → P(X )
the stochastic matrix Qπ is irreducible. Then, by Perron-
Frobenius theorem we have that Qπ has a unique invariant
measure in P(S) which will be denoted by ηπ .
Let us consider the cost function c : S × P(X ) → R,

c(s,u)=
∑

x,y,s+

u(x)P (s+, y| s, x)log
P (s+, y| s, x)∑

x′ u(x′)P (s+, y| s, x′)
It is easy to check that the term c(s,u) equals the mutual
information between an X -valued random variable X and
an S × Y-valued random variable (S+, Y ) with marginal
distribution of X given by u, and conditioned distribution of
(S+, Y ) given X = x given by P (·, ·| s, x). This in particular
implies that the function c is continuous over S × P(X ) and
takes values in the bounded interval [0, log |X |] . Define

C := max
π:S→P(X )

∑
s∈S

ηπ(s)c(s,π(s)) . (3)

The quantity C defined above is known to be the capacity
of the ergodic Markov channel we are considering when
perfect CSI is available, with or without output feedback [11].

Notice that in the absence of ISI the invariant measure η is
independent of the policy π so that (3) reduces to

C =
∑
s∈S

η(s)Cs , Cs := max
u∈P(X )

c(s,u) ,

while when the state space is trivial (i.e. |S| = 1) it further
simplifies to the usual definition of the capacity of a DMC.
Consider now the cost function d : S × P(X ) → [0, +∞]

d(s,u) :=sup
u′

∑
x,y,s+

u(x)P (s+, y|s, x) log
∑

zu(z)P (s+, y|s, z)∑
zu
′(z)P (s+, y|s, z)

(4)
The optimization in the righthand side of (4) is intended over
all input distributions u′ in P(X ). Notice that the term to
be optimized equals the Kullback-Leibler information diver-
gence between the probability measures P (s+, y|s, x)u(x)
and P (s+, y|s, x)u′(x) in P(X × S × Y). This implies that,
if we introduce the quantity λ := inf{λs| s ∈ S}, where
λs := inf

{
inf
x∈X

P (s+, y| s, x)
∣∣s+, y : ∃z : P (s+, y| s, z) > 0

}
d is bounded and continuous over S × P(X ) if and only if

λ > 0 . (5)

Throughout the paper we will assume that (5) holds true, and
define the Burnashev coefficient of a Markov channel as

D := max
π:S→P(X )

∑
s∈S

ηπ(s)d(s,π(s)) . (6)

We shall call the quantity D defined in (6) the Burnashev
coefficient of the channel. Notice that a simple convexity
argument allows to conclude that both the maxima in (4)
and in (6) are achieved in some corner points, which will
be respectively denoted by u′ = δx1

s
and π(s) = δx0

s
. Notice

that in the memoryless case D coincides with the coefficient
originally introduced by Burnashev.

B. Causal feedback encoders and sequential decoders
Definition 3 A causal feedback encoder is the pair of a finite
message set and a sequence of maps

Φ =
(
W,

{
φt : W ×Yt−1 × St → X}

t∈N

)
. (7)

With Def.3, we are implicitly assuming that perfect state
knowledge as well as perfect output feedback are available
at the encoder side.
Given a stationary Markov channel and a causal feedback

encoder as in Def.3, we will consider an W-valued random
variable W describing the message to be transmitted, a se-
quence X = (Xt)t∈N of X -valued r.v.s (the channel input
sequence), a sequence Y = (Yt)t∈N of Y-valued r.v.s (the
channel output sequence), and a sequence S = (St)t∈N S-
valued r.v.s (the state sequence).
Consider the time ordering W,S1, X1, Y1, S2, X2, Y2, . . . ,

and assume that the joint distribution of W , X , Y and S is
described by

PΦ(W = w) =
1
|W| , PΦ(S1 = s

∣∣W ) = μ(s) ,
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PΦ(Xt = x
∣∣ W,St

1,X
t−1
1 ,Y t−1

1 ) = δ{φt(W,Y t−1
1 ,St

1)}(x) ,

PΦ(St+1 = s, Yt = y
∣∣ W,St

1,Y
t−1
1 ,Xt

1) = P
(
s, y

∣∣St, Xt

)
.

EΦ will denote the corresponding expectation operator.
It is convenient to introduce the following notation for the

information patterns available at the encoder and decoder side.
For every t we define the sigma-fields Et := σ

(
St

1,Y
t−1
1

)
, de-

scribing the feedback information available at the encoder side,
and Ft := σ (St

1,Y
t
1 ), describing the information available at

the decoder. Clearly {∅, Ω}=E0 =F0⊆E1⊆F1⊆ . . .. In par-
ticular we end up with two nested filtrations: F := (Ft)t∈Z+

and E := (Et)t∈Z+ .

Definition 4 A sequential decoder for a causal feedback en-
coder Φ as in (7) is a pair Ψ = (T, ψ), where T is a stopping
time for the decoder filtration F and ψ an W-valued FT -
measurable random variable.

Given a causal feedback encoder Φ as in Def. 3 and a
sequential decoder Ψ as in Def. 4, their error probability is

pe(Φ, Ψ) := PΦ (ψ �= W ) .

Following Burnashev’s approach we shall take the expected
decoding time EΦ[T ] as a measure of the delay and accord-
ingly define the rate of the coding scheme by

R := log |W|/EΦ[T ] .

C. Main result

We are now ready to state our main result. It is formulated in
an asymptotic setting, considering countable families of causal
encoders and sequential decoders with asymptotic average rate
below capacity and vanishing error probability.

Theorem 1 For any R in (0, C)
1) any family (Φn, Ψn)n∈N of causal encoder and sequen-
tial decoder pairs such that

lim
n∈N

pe(Φn, Ψn) = 0 , lim sup
n∈N

log |Wn|
EΦn [Tn]

≥ R , (8)

satisfies

lim sup
n∈N

− 1
EΦn [Tn]

log pe (Φn, Ψn) ≤ EB(R) . (9)

2) there exists a family (Φn, Ψn)n∈N
of causal encoder and

sequential decoder pairs satisfying (8) and such that

lim
n∈N

− 1
EΦn [Tn]

log pe (Φn, Ψn) = EB(R) . (10)

We observe that Burnashev’s original result [5] for memoryless
channels can be recovered as a particular case of Theorem 1
when the state space is trivial, i.e. |S| = 1.

III. AN ASYMPTOTICALLY OPTIMAL SCHEME

In order to prove Part 2 of Theorem 1, thus showing the
achievability of the Burnashev’s exponent EB(R), we propose
an iterative transmission scheme consisting in a generalization
of the one introduced by Yamamoto and Itoh [14] for memo-
ryless channels. This scheme consists of a sequence of epochs.
Each epoch is made up of two distinct transmission phases,
respectively named communication and confirmation phase. In
the communication phase the message to be sent is encoded
in a block code and transmitted over the channel. At the end
of this phase the decoder makes a tentative decision about the
message sent based on the observation of the channel outputs
and of the state sequence. As perfect feedback is available,
the result of this decision is known at the encoder. In the
confirmation phase a binary acknowledge message, confirming
the decoder’s estimation if it is correct, or denying it when it is
wrong, is sent by the encoder through a fixed-length repetition
code. The decoder performs a binary hypothesis test in order
to decide whether a deny or a confirmation message has
been sent. If a confirmation is detected the transmission halts,
while if a deny is detected the system restarts transmitting
the same message with the same protocol. Again because
of perfect feedback availability at the encoder, there are no
synchronization problems.
More precisely we design our scheme as follows. Given a

design rate R in (0, C), let us fix an arbitrary value γ in (R
C , 1).

For every n in N, consider a message set Wn of cardinality
|Wn| = exp(�nR�) and two blocklengths n̂ and ñ respectively
defined as n̂ = nγ�, ñ := n− n̂.

A. Fixed-length coding for the transmission phase

It is known that C defined in (3) equals the capacity
of the stationary Markov channel we are considering [11].
This implies that, since lim log |Wn|

n̂ = R
γ < C, there ex-

ists a sequence of causal encoders with no output feedback
{φ̂n

t : Wn × St → X}, and a sequence of decoders of fixed
length n̂ {ψ̂n : S n̂ × Y n̂ → Wn} with asymptotically
vanishing error probability. More precisely, the pair (Φ̂n, Ψ̂n)
can be chosen with error probability going to zero uniformly
with respect to initial state distribution and the transmitted
message. Thus, denoting by p(n) the maximum over all
initial state distributions μ and messages w in Wn of the
error probability of the pair (φ̂n, Ψ̂n) conditioned on the
transmission of W = w, we have that lim p(n) = 0. The
pair (Φ̂n, Ψ̂n) will be used in the first phase of each epoch of
our iterative transmission scheme.

B. Binary hypothesis test for the confirmation phase

For the second phase we consider a causal repetition en-
coder Φ̃n using the stationary policy optimizing the average
cost d in (6). More specifically, using the notation introduced
at the end of Sec.II-A, we define φ̃n

t : {0, 1} × St → X ,
φ̃n

t (m, s) = xm
st
. Suppose that an acknowledge message

m = 0 is sent. Then it is easy to verify that the pair sequence
(St+1, Yt)ñ

t=1 is distributed like a Markov chain with state
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space {(s, y) ∈ S × Y : ∃s, x : P (v, y|s, x) > 0} and transi-
tion probabilities P0(v, y|s, z) := P (v, y|s, x0

s). Analogously,
if a deny message m = 1 has been sent, with transition
probabilities P1(v, y|s, z) := P (v, y|s, x1

s). It follows that a
decoder for Φ̃n is simply a binary hypothesis test between
two Markov chain hypotheses. Using binary hypothesis test
results for irreducible Markov chains [9], [7], it is possible
to show that the decoder Ψ̃n can be chosen in such a way
that, asymptotically in n, its type-1 error probability achieves
the exponent D while its type-0 error probability is vanishing.
More specifically, since the state space is finite, we have that,
defining p0(n) (respectively p1(n)) as the maximum over all
possible initial state distributions μ of the error probability of
the pair (Φ̃n, Ψ̃n) conditioned on the transmission of a ′0′ (′1′)
message, we have limn p0(n) = 0 and limn

− log p1(n)
ñ = D.

C. Performances of the proposed scheme
Once fixed Φ̂n, Ψ̂n, Φ̃n and Ψ̃n, the iterative protocol

described at the beginning of this section defines a causal
encoder Φn = (Wn, (φn

t )) and a sequential decoder Ψn =
(Tn, ψn). It can be verified that pe(Φn, Ψn) ≤ p1(n), and

PΦn(Tn > kn) ≤ (p0(n) + p(n))k , k ≥ 0 , (11)

i.e. Tn is dominated by a scaled geometric r.v. It follows that

lim
n∈N

log |Wn|
EΦn [Tn]

= R , lim
n∈N

− log pe(Φn, Ψn)
EΦn [Tn]

= D(1− γ) ,

and (10) can be deduced from the arbitrariness of γ in (R
C , 1).

We emphasize the fact that the two phases in each epoch
of the scheme are of fixed length, while the number of
epochs can be variable. Hence, the overall transmission length
of the scheme is variable. However, (11) guarantees that
with high probability the transmission halts after the first
epoch, a property making this scheme appealing for practical
implementation, as already noticed in [8]. Moreover the first
transmission phase only requires an asymptotically vanishing
error probability, not necessarily at an exponential rate.

IV. AN UPPER BOUND ON THE ACHIEVABLE ERROR
EXPONENT

In his original proof for memoryless channels [5], Burna-
shev suggested to look, given an arbitrary causal encoder, at
the evolution of the stochastic dynamical system describing
the entropy of the a posteriori distribution of the transmitted
message. He proved two bounds for the conditional expected
values of the decrements of the a posteriori entropy and of
its logarithm respectively based on the capacity C and the
coefficient D. Then he combined these results using standard
martingale arguments and a generalized Fano’s inequality,
obtaining a lower bound for the error probability of a generic
sequential coding scheme.
Here we follow the approach proposed in [8] (see also

[12]) and look at the evolution of the maximum a posteriori
error probability associated to any causal encoder. We first
obtain a lower bound to the error probability involving the
sum of the mutual information terms: this is given in Lemma

3 whose proof is based on an application of Fano’s inequality
and Doob’s optional sampling theorem. Then we obtain an
upper bound to the error exponent achievable by a binary
hypothesis test: see Lemma 4 which can be proved by using
the log-sum inequality and the optional sampling theorem
again. Combining these two Lemmas we obtain Theorem 5.
These results are generalizations of those presented in [5], [2],
[6], the main difference consisting in the fact that they are not
optimized with respect to the channel input distribution. This
optimization instead is taken successively in an asymptotic
setting, using the results presented in Sec.V.
A. A first bound on the error probability
It will be convenient to define for every t ≥ 0 the σ-algebra

Gt := Et+1 describing the encoder’s feedback information
at time t + 1; G := (Gt)t∈Z+ will denote the corresponding
filtration and

P̃Φ
MAP (t) := 1− max

w∈W
{PΦ (W = w|Gt)} .

will denote the a posteriori error probability given the en-
coder’s feedback information at time t + 1. It is known that
the decoder minimizing the error probability over the class
of fixed-length decoders is the maximum a posteriori one.
Thus, given a stopping time τ for the decoder filtration F ,
the error probability of Ψ = (τ, ψ), where ψ is an arbitrary
Fτ -measurable W-valued r.v., is lower bounded by

pe (Φ, (τ, ψ)) ≥ EΦ

[
P̃Φ

MAP (τ)
]

. (12)

It is thus sufficient to lower bound the righthand side of (12).
In particular, since the random variable W is uniformly dis-
tributed over the message set W , and since S1 is independent
of W , we have that P̃Φ

MAP (0) = (|W|− 1)/|W|. Moreover it
is not difficult to prove the following recursive lower bound.

Lemma 2 Given any causal feedback encoder Φ, for any t≥0

P̃Φ
MAP (t + 1) ≥ λP̃Φ

MAP (t) PΦ − a.s.

We associate to every causal encoder Φ the sequence of
P(X )-valued random variables (ΥΦ,t) defined by

ΥΦ,t(x) := PΦ(Xt = x| Et) , t ∈ N, x ∈ X . (13)

ΥΦ,t is Et-measurable and represents the channel input distri-
bution induced by the encoder Φ at time t.
For every δ in (0, 1

2 ), we now consider the random variable

τδ := min
{

T, inf
{

t ∈ N : P̃Φ
MAP (t) ≤ δ

}}
. (14)

The following result relates three relevant quantities charac-
terizing the performances of any causal encoder sequential
decoder pair: cardinality of the message set, error probability,
and the sum of the mutual information costs up to time τδ .

Lemma 3 For any causal encoder Φ = (W, (φt)), any
sequential decoder Ψ = (T, ψ) and any 0 < δ < 1

2 ,

EΦ

[
τδ∑

t=1

c(St,ΥΦ,t)

]
≥

(
1− δ − pe (Φ, Ψ)

δ

)
log |W|−H(δ) .

(15)
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B. A lower bound to the error probability of a composite
binary hypothesis test
We now consider a particular binary hypothesis testing

problem which will arise while proving the main result.
Consider a nontrivial binary partition of the message set

W = W0∪W1 , W0∩W1 = ∅ , W0,W1 �= ∅ , (16)

and a sequential binary hypothesis test Ψ̃ = (T, ψ̃) (where T is
a stopping time with respect to F , and ψ̃ is an FT -measurable
{0, 1}-valued random variable) between the hypotheses {W ∈
W0} and {W ∈W1}. For any t, we define the P(X )-valued
r.v.s Υ0

Φ,t and Υ1
Φ,t by

Υi
Φ,t(x) = PΦ (Xt = x|W ∈ Wi, Et) , x ∈ X , i = 0, 1 .

The random variable Υi
Φ,t represents the channel input distri-

bution at time t induced by the encoder Φ when restricted to
the message subset Wi.
Consider now a stopping time τ for the filtration G, such

that τ ≤ T . Suppose that W1 is a Gτ -measurable random
subset of the message set W . The following lower bound to
the error probability of the binary test Ψ̃ conditioned on Gτ can
be proved using the log-sum inequality and Doob’s optional
sampling theorem.

Lemma 4 Let Φ be any causal encoder, τ ≤ T stopping times
for G. Then, for every Gτ -measurable random message subset
W1

EΦ

[
T∑

t=τ+1

d
(
St,Υ

�{W∈W1}
Φ,t

)∣∣∣Gτ

]
≥− log

PΦ

(
ψ̃ �=�{W∈W1}

∣∣Gτ

)
Z/4

(17)
PΦ-a.s., where Z := min

i=0,1

{
PΦ (W ∈ Wi|Gτ )

}
.

C. Burnashev bound for Markov channels
From Lemmas 2, 3 and 4, it is possible to prove the

following.

Theorem 5 Given a causal feedback encoder Φ=(W,(φt))
and a sequential decoder Ψ=(T,ψ), for every δ > 0, there
exists a Gτδ

-measurable random subset W1 of W such that

D

C
EΦ

[
τδ∑

t=1

c(St,ΥΦ,t)

]
+ EΦ

[
T∑

t=τδ+1

d
(
St,Υ

�{W∈W1}
Φ,t

)]

≥ − log pe (Φ, Ψ) +
D

C
log |W| (1− α) + β ,

(18)
where W0 = W \W1, τδ is defined by (14), and

α := δ +
pe(Φ, Ψ)

δ
, β := log

λδ

4
− D

C
H(δ) .

Inequality (18) constitutes a generalization of Burnashev’s
(4.1) in [5] (see also (12) in [2]). Indeed, in the memory-
less case Burnashev’s result can be recovered from (18) by
optimizing its lefthand side with respect to the channel input
distribution. In the general case of Markov channels with ISI it

is more convenient to take this optimization in an asymptotic
setting as explained below.
In order to obtain the single-letter characterization of The-

orem 1, it is necessary to consider a countable family of
causal encoders (Φk) and a corresponding family of sequential
decoders (Ψk) satisfying (8). The idea is to consider a positive
real sequence (δk) and to show that both

τk := inf
{

t ∈ N
∣∣ t ≥ T k or PΦk

MAP (t) ≤ δk

}
,

and T k − τk ’diverge’ in the sense of satisfying (20) below.
The sequence (δk) needs to be properly chosen: we want it
to be asymptotically vanishing in order to guarantee that τk

diverges, but not too fast since otherwise T k − τk would not
diverge. It turns out that one possible good choice is δk :=

−1
log pe(Φk,Ψk)

. From (2) it follows that

lim
k∈N

δk = 0 , lim
k∈N

pe

(
Φk, Ψk

)
δk

= 0 . (19)

Lemma 6 In the previous setting, for every M in N, we have

lim
k∈N

P
Φk (

τk ≤ M
)

= 0 , lim
k∈N

P
Φk (

T k − τk ≤M
)

= 0 .

(20)

Lemma 6 allows us to use the results in the appendix in
order to conclude that

lim sup
k∈N

1
EΦk [τk]

EΦk

⎡
⎣ τk∑

t=1

c(St,ΥΦk,t)

⎤
⎦ ≤ C , (21)

lim sup
k∈N

1
EΦk [T k − τk]

EΦk

⎡
⎣ T k∑

t=τk+1

d
(
St,Υ

�{W∈W1}
Φ,t

)⎤
⎦ ≤ D .

(22)
By taking the limit of both sides of (18) and substituting (21)
and (22), we get (9).

V. A RESULT ON CONTROLLED MARKOV CHAINS
This final section deals with some considerations about con-

trolled Markov chains which are needed in order to prove (21)
and (22). In particular we will follow the convex-analytical
approach introduced by Borkar [4] for average cost problems.
We consider a discrete time, stationary controlled Markov

process with state space S, control space U = P(X ), transition
kernel {Q( · | s,u) ∈ P(S)| s ∈ S,u ∈ U} defined by (2) and
initial state distribution μ, and let g : S × U → R be
a continuous cost function. The evolution of the system is
described by a state sequence S = (St)t∈N and a control
sequence U = (Ut)t∈N. If at time t the system is in state
St = s in S, and a control Ut = u in U is chosen according
to some policy, then a cost g(s, u) is incurred and the system
moves to next state St+1 in S according to the probability
distribution Q( · | s, u). Once the transition into next state has
occurred, a new action is chosen and the process is repeated.
The control at time t, Ut, can be chosen as a (randomized)
function of the past history, i.e. the state values St

1 up to time
t and the past control values U t−1

1 up to time t − 1. More
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precisely we consider a filtration {∅, Ω}=E0⊆E1⊆ . . . such
that St is Et-measurable and define an admissible policy π as
a sequence (πt)t∈N of P(U)-valued random variables, each πt

being Et-measurable; the set of all admissible policies will be
denoted by Π. The joint distribution of the state sequence S
and the control sequence U induced by an admissible policy
π will be denoted by Pπ , the expectation operator by Eπ .
We have already noticed that, under the irreducibility as-

sumption we made, given any stationary policy π : S → U a
unique invariant measure ηπ exists for the matrix Qπ . We will
associate to such an invariant measure the so called occupation
measure η̂π in P(S × U) defined by

〈η̂π, g〉 :=
∑
s∈S

ηπ(s)g(s,π(s)) ,

for every g ∈ Cb(S × U), the space of continuous functions
on S × U . It is a well-known fact in controlled Markov
chains theory [1], [4] that the set Ke := {η̂π |π : S → U}
is closed in P(S × U). Moreover it is possible to show that
Ke actually coincides with the the set of extreme points of
the convex set K := {η : F (η) = 0} of the zeros of the map
F : P(S × U) → [0, 1]S ,

Fs(η) := η ({s} × U)− 〈η(·, ·), Q( s | ·, ·)〉 .
Due to the finiteness of X , the control space U = P(X ) is
compact; since also the state space S is finite, the simplex
P(S×U) turns out to be compact as well. Thus, the continuous
map

g∗ : P(S × U) → R , g∗ : η �→ 〈η, g〉
achieves its maximum over both the compacts K and Ke.
Moreover, since g∗ is linear, K is convex and Ke is the set
of its extreme points, those maxima do coincide. Therefore,

G := max
η∈K

〈η, g〉 = 〈η̂π∗ , g〉 ,

for some stationary policy π∗ : S → U . It is known that, for
every diverging sequence of positive integers (nk), and any
sequence of admissible policies (πk),

lim sup
k∈N

1
nk

Eπk

[
nk∑
t=1

g(St, Ut)

]
≤ G . (23)

Here we will generalize (23) considering stopping times.
In order to do that, for every n we introduce the empirical

measure υn in P(S × U) defined by

〈υn, h〉 :=
1
n

n∑
t=1

h(St, Ut) , ∀ h ∈ Cb(S × U) .

Clearly under the ergodicity assumption made we have that
υn converges to η̂π , Pπ-a.s. for every stationary policy π.
Moreover it is known that for every possibly non stationary
policy π the set of limit points of the empirical measure
sequence (υn) is contained inK, Pπ-a.s.. This result is usually
proved using a martingale central limit theorem [1], [4] to
show that F (υn) converges to 0 a.s.. Lemma 7 below provides
a bound on the tails of the distribution of F (υn) which is

uniform with respect to the chosen policy. Its proof relies on
an application of Hoeffding-Azuma inequality [7].

Lemma 7 For every n in N there exists two nonnegative
valued random variables An and Bn such that

||T (υn)||1 = An + Bn , An ≤ 2/n ,

while for every ε > 0,

Pπ (Bn ≥ ε) ≤ 2|S| exp
(−nε2/4|S|2) , ∀π ∈ Π . (24)

We emphasize that the bound provided in (24) is uniform with
respect to the admissible policy π. This fact, together with the
observation that the map γ : R

+ → R

γ(x) := sup
{〈η, c〉∣∣ η ∈ P(S × U) : ||T (η)|| ≤ x

}
is upper semicontinuous allows to prove the following.

Lemma 8 For every sequence (πk) of admissible policies and
any sequence (τk) of stopping times such that

lim
k∈N

Pπk(τk ≤M) = 0 , ∀M ∈ N , (25)

we have

lim sup
k∈N

1
Eπk [τk]

Eπk

⎡
⎣ τk∑

t=1

g(St, Ut)

⎤
⎦ ≤ G . (26)
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