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Group Codes Outperform Binary-Coset Codes on
Nonbinary Symmetric Memoryless Channels

Giacomo Como

Abstract—Typical minimum distances and error exponents
are analyzed on the 8-PSK Gaussian channel for two capacity-
achieving code ensembles with different algebraic structure. It is
proved that the typical group code over the cyclic group of order
eight achieves both the Gilbert–Varshamov bound and the expur-
gated error exponent. On the other hand, the typical binary-coset
codes (under any labeling) is shown to be bounded away both from
the Gilbert–Varshamov bound (at any rate) and the expurgated
exponent (at low rates). The reason for this phenomenon is shown
to rely on the symmetry structure of the 8-PSK constellation,
which is known to match the cyclic group of order eight, but
not the direct product of three copies of the binary group. The
presented results indicate that designing group codes matching
the symmetry of the channel guarantees better typical-code per-
formance than designing codes whose algebraic structure does
not match the channel. This contrasts the well-known fact that
the average binary-coset code achieves both the capacity and
the random-coding error exponent of any discrete memoryless
channel.

Index Terms—Coset codes, error exponent, expurgated ex-
ponent, Gilbert–Varshamov bound, group codes, linear codes,
minimum distance, random codes.

I. INTRODUCTION

A S low-complexity modern coding has emerged, based on
random constructions of linear codes with sparse graph-

ical representation [34], the analysis of random codes with al-
gebraic structure has recently attracted renewed attention from
the research community [2], [30]. In fact, a precise evaluation
of the performance of random linear codes, with no constraints
on their density, is propaedeutic to the theory of low-density
parity-check (LDPC) and turbo codes, since it allows one to
quantify the loss in performance due to the sparsity constraint.

On the other hand, it has long been known that random
constructions of algebraically structured codes can outperform
purely random code constructions. For instance, this is the
case in some problems in multiterminal information theory,
where random linear codes allow to achieve larger capacity
regions than purely random codes do [26]. Confining attention
to point-to-point communication, which will be the frame-
work of the present paper, random binary-linear codes are
known to outperform purely random codes on binary-input
symmetric-output memoryless channels in terms of typical
minimum distances and error exponents [2].

Manuscript received October 06, 2008; revised October 30, 2009. Date of
current version August 18, 2010. The material in this paper was presented in
part at ISIT, Nice, France, June 2007.

Tha author is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
giacomo@mit.edu).

Communicated by H.-A. Loeliger, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2010.2054330

The present paper is concerned with the performance anal-
ysis of code ensembles with group or coset structure, when
employed over nonbinary discrete-input memoryless channels
(DMCs). In this case, while structured code ensembles are ex-
pected to outperform purely random code constructions, it is not
a priori clear which algebraic structure is the optimal one: in-
deed, many nonisomorphic groups typically exist of order equal
to some nonprime number [25]. As it will be shown in this paper,
it turns out that the choice of the algebraic structure is critical
for the typical code performance of the ensemble. Rather than
presenting a general theory, we shall focus on a specific case,
the additive white Gaussian noise channel (AWGNC) with input
restricted to the 8-Phase Shift Keying (8-PSK) signal constella-
tion: our choice is motivated both by the applicative interest of
this channel, and by the fact that it presents most of the key char-
acteristics of the general case. While the arguments of [2] can be
easily extended to show that the typical-code performance of the
random coding ensemble (RCE) is suboptimal, we shall provide
precise results for the ensemble of group codes (GCE) over the
cyclic group of order eight, , and the ensemble of binary-coset
codes (BCE), respectively (see Section II-A for their formal def-
initions). These results will show that the typical group code has
both better minimum distance and better error exponent than the
typical binary-coset code.

The Gilbert–Varshamov (GV) bound [22], [38] is one of the
most well known and fundamental results of coding theory.
Given a rate in , and defined as the unique so-
lution in of the equation (where
denotes the binary entropy), it states that for every there
exist binary codes of block-length , rate at least , and min-
imum Hamming distance at least .1 Its asymptotic tight-
ness is still considered one of longest-standing unproved conjec-
tures in coding theory [23], [37].2 A closely related issue con-
cerns the tightness of the expurgated exponent, which is con-
jectured by many to coincide with the reliability function of the
DMC, i.e., the highest achievable error exponent [5], [18], [31],
[32], [39]. Although both the classical GV bound and expur-
gated bound are mere existence results, for binary symmetric
memoryless channels it is known that the typical binary-linear
code achieves both the GV bound and the expurgated exponent
[2], [17], [33]. It is also known that the same does not hold true
[2] for the typical random code, whose performance is bounded
away from the GV bound, as well as (at low rates) from the ex-
purgated error exponent.

1More precisely, using a basic sphere-covering argument, Gilbert [22]
proved that for every positive integers � and �, there exist binary codes of
block-length �, minimum Hamming distance �, and cardinality not smaller
than � � . Varshamov [38] improved on this bound, for finite
lengths. Together with the upper bound on the volume of a discrete sphere

� � , their results imply the stated bound.
2Here, tightness is meant up to factors sublinear in �, whereas improvements

on such factors is an active field of research, see, e.g., [28].
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Generalizations of the above issues to nonbinary DMCs are
considered in the present paper. Here, the GV distance and the
expurgated bound are defined as solutions of simple finite-di-
mensional convex optimization problems, having the form of
distortion-rate functions for the Bhattacharyya distance [see (7)
and (13)]. Analogously to the binary case, the RCE can be easily
shown to be bounded away with probability one from both the
GV distance and the expurgated error exponent of the 8-PSK
AWGNC. The main results of the this paper show that the typ-
ical group code achieves the GV bound (Theorem 1), while the
typical binary-coset code is bounded away from it (Theorem 2).
Similarly, the typical group code achieves the expurgated expo-
nent (Corollary 1), while the typical binary-coset code does not
(Corollary 2).

As it will be clarified in the sequel, the reason for the out-
performance of the GCE over the BCE resides in the symmetry
structure of the 8-PSK AWGNC. Such a channel is symmetric
with respect to the action of two groups of order 8, the cyclic
group and the non-Abelian dihedral group , none of which
supports Galois field structure. In contrast, the additive group
of the Galois field with 8 elements, which is isomorphic to ,
the direct product of three copies of the binary group, does not
match the 8-PSK in the sense of [29]. Thus, the results of the
present paper suggest that random group codes matching the
symmetry of the channel outperform random codes whose al-
gebraic structure does not match that symmetry.

It is well known that, despite not matching the symmetry of
the channel, the BCE achieves the capacity and the random-
coding exponent of the 8-PSK AWGNC, likewise of any other
DMC [18]. Recent works [3], [4], [24] analyzing the perfor-
mance of binary-coset LDPC codes on nonbinary input DMCs,
find information-theoretical basis in the aforementioned funda-
mental results. In contrast, Theorem 2 and Corollary 2 imply
that, when the symmetry of the channel is not matched, the BCE
is suboptimal in terms the typical minimum distance and the typ-
ical error exponent. To the best of the author’s knowledge, such
a limitation of the performance of binary-coset codes had not
been proved before.

On the other hand, group codes for symmetric channels have
been widely investigated in the channel coding literature. They
allow to use more spectrally efficient signal constellations,
while inheriting many of the structural properties enjoyed
by binary-linear codes: uniform error property, invariant dis-
tance profiles, congruent Voronoi regions, minimal encoders,
syndrome formers and trellis representations. The reader is
referred to [7], [14]–[16], [29], [35], and references therein.
It is well known [13] that group codes over Abelian groups
admitting Galois field structure (i.e., isomorphic to for some
prime ) allow to achieve the capacity and the random coding
exponent. More recently, information-theoretic limits of finite
Abelian group codes were investigated in [8], where it was
shown that group codes over allow one to achieve capacity
on the -PSK AWGNC when is the power of a prime (thus
including the case ). Theorem 1 and Corollary 1 show
that, at least on the 8-PSK AWGNC, random group codes
matching the symmetry of the channel are optimal in terms of
typical-code performance. They provide theoretical foundation
for the analysis and design of bandwidth-efficient high-perfor-

mance coding schemes based on LDPC or turbo codes matched
to geometrically uniform constellations [3], [9], [20], [21],
[36]. It was empirically observed in [36] that LDPC codes over

perform better than their binary-coset counterparts on the
8-PSK AWGNC: the results of the present paper point out to an
analytical explanation for this phenomenon.

We observe that, in spite of the fact that the cyclic group
matches the 8-PSK constellation, the average error exponent
of the GCE has been shown [8] to be strictly smaller than the
random-coding error exponent at low rates (more in general this
is the case for group code ensembles over finite Abelian groups
not admitting Galois field structure, confirming an early con-
jecture of [13]). Since, as already mentioned, the average error
exponent of the BCE coincides instead with the random-coding
error exponent, it turns out that, at low rates, the BCE outper-
forms the GCE in terms of average error exponent, while the
latter outperforms the former in terms of typical error expo-
nent. While this phenomenon might appear paradoxical at a first
glance, it can be explained by the fact that the average error ex-
ponent (an annealed average in the statistical physics language
[30, Ch. 5.4]), provides only a lower bound to the typical error
exponent (a quenched quantity), by Markov’s inequality. This
estimation fails to be tight at rates not close to capacity, where
the average error exponent is dragged down by an asymptoti-
cally vanishing fraction of codes with poor performance. In fact,
at low rates, the error probability of the average group code is
dominated by the error probability of its binary subcode, i.e., the
set of its codewords whose entries belong to the binary subgroup

[8]. Therefore, the error exponent of the average group code
coincides with the random coding exponent of the binary-input
channel obtained by restricting the input from the whole 8-PSK
to a pair of its opposite elements. This is strictly smaller than
the random coding exponent of the 8–PSK AWGNC, which is
achieved by the uniform distribution over the whole 8-PSK con-
stellation. On the other hand, at low rates, the typical error event
is made between the two closest codewords in the code, and the
error exponent coincides with the minimum distance. As it will
be shown in the present paper, the typical group code has larger
minimum distance than the typical binary-coset code; hence, it
also has better error exponent.

The remainder of the paper is organized as follows. In
Section II, we formally introduce the GCE and the BCE
(Section II-A), and state the main results of the paper
(Sections II-B and II-C). In Section III, the most relevant
part of Theorem 1, showing that the GCE achieves the GV
bound, is proved by an application of the first-moment method
followed by some considerations on the geometry of the 8-PSK
constellation. Proving the tightness of this result requires a
second-moment method and is technically more involved: for
the sake of completeness, a proof is provided in Appendix B.
Theorem 2 is proved in Section IV by applying the second-mo-
ment method (Section IV-A) and some convex optimization
techniques (Section IV-B). Finally, Section V presents some
concluding remarks and points out to generalizations of the
results to balanced DMCs. Appendix A is of a technical nature
and discusses some continuity issues.

Before proceeding, let us establish some basic notation. The
th entry of a vector will be denoted by . The scalar product
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of two functions , where is some finite al-
phabet, and is the set of real numbers, will be denoted by

. Throughout, will denote the loga-
rithm in base 2, and will denote the
binary entropy of a probability distribution . With a slight, and
common, abuse of notation, for , will denote the
entropy of a Bernoulli distribution with parameter . Finally,
will denote the indicator function of a set .

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Two Capacity-Achieving Code Ensembles for the 8-PSK
Gaussian Channel

We shall consider transmission over a memoryless AWGNC
with input constrained on the 8-PSK signal constellation

and output space . The Bhat-
tacharyya distance function associated to the 8-PSK AWGNC
is

(1)

being the noise variance. The symmetry group , i.e., the
subgroup of permutations of leaving invariant, is isomor-
phic to the dihedral group with 16 elements [15], [29], gener-
ated by the rotation around the origin by an angle of and the
reflection through a straight line forming an angle of with
the real axis. The constellation is said to be geometrically
uniform [15], meaning that for every there exists

such that . Moreover, the cyclic group
is a generating group of [29], i.e., has a subgroup iso-
morphic to such that for all there exists a unique

such that . In particular, let
be the standard isometric labeling, and consider the function

. Then, all the columns
coincide with the distance profile

(2)

On the other hand, observe that has no subgroup isomorphic
to . This implies that, for any binary labeling ,
not all the columns of the induced distance function

(3)
coincide.

We shall consider block-codes , and denote their rate
by , their minimum distance by

, and their maximum-likeli-
hood error probability by . The focus of this paper will
be on block-codes with algebraic structure compatible with
or , respectively. Specifically, a group code (over ) is the
image of a subgroup of the direct group product through
the componentwise extension of the isometric
labeling . As a consequence of the symmetry properties dis-
cussed in Section II-A, it is easy to check that the minimum dis-
tance of a group code coincides with its minimum
weight, i.e., .
Similarly, group codes are known to enjoy the uniform error

property. A binary-coset code is the image of a coset of the
direct group product through the componentwise extension

of an arbitrary binary labeling . As
opposed to group codes, in general, neither binary-coset codes
enjoy the uniform error property, nor does their minimum dis-
tance coincide with their minimum weight. In the sequel, we
shall see as this reflects on the performance of random group
and coset codes respectively.

For every design rate , and a blocklength ,
set , and . We shall consider the two
following code ensembles:

Group code ensemble For , let be a random
matrix uniformly distributed over . Define the random
group code

Binary coset ensemble Let be an arbitrary
labeling. For , consider a random matrix , uni-
formly distributed over , and be an independent
random vector, uniformly distributed over . Define the
random binary-coset code as

(4)

Throughout the paper, we shall say that the typical group code
(respectively, the typical binary-coset code) satisfies a certain
(in)equality if, for all , the probability that (resp. by

) violates such (in)equality by more than vanishes as the
block-length grows large, and the design rate is kept con-
stant. We observe that the group code ensemble and the binary-
coset ensemble are sometimes defined as images of random gen-
erating matrices rather than kernels of random syndrome ma-
trices, as above. However, while leading to different properties
for finite lengths, it can be shown that such alternative defini-
tions do not alter the asymptotic properties of the typical group,
and binary-coset, code.

An immediate consequence of the symmetry properties dis-
cussed in Section II-A is that the optimal input distribution is the
uniform one on , both for the 8-PSK AWGNC Shannon ca-
pacity and for its random coding error exponent [18] .
It is not hard to show that binary-coset codes achieve capacity
and

In fact, the standard random coding averaging arguments of
[18, pp.206–207] as well as the tightness considerations of
[19] apply, upon observing that, for every , the event

has probability , and that ,
and are mutually independent for linearly independent

.
As far as group codes are concerned, the situation is different

due to the presence of zero-divisors in . In fact, the event
, for , does not have probability

whenever lies in a proper subgroup of . Nevertheless,
it has been shown in [8] that the group codes achieve capacity,
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and that their average error probability can be upper-bounded
by a term exponentially decreasing in the block-length

(5)

The exponent appearing in the righthand side of (5) is given by

with and denoting the random coding error
exponents of the AWGNCs with input restricted over the 4-PSK
and the 2-PSK constellation, respectively. As shown in [8], the
bound (5) is necessarily tight for the average error probability
both at rates close to , where , and at low
rates, where instead .

Thus, the error exponent of the average binary-coset code of
design rate (i.e., the exponential decay rate of )
coincides with the random coding exponent , while the
error exponent of the average group code (i.e., the exponential
decay rate of ) is strictly smaller than for low

. In other words, even if algebraic constraints do not affect the
capacity achievable by group codes over the 8-PSK AWGNC,
they do lower the error exponent achievable of the average group
code. In fact, we argue that this claim can be somehow mis-
leading. Indeed, it refers to the performance of the average code
rather than to the performance of the typical code sampled from
the two ensembles. In contrast, the results stated in the two fol-
lowing subsections show that the typical group code outper-
forms the typical binary-coset code, thus reversing the hierar-
chies outlined by the average-code analysis.

B. Gilbert–Varshamov Bound and Typical Minimum Distances

Let be the space of probability vectors over , and, for
, define

(6)

(7)

where is the squared Euclidean weight function defined in
(2). In Appendix A, is proved to be continuous and non-
increasing as a function of the rate . The GV bound for the
8-PSK AWGNC [6, Th. 10.5.1] states that, for every ,
and any , there exists a block code of length and rate
not smaller than .3 While the aforementioned is a mere exis-
tence result, the question we want to address here is whether

is achieved by either the typical group code or the typical
binary-coset code. In fact, using arguments analogous to those
in [2], it is not difficult to see that the the typical random code
sampled from the random coding ensemble does not achieve the
GV bound. This is because the minimum distance of the RCE
of design rate turns out to be the minimum of the relative dis-
tance between all possible choices of pairs of distinct
codewords. Since the differences between such pairs of code-
words are pairwise independent random variables, uniformly

3The definition (7) can be shown to be equivalent to that of � ��� defined
in [6, p. 399], upon observing that, in the case of the 8-PSK, the optimizing
distribution in the definition of � ��� has to be symmetric with respect to
rotations.

Fig. 1. The 8-PSK constellation with: (a) the isometric labeling � � � � ;
(b) a binary labeling � � � � . The latter is a so-called Gray labeling:
neighbor signals are assigned labels differing in one digit only.

distributed over , the normalized minimum distance of the
typical random code can be shown to coincide with .

We shall, therefore, concentrate on the performance of the
group coding ensemble, and the binary-coset ensemble. Here,
the algebraic structure prevents the differences between dif-
ferent pairs of codewords to be pairwise independent, and this
will be proven to lead to higher typical minimum distances. In
particular, the following result concerns the GCE:

Theorem 1 (Minimum Distance of the Typical Group Code):
For all , the normalized minimum distance of the
typical group code of design rate coincides with .

Proof: See Section III and Appendix B.

For the BCE instead, we will prove that a typical code se-
quence almost surely does not meet the GV-bound. More pre-
cisely, let be the set of joint probability vectors over .
For , define the sets

(8)

(9)

where is the first-component marginal of .
Define the functions

(10)

(11)

Theorem 2 (Minimum Distance of the Typical Binary-Coset
Code): For every , the normalized minimum
distance of the typical binary-coset code is lower-bounded by

and upper-bounded by . Furthermore

(12)

Proof: See Section IV.

In Fig. 2, the normalized minimum distances of the typical
group code and of the typical binary-coset code are plotted as
a function of the design rate , together with the normalized
minimum distance of the typical random code.

C. Expurgated Bound and Typical Error Exponents

For every rate the expurgated exponent of the
8-PSK AWGNC is

(13)
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Fig. 2. Comparison of � ��� (purple line) and � ��� where � � � � is the Gray labeling described in Fig. 1. As a reference � ���� (which is the typical
normalized minimum distance of the RCE) is plotted in dotted red. For the specific choice of the binary labeling � � � � , and the chosen resolution, it seems
that � ��� � � ���.

The expurgated exponent and the GV distance
coincide at small rates. Indeed, let be
the minimizer of the map over the
whole type space , be the minimum rate

for which , and denote the
so-called cut-off rate. We have that:

• for rates , the minimum in (13) is achieved
by , and ;

• for rates , Lemma 8 implies that the minimum
in (13) is achieved by some type such that ,
so that

(14)

The expurgated bound (see [18, pp.153–157], and [11,
pp.185–186,192–195]) guarantees, for all rates ,
and , the existence of a code with rate not
smaller than , and error probability not exceeding .
Similarly to the GV bound, the expurgated bound is a mere
existence result, while we are interested in whether the expur-
gated exponent is achieved by random codes. In fact,
arguments as in the binary case [2] show that the expurgated
exponent is not achieved, at low rates, by the typical random
code. Therefore, we shall be concerned with the error expo-
nents of the typical group code, and of the typical binary-coset
code. The following results will be proven as consequences of
Theorem 1, and Theorem 2, respectively.

Corollary 1 (Error Exponent of the Typical Group Code): For
every , the error exponent of the typical group code
of design rate coincides with .

Proof: See Section III.

Corollary 2 (Error Exponent of the Typical Binary-Coset
Code): There exists some such that, for every

, the error exponent of the typical binary-coset
code of design rate is strictly smaller than .

Proof: See Section IV.

III. PERFORMANCE OF THE TYPICAL GROUP CODE

In this section, we shall show that the typical group code
has normalized minimum distance, and error exponent, bounded
from below by the GV distance, and the expurgated exponent,
respectively. The proof of tightness of these bounds will instead
be given in Appendix B, thus completing the proof of Theorem
1. Throughout the section, will denote the space of all prob-
ability vectors over , will denote the set of all types
(i.e., empirical frequencies, see [12]) of length- strings with
entries in , and the set of length- strings of
type .

We shall apply the first-moment method [1, Ch. 2] to the type-
enumerator function

counting the number of codewords of type in the random
group code of rate and length . As a first step in our analysis,
we evaluate the expected value . It will prove conve-
nient to denote by the order of the smallest subgroup of

supporting .
We have the following result:

Lemma 1: For every design rate and -type
in such that

Proof: Let be an -tuple of type , and let
be the largest power of two dividing all the nonzero entries of .
Then, every entry belongs to , and there exists some

such that is not divisible by . For , let
us denote by the th column of , which is a r.v. uniformly
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distributed over . Then, one has that , and that
takes values in . It follows that

Now, observe that . Then,
the claim follows from the standard estimation for the binomial

(see, e.g., [12]).

For , consider the sets

(15)

Let

be the GV-distances associated to the subconstellations 4-PSK
and 2-PSK, respectively, and define

For , and a blocklength , consider the event

Observe that, since the set is con-

tained in the union , one has that the in-
equality holds whenever does not
occur. Then, by subsequently using the union bound, Markov’s
inequality, and Lemma 1, one has

(16)

the last step following from the fact that the number of -types,
, grows only polynomially fast with (see, e.g.,

[12]). From the continuity of , and the arbitrariness of
, it thus follows that the typical group code has normal-

ized minimum distance not smaller than .

Clearly, . We shall now prove that, in fact,
the equality holds. Observe that our arguments have relied only
on the algebraic structure of the group , while the geometric
properties of the 8-PSK constellation have not played any role
so far. In fact, counterexamples can be constructed as in [8]
showing that Lemma 2 fails to hold true for other DMCs with
the same symmetry structure of the 8-PSK AWGNC. The geom-
etry of the 8-PSK constellation allows us to prove the following
result:

Lemma 2: For every design rate

Proof: For , trivially
, and then .
Now, let us assume that . Since the entropy function is

concave and the unique minimum of the map on is
achieved with , we can apply Lemma 8 and claim that
a minimizer in the definition (7) of necessarily
satisfies . Then, using Lagrangian multipliers, we
obtain

where , and solves the equa-
tion . Analogously

where , and is the solution
of , and

where , and solves
. Observe that .

Elementary geometrical considerations based on Pythagoras’
theorems allow one to show that

(17)

(18)

It follows from (17) that

for all . Then, (17) implies that

Therefore
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so that . Hence

Since is defined in (7) as the minimum of over
, in order to estimate it from above it is sufficient to estimate

for some . We do so for defined by

(19)

It is straightforward to verify that , so that
. Moreover, it follows from (17) and (18) that

last inequality following from (18) and the fact that
for every . It follows that

thus concluding the proof.

As a consequence of Lemma 2, and our previous arguments,
we have proven that the typical group code achieves the GV
bound. In order to complete the proof of Theorem 1, it remains
to prove that the normalized minimum distance of the typical
group code does not exceed the GV distance. This is technically
more involved, and will be the object of Appendix B.

We conclude this section by showing that the typical group
code achieves the expurgated exponent . For this, we
shall use the union-Bhattacharyya bound [39], in order to esti-
mate of the error probability of the GCE in terms of its type-enu-
merating functions

(20)

Similarly to what we have seen for the analysis of the minimum
distance, it is natural to consider the expurgated exponents of
the 4-PSK and 2-PSK AWGNC, given by

where and have been defined in (15). Then, based on
Lemma 1 and (20), a first-moment argument as in (16) allows
one to show that

(21)

for every . On the other hand, arguing as in the proof of
Lemma 2, one can show that

(22)

Hence, (21), (22), and the continuity of as a function of
the rate show that the typical group code achieves the expur-
gated exponent.

IV. PERFORMANCE OF THE TYPICAL BINARY-COSET CODE

In the present section, we shall prove that the typical bi-
nary-coset code is bounded away both from the GV distance
and the expurgated exponent. We shall proceed in two steps.
First, in Section IV-A, we shall prove that the normalized
minimum distance of the typical binary-coset code of design
rate is between and . This will involve the use of
the fist moment, and the second moment method, respectively.
Then, in Section IV-B, we shall prove the rightmost inequality
in (12): this will involve some convex optimization arguments.
Throughout, we shall assume to have fixed an arbitrary labeling

, and use the notation and for the spaces of
joint probability vectors, and of joint types, respectively, over

. Also , and , respectively, will denote the spaces
of probability vectors, and of types, over .

It will prove convenient to consider a slightly different ver-
sion of the binary-coset ensemble, as explained below. Observe
that, since the rows of are mutually independent and uni-
formly distributed over , the probability that the th row of

is linear dependent on the other rows is bounded
from above by . Then a standard union-
bounding technique implies that the probability of the event

is at least , and, there-
fore, converges to 1 as grows. Now, consider a random vector

uniformly distributed over , and independent from .
Notice that, given , the conditioned probability measures of
the random cosets , and , both coincide
with the uniform distribution on the set of affine spaces of
of dimension . Therefore, every statement concerning
properties of the typical binary-coset ensemble is not altered if
one replaces definition (4) with

(23)
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Therefore, from now on, we shall consider (23) to be the defini-
tion of the random binary-coset code.

A. Upper and Lower Bounds on the Minimum Distance of
the Typical Binary-Coset Code

A first observation is that, since binary-coset codes are not
GU, their minimum distance does not in general coincide with
their minimum weight, as it is the case for -group codes.
Rather, it is necessary to look at all pairs of codewords of a
binary-coset code in order to evaluate its minimum distance. It
is, therefore, convenient to introduce the joint-type-enumerating
function

counting the number of pairs of different joint types such
that both and belong to coset of given by the counter-
image of through . We also introduce the enumerating
function

counting the number of -tuples in the kernel of of different
types. It is straightforward to check that the normalized min-
imum distance of the random binary-coset code is given by

The average value of the enumerating functions and
is easily evaluated as shown in the following:

Lemma 3: For every , let be
its first-component marginal of . If , then

Proof: For every and in such that we have
that and are independent and both uniformly
distributed over . It follows that

where the summation above is extended to all pairs
of joint type . The expectation is computed
analogously.

Fix some . Using Lemma 3, an argument based on
a first-moment method, and analogous to the one applied in
Section III, proves that the probability that for some
joint type with either , or goes to
zero as grows to infinity. Thanks to the continuity of
and the arbitrariness of , this proves that the normalized
minimum distance of the typical binary-coset code is bounded
from below by .

We now want to obtain an upper bound on normalized min-
imum distance of the typical binary-coset code, using a second-

order method [1]. Toward this end, we need to estimate the vari-
ance of the joint-type-enumerating functions .

Lemma 4: For all , and every joint type

(24)
where is the first-component marginal of .

Proof: We have

where the summations are extended to all pairs and
of joint type , and is the covariance of

and . We are now

going to estimate the covariance terms , by sep-
arately considering four possible different linear dependency
structures among , , , and . Observe that, since

, , and need to be nonzero in order for the pairs
and to have type . First, suppose that and
are linear independent. Then, the r.v.s and

are independent, so that .
Second, consider the case when and are linear indepen-

dent but and are not so. In this case we have that
the random variables and are inde-
pendent, so that

Since there are at most possible choices of such
pairs of joint type , their contribution is esti-
mated by the first addend in the righthand side of (24).

As a third case, consider pairs , such that
, and , and are linear independent. In this sit-

uation the random variables , and are inde-
pendent so that

Since there are at most possible choices of such
pairs of joint type , their contribution can be
estimated by the second addend in the right-hand side of (24).

Finally, it remains to be considered the case , with
linear dependent , and . There are at most possible
choices of pairs and in satisfying
these requirements and for each of them

Therefore, their contribution can be estimated by the third ad-
dend in the righthand side of (24).

Let us now fix some , and some such that
. Denote by the first-component marginal

of . Consider a sequence of joint types converging to ,
with in for every , and let be the corresponding
sequence of first-component marginals. Define the event

Authorized licensed use limited to: MIT Libraries. Downloaded on August 18,2010 at 16:11:42 UTC from IEEE Xplore.  Restrictions apply. 



COMO: GROUP CODES OUTPERFORM BINARY-COSET CODES ON NONBINARY SYMMETRIC MEMORYLESS CHANNELS 4329

. We can apply Chebyshev’s inequality and use
Lemma 3 and Lemma 4 obtaining

Then, since , with , one has
that . From this, it follows that the typical
binary-coset code has normalized minimum distance not ex-
ceeding . Finally, from the arbitrariness of

, a standard continuity argument allows one to con-
clude that the normalized minimum distance of the typical bi-
nary-coset code is upper-bounded by .

B. Comparing and

We now want to compare the distance bounds , ,
and defined in (10), (11) and (7) respectively. First, ob-
serve that any joint type trivially satisfies

, so that . From this, it immediately follows that
. Notice also that the inequality above holds as

an equality whenever for some joint type
belonging to . It can be shown that this is the case for every
binary labeling for large enough values of , so
that often and do coincide. However, we will now
concentrate on comparing with the GV-distance ,
in particular showing that the former is strictly below the latter.

In order to do that, for a given , we consider
the -type in giving the GV-distance, i.e., such that

. Since the entropy function is concave and the
map is linear and it achieves its global minimum in

, Lemma 8 can be applied to guarantee that
. Hence, using Lagrangian multipliers we may express it as

(25)

where and is the unique
solution of the equation . From ,
we may define a joint type in as follows. For every in ,
consider the bijection

where the sign refers to addition in , while the refers to
difference in . Now define

(26)

and let be its first-component marginal. A few simple prop-
erties of and are gathered in the following:

Lemma 5: For all

(27)

(28)

(29)

(30)

Proof: The inequality (27) follows immediately from (25).
It is easy to verify that

Then (28) follows, since

From (26), we have , so
that the second-component marginal is the uniform measure
over . Again from (26) we have that the conditioned measure
of on coincides with , for every in . Then,
one has

showing (29).
Finally, observe that is a convex combina-

tion of permutations of the vector . As argued in Section II-A,
for every labeling there exists at least a pair of
nonequal columns of the matrix , i.e.,

for some . As a consequence,
which, together with (25), implies . Hence,
from the strict concavity and the permutation invariance of the
entropy function it follows that

showing (30).

We are now ready to prove the rightmost inequality in (12).
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Proposition 1: For every labeling

for all ,
Proof: For , let

be the minimum element of the th row of , and
the set of minimizers. Observe

that for every binary labeling
and any . Therefore, one has and

. On the other hand, since no binary labeling is isometric,
there necessarily exist some noncostant row of , so that in
particular

(31)

For , consider the set of joint measures with
first-component marginal , and define

As an immediate consequence
of (30), one has that Therefore, in order to prove the claim, it is
sufficient to show that .

First, suppose that . Then, it is easy to
check that . Hence, it follows from (27),
(31), and (28) that

thus proving the claim.
Now, assume that . For any in
, we have

Hence, is not the uniform measure over and, as a conse-
quence . Therefore, from (29) and (30),

Then, thanks to the concavity of the en-
tropy function, we can apply Lemma 8, obtaining that

the last equality following from (28).

It immediately follows from Proposition 1, and the results of
Section IV-B, that the typical binary-coset code is bounded away
from the GV distance. In fact, the analogous statement holds for

the expurgated exponent as well. To see that, arguing as in [6,
p. 413], one can show that

Since , at low rates, this shows that
the typical binary-coset code is does not achieve the expurgated
exponent.

V. EXTENSIONS AND CONCLUDING REMARKS

In this paper, we have analyzed the typical minimum dis-
tances and error exponents of two code-ensembles for the 8-PSK
AWGNC with different algebraic structure. We have shown that
the ensemble of group codes over achieves the GV bound as
well as the expurgated exponent with probability one, whereas
the ensemble of binary-coset codes, under any possible labeling,
is bounded away from the GV bound and, at low rates, from the
expurgated exponent. While the paper has been focused on the
specific case of the 8-PSK AWGNC, a closer look at the deriva-
tions shows that generalizations are possible to much larger
classes of DMCs.

On the one hand, it is possible to consider DMCs which
are symmetric with respect to the action of an arbitrary finite
Abelian group , and to characterize the typical asymptotic
minimum distance achievable by the ensemble of group codes
over . This idea has been pursued in [10], where it was shown
that on every -symmetric channel, the normalized minimum
distance (respectively the error exponent) of the typical group
code over asymptotically achieves the minimum of the
GV distances (the expurgated exponents) associated to all the
nontrivial subgroups of . Then, one is left to verify whether
results analogous to Lemma 2 hold true, showing that proper
subgroups cause no loss in the performance of the typical group
code.

On the other hand, it is interesting to see how the impossibility
results of Section IV can be generalized. Consider a DMC with
input , of cardinality (where is a prime number
and a positive integer), output , and transition probabilities

. Define the Battacharyya distance function

Assume that the DMC has has zero-error capacity equal to zero,
so that is finite for every , and further that
it is balanced (see [32]), i.e., that, for all

for some . Then, the GV distance and the expurgated
exponent are respectively given by (see [11, p.185])

where, for
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Now consider the automorphism group, i.e., the subgroup of
distance-preserving permutations of

Assume that does not have any subgroup isomorphic to .
Then, for any labeling , the matrix defined as in
(3) has at least two distinct columns. Then, it follows that both
Theorem 2 and Corollary 2 continue to hold for the ensemble of
coset codes over , which turns out to be bounded away from
the GV distance at any rate, and from the expurgated exponent
at low rates. Observe that, if instead does contain a subgroup
isomorphic to , then the arguments of [2] can be used to show
that the ensemble of coset codes over (and in fact the en-
semble of linear codes over ), achieve the GV-bound and the
expurgated exponent with probability one. In other words, we
have that, for balanced DMCs, having a Bhattacharyya distance
function symmetric with respect to the action of the group is
a necessary and sufficient condition or the typical coset codes
over to achieve the GV-bound and the expurgated exponent.

APPENDIX A
SOME LEMMAS ON CONTINUITY

This section is devoted to the proof of the continuity of the
some functions which have been defined in the paper as solu-
tions of finite-dimensional convex optimization problems, such
as the GV-distance and the expurgated error exponent

, as well as the bounds and . We shall obtain
these results as a consequence of the general lemmas presented
below.

For some fixed , let be a compact and convex
set. It is a standard fact that any lower semicontinuous (l.s.c.)
function achieves its minimum on every closed nonempty subset

. Consider two functions and , and
define

(32)
It is immediate to verify that is nonincreasing in . The
following simple result was proved in [9, Lemma 8.1].

Lemma 6: If and are both l.s.c., then defined in (32)
is l.s.c.

Notice that, even if and are both continuous, fails in
general to be continuous; in fact it is simple to provide coun-
terexamples in this sense, when has local minima which are
not global minima. By ensuring that this cannot happen (for in-
stance requiring that is convex), it is possible to strengthen the
previous result and prove continuity of .

Lemma 7: If is continuous and is
l.s.c. and such that every local minimum is necessarily a global
minimum, then defined in (32) is continuous on
where .

Proof: Since is nonincreasing and l.s.c. by Lemma 6, it
remains to show that

(33)

for every increasing sequence converging to
some . Notice that the existence of the limit in the left-
hand side of (33) is guaranteed by the monotonicity of . From
the semicontinuity of and , there exists some in such that

and . If , then for
sufficiently large , so that definitively in

and (33) follows. Thus, we can assume that . Since
the point is not a global minimum for . Hence, it

is not even a local minimum for , by assumption. It follows
that every neighborhood of in contains some such that

. It is then possible to construct a sequence in
converging to and such that for every . From

we can extract a subsequence such that
for every . Therefore, we have and so

thus concluding the proof.

By considering , and
(respectively ), Lemma 7 im-
plies the continuity of ( ). Indeed, observe that

is convex and, therefore, does not admit local minima
which are not global minima. Similarly, the continuity of

follows by taking , , and
, where is the first com-

ponent marginal of . Observe that is convex, as it is the
maximum of two convex functions.

Finally, the continuity of follows again by applying
Lemma 7 with the choices , , and

. In this last case, the absence of
strictly local minima of can be verified directly as follows. If

is a local minimum for , and ,
then, for every such that , necessarily the conditional
measure of on coincides with the uniform distribution
over . It follows that , and, therefore, is a global
minimum.

We end this section with the following result, giving sufficient
conditions for the minimizer of a convex optimization problem
to satisfy the constraint with equality.

Lemma 8: Let be convex functions. Let
be the global minimum of , and consider the set

where such minimum is achieved. Then,
for all

any minimizer for the convex optimization problem

necessarily satisfies .
Proof: Let be such that , and .

Since , necessarily . Consider some
such that , and, for , define

. Then, by the convexity of , we have

Authorized licensed use limited to: MIT Libraries. Downloaded on August 18,2010 at 16:11:42 UTC from IEEE Xplore.  Restrictions apply. 



4332 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010

so that, since , there exists such that
. From the convexity of , it follows that

Then, , so that cannot be

a minimizer.

APPENDIX B
UPPER BOUND ON THE NORMALIZED MINIMUM DISTANCE OF

THE TYPICAL GROUP CODE

In this section, we shall show that the normalized minimum
distance of the typical group code of design rate does not
exceed the GV distance , thus completing the proof of
Theorem 1. Our arguments involve an application of the second
moment method [1, pp.43–63].

The key point consists in estimating the covariance of the
type-enumerating function , for every type . For
this, one has to compute the joint probabilities

for all pairs . Such a joint probability
does not depend on the type only, but on the specific choices
of and as well. In particular, let be the order of
the smallest subgroup of supporting , and observe that the
subgroup of generated by and is necessarily isomorphic
to a group of type for some dividing (possibly

when ). In other words, it is possible to partition
the set of ordered pairs of -tuples of type as follows:4

(34)

with denoting the set of all pairs such that the
subgroup generated by and is isomorphic to

.
The following lemma provides an estimation of the cardi-

nality of . For every , consider the probability mea-
sure over , defined by

Also, for all , let be the conditional distribution of
over the coset , i.e.,

Lemma 9: For every , in , and , one has
that

(35)

where is the number of entries from the coset
in any -tuple of type .

Proof: Let and be in . A necessary condition for
the subgroup of generated by and to be isomorphic to

4For two naturals � and �, � � � stays for “� divides �”.

is the existence of some in the set of invertible
elements of , such that

(36)

For (36) to hold, necessarily has to belong to the coset
. Thus, whenever (36) holds, the set of positions of the en-

tries of belonging to any coset and the set of positions
of the entries of belonging to the coset need to co-
incide. Notice that since both and are assumed to be of type

, this implies that

(37)

For those for which (37) is not satisfied there exists no pair
satisfying (36). Thus, with no loss of generality we can

restrict ourselves to considering values of such that (37) is
satisfied (as it is the case always for ).

Notice that a necessary and sufficient condition for and
both to belong to is the existence of an index permutation

such that
. Furthermore, (37) imposes an additional constraint on the

structure of , which has necessarily to be of the form
, where:

• is some permutation mapping, for all , all the indices
corresponding to entries of in the coset , into the
indices corresponding to the entries of in the same coset;

• for every , permutes only the indices corresponding to
the entries of in .

Thus, for a given in and in such that (37) is
satisfied, we have that the number of such that
equals the cardinality of the orbit of under the action of the
subgroup of index permutations

where, for every , permutes only the indices corresponding
to the entries of in . Clearly the order of this group is

, while the cardinality of the stabilizer of
in is , so that the orbit of in has cardinality

This allows one to conclude the proof.

Lemma 10: For every , and

(38)

for defined as in Lemma 9.
Proof: Assume that for some . No-

tice that, for every , the pair
is uniformly distributed over the subgroup of generated by

, which is isomorphic to , the subgroup
of generated by and . As is in turn is isomorphic to a
group of type , it follows that
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Observe that the r.v.s are mutu-
ally independent, since they correspond to different rows of the
random matrix . Then, one has

(39)

It follows from (34), (35) and (39) that

and the claim follows immediately from Lemma 9.

We are now ready to state the main result of this section,
whose proof will involve geometric considerations on the
8-PSK constellation:

Proposition 2: For every , the minimum
distance of the typical group code of design rate is upper-
bounded by .

Proof: Let be such that . As an
immediate consequence of Lemma 1 and Lemma 10, one has

(40)

with the index , in both the summation and maximization
above, running over all divisors of , excluding itself.

Observe that (17) and (18) imply that the entries of satisfy
the following ordering

(41)
Define the sets , , and

. Let , and be the complements, in , of
, , and , respectively. It follows from (41) that

(42)

Moreover, it is easy to check that , for every
choice of in . Thus, , where

if and only if is in , is a bijection.
Then, it follows from (42) that

(43)
Let us now introduce the sets and .

We have from (41) that

It thus follows that

(44)

Observe that

By the concavity of the entropy function, one has that

An analogous reasoning leads to

Upon substituting the two inequalities above in (44), one gets

last inequality following from (43). Then

(45)

Now let be a sequence converging to , with
for every . By successively applying Chebyshev’s inequality,
(40), (43) and (45), one gets

the last inequality following from the fact that .

Finally, observe that, from Proposition 2 and the continuity of
, it follows that the normalized minimum distance of the

typical group code of design rate is upper-bounded by ,
thus completing the proof of Theorem 1. From the bound

it also follows that the error exponent of the typical group code
does not exceed for every design rate .
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