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Abstract—A class of large-scale stochastic discrete-time
continuous-opinion dynamical systems is analyzed. Agentshave
pairwise random interactions in which their vector-valued opin-
ions are updated to a weighted average of their current values.
The intensity of the interactions is allowed to depend on the
agents’ opinions themselves through an interaction kernel. This
class of models includes as a special case the bounded-confidence
opinion dynamics models recently introduced by Deffuant etal.,
in which agents interact only when their opinions differ by less
than a given threshold, as well as more general interaction ker-
nels. It is shown that, in the limit as the population size increases,
upon a proper rescaling of the time index, the trajectories of
such stochastic processes concentrate, at an exponential rate,
around the solution of a measure-valued differential equation.
The asymptotic properties of the solution of such a differential
equation are then studied, and convergence is proven to a convex
combination of delta measures whose number depends on the
interaction kernel.

I. I NTRODUCTION

Opinion dynamics systems have recently attracted a con-
siderable amount of attention from the research community.
In these models, agents, belonging to a large population, are
assumed to interact according to very simple local rules. The
interest is in the emerging global behavior of the system.
While models where the opinions are binary-, or, more gen-
erally, finite-valued, have been successfully studied within
the framework of interacting particle systems [8], the last
decade has witnessed an increasing interest for continuous
opinion dynamics systems. This is motivated primarily by
social and economic networks, in which opinions are often
better modeled by continuous rather than discrete quantities,
as well as by engineered multi-agent systems, where opinions
usually represent positions in space or velocities. In continuous
opinion dynamics it is usually assumed that each agent updates
his vector-valued opinion to a convex combination of a small
number of interacting agents’ values.

In the present paper, we shall study a class of stochastic
opinion dynamics systems in which, at each discrete time
instant, a random pair of agents interact by updating their
opinion to a weighted average of their current values. The
probability of effective interaction between two agents will be
assumed to depend on the current value of the agents’ opinion
through an interaction kernel. This generalizes the Deffuant-
Weisbuch model of bounded confidence opinion dynamics first
introduced in [5]. In the latter, interactions occur only when
the agents’ opinions differ by less than a certain threshold. For

G. Como is with Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
MA, USA, giacomo@mit.edu

F. Fagnani is with Dipartimento di Matematica, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy,
fabio.fagnani@polito.it

this model, in scalar opinion case, it was proven in [9] that the
system converges to a certain number of opinion clusters, sep-
arated by a distance not smaller than the confidence threshold
itself. Similar results were observed numerically in [3], and
proved analytically for an analogous deterministic model due
to Krause [7] in [6], [4], [10].

The main contributions of the present paper concern the
behavior of this system in the limit of large population size
n. We shall show that, asn increases, a properly time-
rescaled version of the discrete stochastic system concentrates
-at an exponential rate- around the solution of a measure-
valued differential equation. We shall prove the well-posedness
(i.e. existence and uniqueness of a solution) of such equation,
and then study the asymptotics of its solution, showing thatit
converges to a convex combination of Dirac’s delta measures.
Such deltas correspond to opinion clusters, and their number
and mutual distances depend on the interaction kernel. While a
similar differential equation for probability densities was non-
rigorously introduced in [3] for the case of the Deffuant et
al.’s model, no rigorous analysis of it has been proposed so
far in the literature, to the best of our knowledge, and, most
importantly, we are not aware of any proof of concentration
of the discrete-time finite-population around its solution.

The remainder of the paper is organized as follows. After
introducing the necessary notation, we shall introduce the
class of discrete-time stochastic models of continuous opinion
dynamics in Sect. II. In Sect. III, we shall pass from the agent-
based model to the density-based one, the latter consistingin
a discrete-time stochastic process in the space of probability
measures over the opinion space. An intuitive interpretation of
such a process as a noisy Euler discretization of a measure-
valued differential equation will then be provided. In Sect. IV,
we shall first prove the well-posedness of such a differential
equation (Theorem 1), and then investigate the asymptotic
behavior of its solution (Theorem 2). Finally, in Sect. V,
we shall prove that, upon properly rescaling the time index,
stochastic process corresponding to the the density-based
model concentrates around the solution of the differential
equation, as the population size grows.

While providing rigorous definitions and statements, we
shall just sketch the proofs of our results, and address the
reader interested in the details to a forthcoming full version
of the paper.

II. PROBLEM FORMULATION

We start by establishing some notation, to be used through-
out the paper. As usual,R, N, andZ

+ will denote the sets of
reals, natural numbers, and nonnegative integers, respectively.
The entries of a vectorx, indexed by a finite alphabetI, will
be denoted byx(i), whereasx(−i) will stay for the vector



of all the entries ofx but the i-th. If x and y belong to
R

d, for somed ∈ N, ||x − y|| will denote their Euclidean
distance. The indicator function of a setA will be denoted
by 1A, with 1A(x) = 1 if x ∈ A, 1A(x) = 0 if x /∈ A. We
shall denote byC0

b (Rd) the space of real-valued, continuous,
bounded functions overRd, and by P(Rd) the space of
probability measures overA. For a measureµ ∈ P(Rd), and
a test functionϕ ∈ C0

b (Rd), we shall write 〈µ, ϕ〉 for the
integral

∫

ϕ(x)dµ(x), with the convention that, whenever not
explicitely indicated, the domain of integration is assumed to
be the entire spaceRd. For x ∈ R

d, δx ∈ P(Rd) will be the
Dirac delta measure centered inx, defined by〈δx, ϕ〉 = ϕ(x)
for all ϕ ∈ C0

b (Rd). Finally, for X ⊆ R
d, the space of

probability measuresµ whose support is contained inX will
be denoted byP(X ).

We shall study the following family of discrete time stochas-
tic models of continuous opinion dynamics. Agents belong to
a finite populationAn of cardinality |An| = n. Each agent
a ∈ An starts with an initial opinionX(a)

0 ∈ R
d. We shall

assumeX0 := {X
(a)
0 : a ∈ An} to be a family of independent

and identically distributed (i.i.d.) random variables (r.v.s), the
law of eachX

(a)
0 being given by some probability measure

µ0 ∈ P(Rd). The opinion profileXk := {X
(a)
k | a ∈ An} is

then updated according to the following stochastic rule. At
each subsequent time instantk ∈ N, two agents,a and b,
are independently sampled from a uniform distribution over
An. Then, with some probabilityκ(X

(a)
k−1, X

(b)
k−1), possibly

depending on their current opinions, agenta updates its
opinion to a weighted average of its current opinion and that
of agentb, by settingX

(a)
k = (1 − ω)X

(a)
k−1 + ωX

(b)
k−1. The

parameterω ∈ [0, 1] has to be interpreted as a measure of the
confidence that each agent puts on the opinion of other agents.

Formally, we shall assume that the stochastic process is de-
fined on some filtrated probability space

(

Ωn, {Fn
k }k∈Z+ , Pn

)

,
such thatXk is Fn

k -measurable for allk ∈ Z+. Then

Pn (X0 ∈ A) = µ⊗n
0 (A) ,

for all A ⊆ R
d measurable, and, conditioned on the past

historyFn
k−1, for everya, b ∈ An

X
(a)
k = (1 − ω)X

(a)
k−1 + ωX

(b)
k−1 , X

(−a)
k = X

(−a)
k−1 , (1)

with probabilityκ(X
(a)
k−1, X

(b)
k−1), while

Xk = Xk−1 w.p. 1 −
∑

a,b∈An

κ(X
(a)
k−1, X

(b)
k−1) . (2)

We shall assume the interaction kernelκ : R
d × R

d → [0, 1]
to be measurable, lower semicontinuous, and symmetric in its
arguments, i.e. such that

κ(x, y) = κ(y, x) , ∀x, y ∈ R
d .

Further, we shall assume the initial probability lawµ0 to be
compact supported, and denote byX ⊆ R

d the convex closure
of the support ofµ0.

Remark 1. The models considered in the cited literature
usually assume the interaction to be symmetric in that, at each

k ∈ N, not only does agenta updates its opinion as above, but
also so does agentb by settingX

(b)
k = (1−ω)X

(b)
k−1+ωX

(a)
k−1.

This symmetric model may be more suitable in certain applica-
tive contexts, the asymmetric one in some others. However,
while for finite population sizes some of the properties of
the two models differ (for example, in the symmetric model
the average of the opinions is preserved, while this is not
necessarily the case for the asymmetric model), all the results
and proofs of this paper hold as well, with minor changes, for
the symmetric model.

We end this section by introducing three explicit examples
of interaction kernel.

Example 1. Assume the interaction kernelκ(x, y) is con-
stantly equal to1. Then, the above described system reduces
to the standard asymmetric gossip on the complete graph with
n agents.

Example 2. For some threshold valueR > 0, let

κ(x, y) := 1[0,R](||x − y||) .

Then, our model reduces to the Deffuant-Weisbuch model of
bounded confidence opinion dynamics.

Example 3. Assume thatκ is a Gaussian kernel, namely that

κ(x, y) := exp(−||x − y||2/σ2) ,

for someσ > 0.

III. F ROM AGENT-BASED TO DENSITY BASED MODELS

As our main interest is in the global behavior of the opinion
dynamics system, rather than on that of the single agents’
opinions, it turns out to be convenient to undertake an Eulerian
approach, and to study the evolution of the empirical densities
of the agents’ opinions. Formally, this is accomplished by
considering the sequence of random probability measures

Mn
k :=

1

n

∑

a∈An

δ
X

(a)
k

∈ P(Rd) , k ∈ Z
+ .

Observe that, for every measurableA ⊆ R
d,

Mn
k (A) =

1

n

∑

a∈An

1A(X
(a)
k ) ,

is nothing but the fraction of agents whose opinion at timek
belongs toA.

It turns out that the Markovian dynamics described by the
updates (1) and (2), translate into a Markovian dynamics for
the opinion density process{Mn

k } which is described below.
For µ ∈ P(Rd), andϕ ∈ C0

b (Rd), define

〈H(µ), ϕ〉:=

∫∫

(ϕ((1−ω)x + ωy)−ϕ(x))κ(x, y)dµ(x)dµ(y).

(3)
Then, for allk ∈ Z

+,

〈Mn
k+1, ϕ〉 − 〈Mn

k , ϕ〉 =
1

n

(

〈H, ϕ〉 + 〈∆n
k+1, ϕ〉

)

, (4)



where the random variable〈∆n
k+1, ϕ〉 satisfies, for allk ∈ Z

+,

E
[

〈∆n
k+1, ϕ〉|F

n
k

]

= 0 , |〈∆n
k+1, ϕ〉| ≤ ||ϕ||∞ . (5)

Equation (5) means that{〈∆n
k , ϕ〉 : k ∈ N} is a sequence

of bounded martingale differences, which can be thought
as ‘noise’. This suggests to think of the equation (4) as a
noisy discretization, or Euler approximation in the numerical
analysis language, of the the measure-valued ODE

d

dt
µt = H(µt) . (6)

with stepsize1/n. More precisely, one may conjecture that,
upon rescaling the time index byt = k/n, the discrete time
stochastic process(Mn

k ) should converge, in the limit of the
population sizen going to infinity, to a solution{µt : t ∈
[0, +∞)} of the ODE (6) with initial conditionµ0. Such an
intuition lies at the basis of the so called mean field approach
of statistical physics, where the differential equation (6) is
usually referred to as the master equation.

The conjecture above will be formalized and proved to be
true in the following sections. In Sect. IV, in particular, we
shall first define what it is meant by a solution of (6), and
then prove that for every compact-supported initial condition
µ0 ∈ P(Rd) there exists a unique solution{µt : t ∈ [0, +∞)}
of (6) with initial value µ0. Then, we shall investigate the
asymptotics of the solutions of the ODE (6). In Sect. V, we
shall prove that a linearly interpolated, and properly rescaled
in time, version of the discrete time stochastic process{Mn

k },
concentrates around such a solution{µt}.

IV. EXISTENCE, UNIQUENESS, AND ASYMPTOTICS OF THE

MEASURE-VALUED ODE PROBLEMS

In this section, we shall prove the well-posedness of the
ODE (6), and then analyze the asymptotics of its solutions.
To start with, we formalize what it is meant by a solution of
(6).

Definition 1. A family {µt : t ∈ [0, +∞)} is a solution of
ODE if, for every test functionϕ ∈ C0

b (Rd), the real-valued
map

t 7−→ 〈µt, ϕ〉 , t ∈ [0, +∞) ,

is absolutely continuous and satisfies

d

dt
〈µt, ϕ〉 = 〈H(µt), ϕ〉 ,

for almost everyt ∈ (0, +∞).

Before proving the existence of a solution of the differential
equation (6), it is worth noting two conservation properties
such a solution is going to enjoy. By takingϕ = 1Rd we
obtain that

d

dt

∫

dµt(x) = 0 ,

i.e. the total mass is preserved. On the other hand, it follows
from the symmetry ofκ that

d

dt

∫

xdµt(x) = ω

∫

(x − y)κ(x, y)dµ(x)dµ(y) = 0 ,

i.e. the first moment is preserved.
The following result states the well-posedness of the ODE

(6) with compact-supported initial valueµ0.

Theorem 1. Let µ0 ∈ P(Rd) be supported in a compact con-
vex setX ⊆ R

d. Let κ be a piecewise-continuous, symmetric
interaction kernel, as in Sect. II, and letH be defined as in
(3). Then, there exists a unique solution of (6) with initial
valueµ0. Moreover, for everyt ∈ [0, +∞), the support ofµt

is contained inX .

Proof: The proof is based on a standard contraction
argument in the Banach space of continuous signed-measure-
valued curves. For this, the essential ingredients are the
Lipschitzianity ofH in the total variation distance

||µ(A)− ν(A)||TV := sup
{

µ(A) − ν(A) : A ⊆ R
d meas.

}

.
(7)

The second part of the claim follows from the easily verifiable
fact that the support ofH(µ) is contained in the convex closure
of the support ofµ.

Now, we proceed to study the asymptotic properties of the
solutions of the ODE (6). The following result guarantees the
convergence of any such a solution to an asymptotic measure
µ∞ ∈ P(Rd). Here, convergence inP(Rd) is intended to hold
in the weak sense of probability measures, i.e. we shall say
that lim

t→+∞
µt = µ in P(Rd) if

lim
t→+∞

〈µt, ϕ〉 = 〈µ, ϕ〉 , ∀ϕ ∈ C0
b (Rd) . (8)

Theorem 2. Let {µt} be the solution of (6) corresponding
to a compact-supported initial valueµ0. Then, there exists
µ∞ ∈ P(Rd) such that

lim
t→+∞

µt = µ∞ , in P(Rd) .

Moreover, if the interaction kernel is such that, for someR ∈
(0, +∞) (respectively,R = +∞),

κ(x, y) > 0 , ∀x, y : ||x − y|| < R , (9)

thenµ∞ is a convex combination of a finite number of Dirac’s
deltas centered in points whose inter-distance is not less than
R (respectivelyµ∞ = δx0).

Proof: The core idea consists in studying the evolution
of the second moment

m
(2)
t :=

∫

Rd

||x||2dµt(x) .

Using the fact that{µt} is a solution of (6), and the symmetry
of the interaction kernelκ, one finds that

d

dt
m

(2)
t = −ω(1 − ω)

∫ ∫

||x − y||2κ(x, y)dµt(x)dµt(y)

(10)
is always nonpositive. Hence,m(2)

t is nonincreasing, and
therefore convergent. As in [4], this fact is used to show
convergence of{µt} in the sense of distributions first, and
then, by tightness, inP(Rd).



In order to prove the second part of the claim, assume by
contradiction thatx∗, y∗ ∈ supp(µ∞) and ||x∗ − y∗|| < R.
Then κ(x∗, y∗) > 0, and, sinceκ is lower semicontinuous,
there exists neighborhoodsA and B are of x∗ and y∗,
respectively, such thatκ(x, y) > 0 for x ∈ A and y ∈ B.
Then,
∫ ∫

||x − y||2κ(x, y)dµ(x)dµ(y)

≥

∫

A

∫

B

||x − y||2κ(x, y)dµ∞(x)dµ∞(y) > 0 .

It thus follows from (10) that lim
t→∞

d
dtm

(2)
t < 0, which is in

contrast with the fact thatlim
t→∞

µt = µ∞.

Example 4. Consider the case of interaction kernelκ ≡ 1.
Then, Theorem 2 implies thatlimt→∞ µt = δx0 . Observe that
the fist momentm(1)

t :=
∫

xdµt(x), satisfies

d

dt
m

(1)
t = 0 ,

so that in this case the system preserves the first moment.
Assuming with no loss of generality thatm

(1)
0 = 0, (10) implies

that
d

dt
m

(2)
t = −2ω(1− ω)m

(2)
t ,

so thatm(2)
t = m

(2)
0 e−2ω(1−ω)t.

Example 5. For the caseκ(x, y) = 1[0,R)(||x − y||), The-
orem 2 guarantees convergence to a convex combination of
deltas, each pair separated by a distance of at leastR
(opinion clusters). On the other hand, for the caseκ(x, y) =
exp(−||x − y||/σ2), Theorem 2 guarantees convergence to a
single delta (consensus).

V. CONCENTRATION AROUND THE SOLUTION OF THEODE

In this section, we finally show that, in the limit of the
population sizen going to infinity, the stochastic process
{Mn

k } concentrates around the solution of the ODE (6).
ThroughoutX ⊆ R

d will be assumed compact and convex.
In order to formalize the aforementioned notion of con-

centration, we need to equip the spaceP(X ) with a suitable
notion of distance. The topology induced onP(X ) by the
total variation distance, as defined in (7), turns out to be
too strong for our purposes. Indeed, for instance, it can be
immediately verified that, for every initial distributionµ0

absolutely continuous with respect to the Lebesgue measure,
||Mn

0 − µ0||TV = 1 for all n, so thatMn
0 does not converge

to µ0 in total variation.
We shall prove our results in the so-called1-Wasserstein

distance, which is defined as follows. For two probability
measuresµ, ν ∈ P(X ), define

W1(µ, ν) := min

{
∫

X×X

||x1 − x2||dλ(x1, x2)

}

; (11)

in the righthand side of (11), the minimization runs over all
joint probability measuresλ ∈ P(X × X ) whose marginals

are given byµ and ν, respectively. The reason for choosing
such a metric resides in the rich duality it enjoys (see,
e.g. [2, Ch. 7] and [11, Ch. 6]). In particular, the so-called
Kantorivich-Rubinstein duality formula allows one to rewrite
the 1-Wasserstein distance as

W1 (µ, ν) = sup {〈µ, ϕ〉 − 〈ν, ϕ〉 : ϕ : X → R, 1−Lipschitz}
(12)

Furthermore, the Wasserstein distance is known to induce on
P(X ) a topology equivalent to the weak one, as defined by
(8): see [11, Th. 6.9], and recall thatX is compact.

We are now in the position to state our main result. This
is stated in terms of the linearly interpolated, time rescaled,
processes{M̃n

t : t ∈ [0, +∞)}, defined by

M̃n
t := (1 + tn − ⌊tn⌋)Mn

⌊tn⌋ + (tn − ⌊tn⌋)Mn
⌊tn⌋+1 . (13)

Theorem 3. For µ0 ∈ P(X ), let {µt : t ∈ [0, +∞)} be
the unique solution of the ODE (6) with initial conditionµ0.
Assume thatκ(x, y) is Lipschitz. For alln ∈ N, let {Mn

k :
k ∈ Z+} be the discrete time stochastic process introduced in
Sect. II, and let{M̃n

t : t ∈ [0, +∞)} its rescaled, interpolated
version as in (13). Then, for everyσ, τ ∈ (0, +∞),

Pn

(

sup
t∈[0,τ ]

{

W1(M̃
n
t , µt)

}

≥
(

K1σ + K2σ
3/2
)

eτ

)

≤ H1
τ

σ2
exp(H2/σ) exp(−Jσ3n) ,

whereK1, K2, H1, H2, andJ , are positive constants depend-
ing onX , andκ only.

Proof: The proof involves two main steps. The first one
consists first in approximating the space of real-valued,1-
Lipschitz functions overX by a finite set of functionsH whose
cardinality is at most exponential in the inverse of the precision
(evaluated in the sup norm). The second one consists in
applying the Hoeffding-Azuma inequality [1, Th. 7.2.1] to the
bounded martingale difference sequence{〈∆n

k , ϕ〉 : k ∈ Z
+}

introduced in Sect. III (recall, in particular, (5)), for any
functionϕ ∈ H. In particular, the second step is close in spirit
to the proof of the ODE method for random graph processes
and randomized algorithms [12]. Finally, the two steps are
combined by means of the duality formula (12), in order to
get the result.

Remark 2. The additional assumption that the interaction
kernel κ be Lipschitz is made for technical reasons. Indeed
this guarantees global Lipschitzianity of the operatorH in
the Wasserstain metric overP(X ). It is not hard to see that
such a global Lipschitianity fails to hold true in the case
of discontinous kernels as the one of Ex. 2. However, we
conjecture that the result holds even for discontinuous kernels
provided that the initial measureµ0 is absolutely continuous
with smooth density.

VI. CONCLUSION

We have studied a class of stochastic models of continuous
opinion dynamics. The main result presented shows concentra-



tion, in the limit of increasing population size, around thesolu-
tion of a measure-valued differential equation. The asymptotic
properties of the solution of such differential equation have
been studied as well, and convergence to a convex combination
of deltas, each representing an emerged opinion cluster, has
been proven. Current work involves extension of these result
to more general opinion dynamics models.
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and in the space of probability measures, Lectures in Mathematics ETH
Zurich, Birkhauser Verlag, Basel, 2005.

[3] E. Ben-Naim, P.L. Krapivsky, and S. Redner. “Bifurcations and patterns
in compromise processes”,Physica D, vol. 183(3), pp. 190–204, 2003.

[4] C. Canuto, F. Fagnani, and P. Tilli, “A Eulerian approachto the analysis
of rendez-vous algorithms”, in Proc. of 2008 IFAC Conf., Seoul, Korea,
July 6-11, pp. 9039–9044, 2008. Extended version [online] available at
http://calvino.polito.it/∼fagnani/coordincontrol/IFAC08CFT.pdf.

[5] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs
among interacting agents”,Adv. Complex Syst., vol. 3, pp. 8798, 2000.

[6] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis, “On Krause’s
consensus formation model with state-dependent connectivity”, IEEE
Trans. Authomat. Control, to appear, 2009.

[7] U. Krause, “A discrete nonlinear and non-autonomous model of consen-
sus formation”,Communications in Difference Equations, pp. 227–236,
S. Elaydi, G. Ladas, J. Popenda, and J. Rakowski editors, Gordon and
Breach, Amsterdam, 2000.

[8] T.M. Liggett, Interacting particle systems, Springer, Berlin Heidelberg,
2005.

[9] J. Lorenz, “A stabilization theorem for continuous opinion dynamics”,
Physica A, vol. 355(1), pp. 217–223, 2005.

[10] J. Lorenz, “Continuous opinion dynamics under boundedconfidence: A
survey”, Internat. J. Modern Phys. C, vol. 18(12), pp. 1819–1838, 2007.

[11] C. Villani, Optimal transport: old and new, Springer Verlag, Berlin
Heidelberg, 2009.

[12] N.C. Wormald, “The differential equation method for random graph pro-
cesses and greedy algorithms”,Ann. Appl. Probab., vol. 5(4), pp. 1217–
1235, 1995.


