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Abstract-We consider the reliability function of Markov
channels with feedback and variable length channel codes. We
extend Burnashev's [3] classic result to this case and present a
single letter characterization for the reliability function.

I. INTRODUCTION

It is known that output feedback cannot increase the capac-
ity of a discrete memoryless channel (DMC) [7]. Feedback,
though, improves its reliability function. A classical result due
to Burnashev [3] characterizes the reliability function of a
DMC with a simple single-letter formula when one is allowed
variable length block coding. It is remarkable that in this case,
differently from when feedback is not available, the reliability
function is exactly known at any rate below capacity, and that
it has nonzero slope approaching capacity.

Recently, the problem of channel coding with feedback, and
Burnashev's result in particular, have attracted renewed interest
from the researchers; see [8], [9], [5], [1].

In this paper we address the problem of generalizing Bur-
nashev's result to channels with memory. Specifically, we ex-
amine the simplest case of Markov channels with perfect state
information at the transmitter and receiver and no intersymbol-
interference (ISI). For this class of channels we are able to
exactly characterize, in a single-letter form, the reliability
function

E(R) = C' (-C (1

for suitably defined C, C1 (see (3), (4) and Theorem 1). Hence,
Burnashev's exponent extends naturally to the Markov setting.
However, the extension is non-trivial as its analysis involves
significant technical challenges.
Our proof of the converse is based on an extension of

Burnashev's original one [3], following some of the ideas
of Berlin et al. [1] (see also [9]). Specifically, we provide
two different bounds for the error probability, involving re-
spectively the channel capacity C and its Burnashev coeffi-
cient C1, corresponding to two distinct phases which can be
recognized in any sequential transmission scheme. Similarly
to the memoryless case, martingale theory, and in particular
Doob's optional sampling theorem, is widely used jointly
with more standard information theoretic results like Fano's
and log-sum inequalities. The use of standard ergodic theory
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for Markov chains coupled with stopping times arguments is
instead peculiar of the memory case.

In order to prove the achievability of the exponent (1),
we propose a simple two-phase iterative transmission scheme
based on the one first considered by Yamamoto and Itoh [10]
for DMCs. The performance analysis of this scheme relies
on known results about the capacity of Markov channels, and
the error exponent of binary hypothesis tests for irreducible
Markov chains.

In Section II we formulate the problem, introduce notation,
and state the main result. In Section III we prove the con-
verse. In Section IV we prove achievability by presenting a
generalization of the Yamamoto and Itoh scheme.

II. PROBLEM FORMULATION AND MAIN RESULT

A. Notation

Given a finite set A, we shall denote by 2(A) the space of
probability measures over A. When ,it is in 2 (A) and f is in
R4, we shall use the notation (I,f) = ZaCA (a)f(a).
The set of all infinite A-sequences is denoted by AN, while

the set of all finite A-sequences is denoted by A* = VENA.
For a in AN, and s < t, a' C At's'+ denotes the restriction
of a to the discrete interval [s, t]. The length of an element x
of A is denoted by L(x), and the empirical frequency function
is defined as

vA: XA-* 2(A), [vA(x)] (a) Xt a}VA: ~~~~~~~~L(x)
When A is an A-valued random process, we will deal with

finite stopping times T for A [2]. These can be represented
as complete prefix-free subsets of A*, or A-ary trees. With
this interpretation, a T-measurable random variable can thus
be thought as a function over the set AT of the leaves of this
tree.

B. Stationary ergodic Markov channels

Throughout the paper X, Y, S will respectively denote
input, output and state set, all finite.

Definition 1 A stationary Markov channel with no ISI is
described by:

* a family {Py(. lx, s) C 29(Y) xx e X, s e S} of proba-
bility measures over Y indexed by elements of X and
S;

* a stochastic matrix l = (Ps(s r))s r over S;
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* an initial state distribution ,u in 2(S).

Throughout the paper we will restrict ourselves to ergodic
Markov channels, satisfying the following.

Assumption 2 II is irreducible.

We won't need any aperiodicity assumption. By Perron-
Frobenius theorem we have that II has a unique invariant
measure in 2(S), whose support is all S. Such an ergodic
measure will be denoted by /,ui. We will also assume that

A := min {Py(ylx,s) CX,y e Y, s e S} >O. (2)

Assumption (2) can be relaxed but we won't deal with the
general case here.

For each state s, the family {Py( x, s), x C X} describes
a DMC: we use the notation

C5:= max Zu(x) EPY(y~x,s)log Py(yx, S)
uc=P(X)L XeCX >3u(z)Py(y z,s)}

for its capacity (notice that the optimizing distribution depends
on s), and

max {D(Py( 1x',s)I Py( x",s))}

for the Kullback-Leibler divergence between the pair of its
most distinguishable inputs. Notice that (2) implies that Cs is
finite for every state s. We will use the compact notation

C = (Cs) C [0, log X],

We define

C1 = (CSl C [0, +0)S .

Ci := (/unI, C) (3)

It is known that Assumpton 2 allows to conclude that C
defined above is actually the capacity of the Markov channel
we are considering when the channel state is causally known
both at the encoder and at the decoder, with and without output
feedback.
We consider the quantity

C, := (/-rj CI) 4

which we shall refer to as the Burnashev coefficient of the
channel.

Notice that, when the state space is trivial (i.e. SI = 1), C
reduces to the usual notion of capacity of a DMC, while C1
reduces to the coefficient originally introduced by Burnashev
in [3].

C. Causal feedback encoders and sequential decoders

We now introduce the class of coding schemes we shall
consider in this paper.

Definition 3 A causal feedback encoder is the pair of a finite
message set and a sequence of maps

= (w,{t w x yt-L X
St >X}1)t . (5)

With Def.3, we are implicitly assuming that perfect state
knowledge as well as perfect output feedback are causally
available at the encoder side.

Given a stationary Markov channel and a causal feedback
encoder as in Def.3, we will consider a W-valued random vari-
able W describing the message to be transmitted, a sequence
X = (Xt)t of X-valued r.v.s (the channel input process), a
sequence Y = (Yt)tr of Y-valued r.v.s (the channel output
process), and a sequence S = (St)tr S-valued r.v.s (the state
process). We consider the time ordering

W,S1,X1, Y1,S2,X2,Y2,**

and assume that the joint distribution of W, X, Y and S is
described by

P(st = z W~St-l xt- 1 yt-1)=P ss(SIS )

(Xt=W,S1, Xl1, Y1 ) = 6f t (W,Ylt- "S1 ) } (X)

P(yt = p W, StD X1,~ylt- 1) = py (y |St, Xt)

The corresponding expectation operator will be denoted by E.
We observe that the absence of ISI ensures that the state

process S is independent of the transmitted message W. In
particular S forms a stationary Markov chain with irreducible
transition probability matrix Il. This implies that the empirical
measure process (VS(S2n) converges P-almost surely to
the invariant measure ,trn, while satisfying a large deviations
principle (see [4]) with convex, good rate function Irn(0).

Definition 4 A sequential decoder for a causal feedback en-
coder D as in (5) is a pair 4 = (T, /), where T is a stopping
time for the process (S, Y) and b an W-valued (Sf, y1T)-
measurable random variable.

Notice that with Def.4 we are assuming that the state sequence
is causally observable at the decoder side.

Given a causal feedback encoder Jb as in Def. 3 and a
sequential decoder 4 as in Def. 4, their error probability is

Pe(-@ tq) = T) (O 7 W) .

Following Burnashev's approach we shall consider the ex-
pected decoding time E[T] as a measure of the delay of the
coding scheme and accordingly define its rate by

R := log IWl/E[T] .

D. Main result

We are ready to state our main result. It is formulated in an
asymptotic setting, considering sequences of causal encoders
and sequential decoders with asymptotic average rate below
capacity and vanishing error probability.

Theorem 5 For any 0 < R < C:
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1) any sequence (Jn, Tn) of causal encoders sequential
decoder pairs such that

Lemma 7 For any O< d < 1 we have2

lir Pe(, J.,'n)
nEC

0, lim sup log W'/ > R (6)
nCE E[Tn]

E [i=Cl > d _ Pe ( ' t)) log vW

satisfies

lim sup
I

log Pe (.fl 4'2n) < EB(R). (7)
ne E[Tn]

2) there exists a sequence (in, 4'n)ne ofencoder-decoder
pairs satisfying (6) and such that

limE[T] log Pe (ln,4'n) = EB(R). (8)

We observe that Burnashev's original result [3] for DMCs can

be recovered as a particular case of Theorem 5 when the state
space is trivial.

III. AN UPPER BOUND ON THE ERROR EXPONENT

The aim of this section is to sketch the proof of Part 1

of Theorem 5. We shall present a series of partial results
whose proofs will be given in full detail elsewhere. Our
results are extensions of those in [3]. In particular we have
followed the approach proposed in [1] (see also [9],[5]) trying
to emphasize the emergence of two distinct transmission
phases, a communication one related to the channel capacity,
and a binary hypothesis testing one related to the Burnashev
coefficient.

A. A generalized Fano's inequality
A first observation is that, given a stopping time T for the

process (S, Y), the optimal decoder 4: (S x y)T > w

which can be associated to it is the maximum a posteriori
(MAP) one. Thus, in order to lower bound the error probability
we can restrict ourselves to MAP sequential decoders. Given
channel output and state observations up to some time t, we
denote the a posteriori error probability by

PMAP (t): 1-max {P (W = w|Yt, S')}
Notice that the quantity defined above implicitly depends on

the encoder Jb. Since W is uniformly distributed over the
message set W, we have that PMAP(O) (= W -1 I'W.
Moreover it is not difficult to prove the following recursive
lower bound.

Lemma 6 Given any causalfeedback encoder 1, for any t > 0

B. A lower bound to the error probability of a composite
binary hypothesis test

We now consider a particular binary hypothesis testing
problem which will arise while proving the main result.
Consider a nontrivial binary partition of the message set

W = wouw1, wonwi = 0,

and a sequential binary hypothesis test = (T, b) (where T
is a stopping time for (S, Y) and 4: (S x y)T _> 0,)
between the hypotheses {W e Wo} and {W eW1}.

Consider now another stooping time T for (S, Y), satisfying

T< T a.s. (12)

Suppose that Wi is a (SI, YiT)-measurable random subset of
the message set )/. The following lower bound to the error

probability of the binary test conditioned on (S1, Y1') can

be proved using the log-sum inequality and Doob's optional
sampling theorem.

Lemma 8 Let D be any causal encoder, and T and T stopping
times for the process (S, Y) satisfying (12). Then, for every

(ST, YT)-measurable random message subset W1

Cl ST,YTI > _log
Z/4

(13)

P-a.s., where Z: m=ii {P (W C Wi S7, Y¾T) }

C. Burnashev bound for Markov channels

Combining Lemmas 6, 7 and 8, it is possible to prove that
the following.

Theorem 9 Given a causal feedback encoder D= (V,(t))
and a sequential decoder T=(T,), for every d > 0

clE CS]+E[f:cl]
C [

St
+LE s

> -logpe (b, T) + C log |W| (1 - a) + 3,

where T6 is defined by (9), and

(14)

PMAP(t + 1) > ApMAp(t) P -a.s.

For every d > 0 we introduce the following stopping time
for the process (S, Y)

:= inf {t C N: t > T or PMAP(t) < 61 * (9)

The following result can be proved using Fano's inequality
and Doob's optional stopping theorem.

:

Pe(@D ) A: C1
/3:= log - -H()

4 C

When the state space is trivial, the lefthand side of (14)
equals C1TE[T], so that (14) reduces to Burnashev's inequality
(4.1) in [3]. For nontrivial state space, in order to obtain the
single-letter bound of Theorem 5, it is necessary to consider a

countable family of causal encoders (Jbk) and a corresponding
family of sequential decoders (Tk) satisfying (6).
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The core idea for proving (7) consists in introducing a
positive real sequence (6k), and showing that both the random
variables

Tk := inf {t CN t > Tk or PMAP(t) < k}

and Tk -Tk 'diverge' in the probabilistic sense made precise
by (16) below. The sequence (ak) needs to be properly chosen:
we want it to be asymptotically vanishing in order to guarantee
that Tk diverges, but not too fast since otherwise Tk -Tk
would not diverge. It turns out that one possible good choice
is 6k lg p. Qk,k). From (2) it follows that

lim 6k
kcE

0, lrn Pe (Dk, Erk)lic =~ 0 .

The following result can be proven using Lemma 6.

Lemma 10 In the previous setting, for every M in N, we have

lim P(Tk< M) = 0,
kEc

lim P (Tk- Tk <M) =0.
kEc

We have already noticed that the irreducibility of the
stochastic matrix II implies that the empirical measure process
associated to the state sequence S converges IP-almost surely
to the invariant measure ,/iy. This fact, together with (16),
allows us to prove the following.

Lemma 11 In the previous setting

k

li [T-kIE [EC,,j C

and

kN E[Tk- Tk]

TkEcl
Lt=Tk+1

cl.

By taking the limit of both sides of (14) and substituting (17)
and (18), we get (7).

IV. AN ASYMPTOTICALLY OPTIMAL SCHEME

In order to prove Part 2 of Theorem 5, thus showing the
achievability of the Burnashev's exponent EB (R), we propose
an iterative transmission scheme consisting in a generalization
of the one introduced by Yamamoto and Itoh [10] for DMCs.
This scheme consists of a sequence of epochs. Each epoch
is made up of two distinct transmission phases, respectively
named communication and confirmation phase. In the com-
munication phase the message to be sent is encoded in a
block code and transmitted over the channel. At the end of
this phase the decoder makes a tentative decision about the
message sent based on the observation of the channel outputs
and of the state sequence. As perfect feedback is available,
the result of this decision is known at the encoder. In the
confirmation phase a binary acknowledge message, confirming
the decoder's estimation if it is correct, or denying it when it is
wrong, is sent by the encoder through a fixed-length repetition

code. The decoder performs a binary hypothesis test in order
to decide whether a deny or a confirmation message has
been sent. If a confirmation is detected the transmission halts,
while if a deny is detected the system restarts transmitting
the same message with the same protocol. Again because
of perfect feedback availability at the encoder, there are no
synchronization problems.
More precisely we design our scheme as follows. Given a

design rate R in (0, C), let us fix an arbitrary -y in (R, 1).
For every n in N, consider a message set WV of cardinality
lWn = exp( LnRi ) and two blocklengths n and n respectively
defined as n = Fnr], n := n- .

A. Fixed-length coding for the transmission phase
It is known that C equals the capacity of the stationary

Markov channel we are considering. This implies that, since
limnc log LIN = R < C, there exists a sequence of causal
encoders with no output feedback { Vn:WV x St' X}, and
a sequence of decoders of fixed length h { b' : SI x Y' -
WV } with error probability asymptotically vanishing with the
blocklength. More precisely, the error probability of the pair
(@,"nn) goes to zero uniformly with respect to initial state
distribution. Thus, denoting by p(n) the maximum over all
initial state distributions ,t of the error probability of the pair
( n Tn), we have that limnc p(n) = 0. The pair (,n' Tn)
will be used in the first phase of each epoch of our iterative
transmission scheme.

B. Binary hypothesis test for the confirmation phase
For the second phase we consider a causal repetition en-

coder bn of length h, defined by q5n(m) x= , for m = 0,1,
where for every state s we denote by xo and x1 one of the
most distinguishable input pairs for the s-th channel, i.e. such
that C' = D(P( ISx°) Pf zx'))-

Suppose that an acknowledge messagem = 0 is sent. Then
it is easy to verify that the pair sequence (St, Yt)f,) forms a
Markov chain with state space S x Y and transition prob-
abilities Po(v, y s, z) : Ps (V s)Py (y s, xo). Analogously,
if a deny message m 1 has been sent, with transition
probabilities Pi(v,yls,z) := Ps(vls)Py(yls,x'). It can be
checked that Assumption 2 and (2) guarantee that both the
stochastic matrices li := (Pi(v, y s, z)), i = 0, 1, are
irreducible, with invariant measures given by

-i(s, y) = u(s)Py(y xz, s).
Notice that we can rewrite

C1 Zvt(s)D (Py( xo s) Py(xo, s)) = D(-0o l 1) .

sCS

Using binary hypothesis test results generalizing Stein lemma
to irreducible Markov chains (see [6], [4]), it is possible
to show that C1 is achievable as type one error exponent,
while satisfying the constraint of vanishing type zero error
probability. In fact, for every n in N define the decoder
jn Sns X yn, -> {°, II,

n(y, s) ={
if
if

IrlO (VSxy (S, y)) > an
IIIO (VSxy (S, y)) <aan ,
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where In0 is the large deviations rate function associated to the
stochastic matrix I1lo ([4]), and (an) is a real positive sequence
satisfying

lim an
nCN

0, lim-log n 0.=
neN n

Defining po(n) (respectively pi (n)) as the maximum over all
possible initial state distributions ,t of the error probability
of the pair (Vn, Itn) conditioned on the transmission of a '0'
('1') message, it is possible to show that

lim po (n) = 0,
nCE

limr- log Pi (n)
nCE 12

Cl.

C. Performance of the proposed scheme

Once chosen the encoder decoder pairs ((n, n ) and
(-n, Tn) for the communication and the confirmation phase
respectively, the iterative protocol described at the beginning
of this section defines a causal encoder Dn = (Wn, (/n)) and
a sequential decoder Tn = (Tn, on). It can be verified that
the error probability of such a scheme satisfies

Pe (- ,nFn) < pl (n),
while its decoding time is dominated by
random variable:

IP(Tn > kn) < (po(n) +p(n))k,
As a consequence we have that

lim WE
neN E[Tn]

and

im -logp ((n,4n)
n(EN E[Tn]

REFERENCES

[1] P. Berlin, B. Nakiboglu, B. Rimoldi, E. Telatar, "A Simple Derivation of
Burnashev's Reliability function", http://arxiv.org/abs/cs/0610145, 2006.

[2] V. S. Borkar, Probability Theory: An Advanced Course, Springer, 1995.
[3] M. V. Burnashev, "Data Transmission over a Discrete Channel with

Feedback. Random Transmission Time", Prob. of Inform. Transm., vol.
12 (4), pp. 1030, 1976.

[4] A. Dembo, 0. Zeitouni, Large Deviations Techniques and Applications,
2nd ed., Springer, 1998.

[5] B. Nakiboglu, R. G. Gallager, "Error exponents for variable-length
block codes with feedback and cost constraints", preprint, av. at
http://arxiv.org/abs/cs.IT/0612097, 2006.

[6] S. Natarajan, Large deviations, hypotheses testing, and source coding for
finite Markov chains, IEEE Trans. Inform. Theory, vol. 31, pp. 360-365,
1985.

[7] C. E. Shannon "The zero error capacity of a noisy channel", IEEE Trans.
Inform. Theory, vol. 2, pp. 8- 19, 1956.

[8] A. Tchamkerten, I. E. Telatar, "On the Universality of Burnashev's Error
Exponent", IEEE Trans. Inform. Theory, vol.51, pp. 2940-2944, 2005.

[9] A. Tchamkerten, I. E. Telatar, "Variable Length Coding over an Un-
known Channel", IEEE Trans. Inform. Theory, vol.52, pp. 2126-2145,
2006.

[10] H. Yamamoto, K. Itoh, "Asymptotic performance of a modified
Schalkwijk-Barron scheme for channels with noiseless feedback, IEEE
Trans. Inf Theory, vol. 25, pp. 729-733, 1979.

a scaled geometric

k>O. (19)

R,

C1 (1 .

Thus (8) can be deduced from the arbitrariness of - in (R, 1).
We emphasize the fact that the two phases in each epoch

of the scheme are of fixed length, while the number of
epochs is possibly variable. Hence, the overall transmission
length of the scheme is variable. However, (19) guarantees
that with high probability the transmission halts after the
first epoch, a property making this scheme appealing for
practical implementation, as already noticed in [5]. Moreover
we observe that the first transmission phase only requires an
asymptotically vanishing error probability, not necessarily at
an exponential rate.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper we have determined the reliability function for
Markov channels with feedback and variable length channel
codes. In the future we will relax the assumption that there
is no ISI, and that both the transmitter and the receiver have
access to the state. In the former case controlled Markov chain
theory will be used. In the latter case output feedback will have
a dual role: to estimate the state and to increase the reliability
function. Extensions to noisy feedback will also be considered.
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