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Group codes outperform binary-coset codes on
non-binary symmetric memoryless channels

Giacomo Como

Abstract—Typical minimum distances and error exponents
are analyzed on the 8-PSK Gaussian channel for two capacity-
achieving code ensembles with different algebraic structure. It
is proved that the typical group code over the the cyclic group
of order eight achieves both the Gilbert-Varshamov bound and
the expurgated error exponent. On the other hand, the typical
binary-coset codes (under any labeling) is shown to be bounded
away both from the Gilbert-Varshamov bound (at any rate)
and the expurgated exponent (at low rates). The reason for this
phenomenon is shown to rely on the symmetry structure of the
8-PSK constellation, which is known to match the cyclic group
of order eight, but not the direct product of three copies of the
binary group.

The presented results indicate that designing group codes
matching the symmetry of the channel guarantees better typical-
code performance than designing codes whose algebraic structure
does not match the channel. This contrasts the well-known fact
that the average binary-coset code achieves both the capacity and
the random-coding error exponent of any discrete memoryless
channel.

Keywords: random codes, linear codes, group codes, coset
codes, minimum distance, error exponent, Gilbert-Varshamov
bound, expurgated exponent.

I. I NTRODUCTION

As low-complexity modern coding has emerged, based on
random constructions of linear codes with sparse graphical
representation [34], the analysis of random codes with alge-
braic structure has recently attracted renewed attention from
the research community [2], [30]. In fact, a precise evaluation
of the performance of random linear codes, with no constraints
on their density, is propaedeutic to the theory of low-density
parity-check (LDPC) and turbo codes, since it allows one to
quantify the loss in performance due to the sparsity constraint.

On the other hand, it has long been known that random
constructions of algebraically structured codes can outperform
purely random code constructions. For instance, this is the
case in some problems in multi-terminal information theory,
where random linear codes allow to achieve larger capacity
regions than purely random codes do [26]. Confining attention
to point-to-point communication, which will be the framework
of the present paper, random binary-linear codes are known to
outperform purely random codes on binary-input symmetric-
output memoryless channels in terms of typical minimum
distances and error exponents [2].

The present paper is concerned with the performance anal-
ysis of code ensembles with group or coset structure, when
employed over non-binary discrete-input memoryless channels
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(DMCs). In this case, while structured code ensembles are
expected to outperform purely random code constructions, it is
not a priori clear which algebraic structure is the optimal one:
indeed, many non-isomorphic groups typically exist of order
equal to some non-prime number [25]. As it will be shown in
this paper, it turns out that the choice of the algebraic structure
is critical for the typical code performance of the ensemble.
Rather than presenting a general theory, we shall focus on
a specific case, the additive white Gaussian noise channel
(AWGNC) with input restricted to the8-Phase Shift Keying
(8-PSK) signal constellation: our choice is motivated both by
the applicative interest of this channel, and by the fact that it
presents most of the key characteristics of the general case.
While the arguments of [2] can be easily extended to show that
the typical-code performance of the random coding ensemble
(RCE) is suboptimal, we shall provide precise results for the
ensemble of group codes (GCE) over the cyclic group of order
eight, Z8, and the ensemble of binary-coset codes (BCE),
respectively (see Sect. II-A for their formal definitions).These
results will show that the typical group code has both better
minimum distance and better error exponent than the typical
binary-coset code.

The Gilbert-Varshamov (GV) bound [22], [38] is one of the
most well known and fundamental results of coding theory.
Given a rateR in (0, 1), and definedδ2(R) as the unique
solution in (0, 1/2) of the equationH(x) = 1 − R (where
H(x) denotes the binary entropy), it states that for every
n ≥ 1 there exist binary codes of block-lengthn, rate at
least R, and minimum Hamming distance at leastnδ2(R).
1 Its asymptotic tightness is still considered one of longest-
standing unproved conjectures in coding theory [23], [37].2

A closely related issue concerns the tightness of the expurgated
exponent, which is conjectured by many to coincide with the
reliability function of the DMC, i.e. the highest achievable
error exponent [18], [31], [32], [5], [39]. Although both the
classical GV bound and expurgated bound are mere existence
results, for binary symmetric memoryless channels it is known
that the typical binary-linear code achieves both the GV bound
and the expurgated exponent [17], [33], [2]. It is also known
that the same does not hold true [2] for the typical random
code, whose performance is bounded away from the GV
bound, as well as (at low rates) from the expurgated error

1More precisely, using a basic sphere-covering argument, Gilbert [22]
proved that for every positive integersn and d, there exist binary codes of
block-lengthn, minimum Hamming distanced, and cardinality not smaller
than 2n/

P

0≤k<d

`n
k

´

. Varshamov [38] improved on this bound, for finite
lengths. Together with the upper bound on the volume of a discrete sphere
P

0≤k<d

`n
k

´

< 2n H(d/n), their results imply the stated bound.
2Here, tightness is meant up to factors sublinear inn, whereas improve-

ments on such factors is an active field of research, see e.g. [28].
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exponent.
Generalizations of the above issues to non-binary DMCs are

considered in the present paper. Here, the GV distance and the
expurgated bound are defined as solutions of simple finite-
dimensional convex optimization problems, having the form
of distortion-rate functions for the Bhattacharyya distance (see
(7) and (13)). Analogously to the binary case, the RCE can be
easily shown to be bounded away with probability one from
both the GV distance and the expurgated error exponent of
the 8-PSK AWGNC. The main results of the this paper show
that the typical group code achieves the GV bound (Theorem
1), while the typical binary-coset code is bounded away from
it (Theorem 2). Similarly, the typical group code achieves the
expurgated exponent (Corollary 1), while the typical binary-
coset code does not (Corollary 2).

As it will be clarified in the sequel, the reason for the
outperformance of the GCE over the BCE resides in the
symmetry structure of the8-PSK AWGNC. Such a channel
is symmetric with respect to the action of two groups of order
8, the cyclic groupZ8 and the non-Abelian dihedral group
D4, none of which supports Galois field structure. In contrast,
the additive group of the Galois field with8 elements, which
is isomorphic toZ

3
2, the direct product of three copies of the

binary group, does not match the8-PSK in the sense of [29].
Thus, the results of the present paper suggest that random
group codes matching the symmetry of the channel outperform
random codes whose algebraic structure does not match that
symmetry.

It is well known that, despite not matching the symmetry of
the channel, the BCE achieves the capacity and the random-
coding exponent of the8-PSK AWGNC, likewise of any
other DMC [18, pagg.206-209]. Recent works [24], [3], [4],
analyzing the performance of binary-coset LDPC codes on
non-binary input DMCs, find information-theoretical basisin
the aforementioned fundamental results. In contrast, Theorem
2 and Corollary 2 imply that, when the symmetry of the
channel is not matched, the BCE is suboptimal in terms the
typical minimum distance and the typical error exponent. To
the best of the author’s knowledge, such a limitation of the
performance of binary-coset codes had not been proved before.

On the other hand, group codes for symmetric channels have
been widely investigated in the channel coding literature.They
allow to use more spectrally efficient signal constellations,
while inheriting many of the structural properties enjoyed
by binary-linear codes: uniform error property, invariantdis-
tance profiles, congruent Voronoi regions, minimal encoders,
syndrome formers and trellis representations. The reader is
referred to [35], [15], [29], [7], [14], [16] and references
therein. It is well known [13] that group codes over Abelian
groups admitting Galois field structure (i.e. isomorphic toZ

r
p

for some primep) allow to achieve the capacity and the
random coding exponent. More recently, information-theoretic
limits of finite Abelian group codes were investigated in [8],
where it was shown that group codes overZm allow one to
achieve capacity on them-PSK AWGNC whenm is the power
of a prime (thus including the casem = 8). Theorem 1 and
Corollary 1 show that, at least on the8-PSK AWGNC, random
group codes matching the symmetry of the channel are optimal

in terms of typical-code performance. They provide theoretical
foundation for the analysis and design of bandwidth-efficient
high-performance coding schemes based on LDPC or turbo
codes matched to geometrically uniform constellations [3],
[36], [20], [9], [21]. It was empirically observed in [36]
that LDPC codes overZ8 perform better than their binary-
coset counterparts on the8-PSK AWGNC: the results of the
present paper point out to an analytical explanation for this
phenomenon.

We observe that, in spite of the fact that the cyclic groupZ8

matches the8-PSK constellation, the average error exponent
of the GCE has been shown [8] to be strictly smaller than the
random-coding error exponent at low rates (more in general
this is the case for group code ensembles over finite Abelian
groups not admitting Galois field structure, confirming an early
conjecture of [13]). Since, as already mentioned, the average
error exponent of the BCE coincides instead with the random-
coding error exponent, it turns out that, at low rates, the BCE
outperforms the GCE in terms of average error exponent, while
the latter outperforms the former in terms of typical error
exponent. While this phenomenon might appear paradoxical at
a first glance, it can be explained by the fact that the average
error exponent (anannealedaverage in the statistical physics
language [30, Ch. 5.4]), provides only a lower bound to the
typical error exponent (aquenchedquantity), by Markov’s
inequality. This estimation fails to be tight at rates not close to
capacity, where the average error exponent is dragged down
by an asymptotically vanishing fraction of codes with poor
performance. In fact, at low rates, the error probability of
the average group code is dominated by the error probability
of its binary subcode, i.e. the set of its codewords whose
entries belong to the binary subgroup4Z8 [8]. Therefore, the
error exponent of the average group code coincides with the
random coding exponent of the binary-input channel obtained
by restricting the input from the whole8-PSK to a pair of
its opposite elements. This is strictly smaller than the random
coding exponent of the8–PSK AWGNC, which is achieved by
the uniform distribution over the whole8-PSK constellation.
On the other hand, at low rates, the typical error event is made
between the two closest codewords in the code, and the error
exponent coincides with the minimum distance. As it will be
shown in the present paper, the typical group code has larger
minimum distance than the typical binary-coset code, henceit
also has better error exponent.

The remainder of the paper is organized as follows. In
Sect. II, we formally introduce the GCE and the BCE
(Sect. II-A), and state the main results of the paper (Sect.sII-B
and II-C). In Sect. III the most relevant part of Theorem 1,
showing that the GCE achieves the GV bound, is proved
by an application of the first-moment method followed by
some considerations on the geometry of the8-PSK constel-
lation. Proving the tightness of this result requires a second-
moment method and is technically more involved: for the sake
of completeness, a proof is provided in Sect. B. Theorem
2 is proved in Sect. IV by applying the second-moment
method (Sect. IV-A) and some convex optimization techniques
(Sect. IV-B). Finally, Sect. V presents some concluding re-
marks and points out to generalizations of the results to
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Fig. 1. The8-PSK constellation with: (a) the isometric labelingµ : Z8 → X ;
(b) a binary labelingη : Z

3
2 → X . The latter is a so-called Gray labeling:

neighbor signals are assigned labels differing in one digitonly.

balanced DMCs. Sect. A is of a technical nature and discusses
some continuity issues.

Before proceeding, let us establish some basic notation.
The i-th entry of a vectorx will be denoted byxi. The
scalar product of two functionsf, g : A → R, whereA is
some finite alphabet, andR is the set of real numbers, will
be denoted by〈f, g〉 :=

∑

i f(i)g(i). Throughout,log will
denote the logarithm in base2, andH(θ) := −

∑

i θ(i) log θ(i)
will denote the binary entropy of a probability distribution θ.
With a slight, and common, abuse of notation, forx ∈ [0, 1],
H(x) will denote the entropy of a Bernoulli distribution with
parameterx. Finally, 1A will denote the indicator function of
a setA.

II. PROBLEM STATEMENT AND MAIN RESULTS

A. Two capacity-achieving code ensembles for the8-PSK
Gaussian channel

We shall consider transmission over a memoryless AWGNC
with input constrained on the8-PSK signal constellation
X := {ei 2π

8
k : 0 ≤ k < 8} and output spaceY = R

2.
The Bhattacharyya distance function associated to the8-PSK
AWGNC is

D : X ×X → R
+ , D(x1, x2) :=

log e

8σ2
||x1 −x2||

2 , (1)

σ2 being the noise variance. The symmetry groupΠ, i.e. the
subgroup of permutations ofX leavingD invariant, is isomor-
phic to the dihedral groupD8 with 16 elements [15], [29],
generated by the rotation around the origin by an angle of
2π
8 and the reflection through a straight line forming an angle

of 2π
16 with the real axis. The constellationX is said to be

geometrically uniform [15], meaning that for everyx1, x2 ∈ X
there existsπ ∈ Π such thatπ(x1) = x2. Moreover, the cyclic
groupZ8 is a generating group ofX [29], i.e.Π has a subgroup
G isomorphic toZ8 such that for allx1, x2 ∈ X there exists
a uniqueπ ∈ Π such thatπ(x1) = x2. In particular, let
µ(z) := ei 2π

8
z be the standard isometric labeling, and consider

the functionDµ(z1, z2) := D(µ(z1+z2), µ(z2)). Then, all the
columnsDµ( · , z) coincide with the distance profile

d : Z8 → R , d(z) := D(µ(0), µ(z)) . (2)

On the other hand, observe thatD8 has no subgroup iso-
morphic to Z

3
2. This implies that, for any binary labeling

η : Z
3
2 → X , not all the columns of the induced distance

function

Dη : Z
3
2×Z

3
2 → R

+ , Dη(z1, z2) := D(η(z2), η(z2+z1)) ,
(3)

coincide.
We shall consider block-codesC ⊆ Xn, and denote their

rate by R(C) := n−1 log |C|, their minimum distance by
dmin(C) := min {

∑n
i=1 D(xi, zi) : x 6= z ∈ C}, and their

maximum-likelihood error probability bype(C). The focus
of this paper will be on block-codes with algebraic struc-
ture compatible withZ8 or Z

3
2, respectively. Specifically,

a group code (over Z8) is the image of a subgroupK
of the direct group productZn

8 through the componentwise
extensionµn : Z

n
8 → Xn of the isometric labelingµ.

As a consequence of the symmetry properties discussed in
Sect. II-A, it is easy to check that the minimum distance
of a group codeG := µn(K) coincides with its minimum
weight, i.e. dmin(G) = min{

∑

1≤j≤n d(xj)|x 6= 0 ∈ K}.
Similarly, group codes are known to enjoy the uniform error
property. A binary-coset codeis the imageB of a cosetJ
of the direct group productZ3n

2 through the componentwise
extensionηn : Z

3n
2 → Xn of an arbitrary binary labeling

η : Z
3
2 → X . As opposed to group codes, in general, neither

binary-coset codes enjoy the uniform error property, nor does
their minimum distance coincide with their minimum weight.
In the sequel, we shall see as this reflects on the performance
of random group and coset codes respectively.

For every design rateR ∈ [0, 3], and a blocklengthn ≥ 1,
setR := 3 − R, andl :=

⌊

Rn/3
⌋

. We shall consider the two
following code ensembles:

Group code ensembleFor n ≥ 1, let ΦR
n be

a random matrix uniformly distributed overZl×n
8 .

Define the random group code

GR
n := µn

(

kerΦR
n

)

;

Binary coset ensembleLet η : Z
3
2 → X be an

arbitrary labeling.Forn ≥ 1, consider a random
matrix ΨR

n , uniformly distributed overZ3l×3n
2 , and

Wn be an independent random vector, uniformly
distributed overZ3n

2 . Define the random binary-coset
code as

BR
n := ηn

(

kerΨR
n + Wn

)

. (4)

Throughout the paper, we shall say that thetypical group code
(respectively, thetypical binary-coset code) satisfies a certain
(in)equality if, for all ε > 0, the probability thatGR

n (resp. by
BR

n ) violates such (in)equality by more thanε vanishes as
the block-lengthn grows large, and the design rateR is kept
constant. We observe that the group code ensemble and the
binary-coset ensemble are sometimes defined as images of
random generating matrices rather than kernels of random
syndrome matrices, as above. However, while leading to
different properties for finite lengths, it can be shown thatsuch
alternative definitions do not alter the asymptotic properties of
the typical group, and binary-coset, code.

An immediate consequence of the symmetry properties
discussed in Sect. II-A is that the optimal input distribution is
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the uniform one onX , both for the8-PSK AWGNC Shannon
capacityC8 and for its random coding error exponent [18]
Er

8(R). It is not hard to show that binary-coset codes achieve
capacity and

E
[

pe(B
R
n )

]

≤ 2−nEr
8
(R) ,

lim
n→+∞

−
1

n
log E

[

pe(B
R
n )

]

= Er
8(R) .

In fact, the standard random coding averaging arguments of
[18, pagg.206-207] as well as the tightness considerations
of [19] apply, upon observing that, for everyz ∈ Z

3n
2 , the

event Az :=
{

ΨR
n z = ΨR

n Wn

}

has probability8−l, and
that Az1

, Az2
andAz3

are mutually independent for linearly
independentz1, z2, z3 ∈ Z

3n
2 .

As far as group codes are concerned, the situation is
different due to the presence of zero-divisors inZ8. In fact,
the eventBx :=

{

ΦR
n x = 0

}

, for x ∈ Z
n
8 , does not have

probability 8−l wheneverx lies in a proper subgroup ofZn
8 .

Nevertheless, it has been shown in [8] that the group codes
achieve capacity, and that their average error probabilitycan
be upper-bounded by a term exponentially decreasing in the
block-lengthn

E
[

pe(G
R
n )

]

≤ 2−nEr
Z8

(R) . (5)

The exponent appearing in the righthand side of (5) is given
by

Er
Z8

(R) := min
{

Er
8(R), Er

4(2
3R), Er

2(1
3R)

}

,

with Er
4(2

3R) andEr
2(1

3R) denoting the random coding error
exponents of the AWGNCs with input restricted over the4-
PSK and the2-PSK constellation, respectively. As shown in
[8], the bound (5) is necessarily tight for the average error
probability both at rates close toC, whereEr

Z8
(R) = Er

8(R),
and at low rates, where insteadEr

Z8
(R) := Er

2(1
3R) < Er

8(R).
Thus, the error exponent of the average binary-coset code

of design rateR (i.e. the exponential decay rate ofE[pe(B
R
n )])

coincides with the random coding exponentEr
8(R), while the

error exponent of the average group code (i.e. the exponential
decay rate ofE[pe(G

R
n )]) is strictly smaller thanEr

8(R) for
low R. In other words, even if algebraic constraints do not
affect the capacity achievable by group codes over the 8-PSK
AWGNC, they do lower the error exponent achievable of the
average group code. In fact, we argue that this claim can be
somehow misleading. Indeed, it refers to the performance of
the average code rather than to the performance of the typical
code sampled from the two ensembles. In contrast, the results
stated in the two following subsections show that the typical
group code outperforms the typical binary-coset code, thus
reversing the hierarchies outlined by the average-code analysis.

B. Gilbert-Varshamov bound and typical minimum distances

Let Ω be the space of probability vectors overZ8, and, for
0 ≤ R ≤ 3, define

ΩR :=
{

ω ∈ Ω : H(ω) ≥ R
}

(6)

δ8(R) := min {〈ω, d〉 : ω ∈ ΩR} , (7)

whered is the squared Euclidean weight function defined in
(2). In Sect. A,δ8(R) is proved to be continuous and non-
increasing as a function of the rateR. The GV bound for the8-
PSK AWGNC [6, Th. 10.5.1] states that, for every0 ≤ R ≤ 3,
and anyn ≥ 1, there exists a block codeCn of length n
and rate not smaller thanR.3 While the aforementioned is a
mere existence result, the question we want to address here is
whetherδ8(R) is achieved by either the typical group code
or the typical binary-coset code. In fact, using arguments
analogous to those in [2], it is not difficult to see that the
the typical random code sampled from the random coding
ensemble does not achieve the GV bound. This is because
the minimum distance of the RCE of design rateR turns
out to be the minimum of the relative distance between all
possible

(

⌈2Rn⌉
2

)

choices of pairs of distinct codewords. Since
the differences between such pairs of codewords are pairwise
independent random variables, uniformly distributed overXn,
the normalized minimum distance of the typical random code
can be shown to coincide withδ8(2R).

We shall therefore concentrate on the performance of the
group coding ensemble, and the binary-coset ensemble. Here,
the algebraic structure prevents the differences between differ-
ent pairs of codewords to be pairwise independent, and this
will be proven to lead to higher typical minimum distances.
In particular, the following result concerns the GCE:

Theorem 1 (Minimum distance of the typical group code)
For all 0 ≤ R ≤ 3, the normalized minimum distance of the
typical group code of design rateR coincides withδ8(R).

Proof: See Sect. III and Sect. B.

For the BCE instead, we will prove that a typical code
sequence almost surely does not meet the GV-bound. More
precisely, letΘ be the set of joint probability vectors over
Z

3
2 × Z

3
2. For 0 ≤ R ≤ 3, define the sets

ΘR :=
{

θ ∈ Θ : H(θ) ≥ 2R , H(υ) ≥ R
}

, (8)

ΘR :=
{

θ ∈ Θ : H(θ) − H(υ) ≥ R , H(υ) ≥ R
}

, (9)

whereυ( · ) =
∑

z θ( · , z) is the first-component marginal of
θ. Define the functions

δη(R) = min {〈θ, Dη〉 : θ ∈ ΘR} , (10)

δη(R) := min
{

〈θ, Dη〉 : θ ∈ ΘR

}

, (11)

Theorem 2 (Minimum distance of the typical binary-coset
code)For every0 < R < 3, the normalized minimum distance
of the typical binary-coset code is lower-bounded byδη(R)

and upper-bounded byδη(R). Furthermore,

δη(R) ≤ δη(R) < δ8(R) . (12)

Proof: See Sect IV.

3The definition (7) can be shown to be equivalent to that ofEL(R) defined
in [6, pag. 399], upon observing that, in the case of the8-PSK, the optimizing
distribution in the definition ofEL(R) has to be symmetric with respect to
rotations.
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Fig. 2. A comparison ofδ8(R) (purple line) andδη(R) whereη : Z
3
2 → X

is the Gray labeling described in Fig.1. As a referenceδ8(2R) (which is the
typical normalized minimum distance of the RCE) is plotted in dotted red.
For the specific choice of the binary labelingη : Z

3
2 → X , and the chosen

resolution, it seems thatδη(R) = δη(R).

In Fig.2 the normalized minimum distances of the typical
group code and of the typical binary-coset code are plotted as
a function of the design rateR, together with the normalized
minimum distance of the typical random code.

C. Expurgated bound and typical error exponents

For every rate0 ≤ R ≤ 3 the expurgated exponentof the
8-PSK AWGNC is

Ex
8 (R) := min

{

〈ω, d〉 + R − H(ω) : ω ∈ ΩR

}

. (13)

The expurgated exponentEx
8 (R) and the GV distanceδ8(R)

coincide at small rates. Indeed, letωx := e−d/
∑

z e−d(z) be
the minimizer of the mapω 7→ 〈ω, d〉 + R − H(ω) over the
whole type spaceΩ, Rx

8 := H(ωx) > 0 be the minimum rate
R for which ωx ∈ ΩR, andR0

8 := log
∑

z
1
8e−d(z) denote the

so-called cut-off rate. We have that:

• for ratesRx
8 ≤ R ≤ R0

8, the minimum in (13) is achieved
by ωx, andEx

8 (R) = R0
8 − R;

• for rates 0 ≤ R ≤ Rx
8 , Lemma 8 implies that the

minimum in (13) is achieved by some typeω such that
H(ω) = R, so that

Ex
8 (R) = δ8(R) , ∀0 ≤ R ≤ Rx

8 . (14)

The expurgated bound (see [18, pagg.153-157], and [11,
pagg.185-186,192-195]) guarantees, for all rates0 < R < 3,
and n ≥ 1, the existence of a codeCn ⊆ Xn with rate
not smaller thanR, and error probability not exceeding
2−nEx

8
(R). Similarly to the GV bound, the expurgated bound

is a mere existence result, while we are interested in whether
the expurgated exponentEx

8 (R) is achieved by random codes.
In fact, arguments as in the binary case [2] show that the
expurgated exponent is not achieved, at low rates, by the
typical random code. Therefore, we shall be concerned with
the error exponents of the typical group code, and of the
typical binary-coset code. The following results will be proven
as consequences of Theorem 1, and Theorem 2, respectively.

Corollary 1 (Error exponent of the typical group code)
For every 0 < R < Rx

8 , the error exponent of the typical
group code of design rateR coincides withEx

8 (R).

Proof: See Sect. III.

Corollary 2 (Error exponent of the typical binary-coset
code) There exists someRx

η > 0 such that, for every0 <
R < Rx

η , the error exponent of the typical binary-coset code
of design rateR is strictly smaller thanEx

8 (R).

Proof: See Sect. IV.

III. PERFORMANCE OF THE TYPICAL GROUP CODE

In this section we shall show that the typical group code has
normalized minimum distance, and error exponent, bounded
from below by the GV distance, and the expurgated exponent,
respectively. The proof of tightness of these bounds will
instead be given in Sect. B, thus completing the proof of
Theorem 1. Throughout the section,Ω will denote the space
of all probability vectors overZ8, Ωn ⊆ Ω will denote the set
of all types (i.e. empirical frequencies, see [12]) of length-n
strings with entries inZ8, and(Z8)

n
ω ⊆ Z

n
8 the set of length-n

strings of typeω.
We shall apply the first-moment method [1, Ch. 2] to the

type-enumerator function

GR
n (ω) :=

∣

∣(Z8)
n
ω ∩ kerΦR

n

∣

∣ ,

counting the number of codewords of typeω in the random
group code of rateR and lengthn. As a first step in our
analysis, we evaluate the expected valueE[GR

n (ω)]. It will
prove convenient to denote by2ζ(ω) the order of the smallest
subgroup ofZ8 supportingω.

We have the following result:

Lemma 1 For every design rate0 < R < 3 and Z8-typeω
in Pn(Z8) such thatω(0) < 1,

E
[

GR
n (ω)

]

≤ 2
n

„

H(ω)−
R
3 ζ(ω)

«

.

Proof: Let x be ann-tuple of typeω, and leth := 23−ζ(ω)

be the largest power of two dividing all the nonzero entries
of x. Then, every entryxi belongs tohZ8, and there exists
some1 ≤ i∗ ≤ n such thatxi∗ is not divisible by2h. For
1 ≤ i ≤ n, let us denote byYi the i-th column ofΦR

n , which
is a r.v. uniformly distributed overZl

8. Then, one has that
H := xi∗Yi∗ , and thatK :=

∑

i6=i∗ xiYi takes values inhZ
l
8.

It follows that

P(ΦR
n x = 0) =

∑

k∈hZ
l
8

P (H = −k , K = k)

=
∑

k∈hZ
l
8

2−lζ(ω)
P (K = k|H = −k)

= 2−lζ(ω) .

Now, observe thatE
[

GR
n (ω)

]

= |(Z8)
n
ω|P

(

ΦR
n x = 0

)

. Then,
the claim follows from the standard estimation for the binomial
|(Z8)

n
ω| =

(

n
nω

)

≤ 2nH(θ) (see e.g. [12]).
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For 0 ≤ R ≤ 3, consider the sets

Ω′′
R :=

{

ω : ω(j) = 0, ∀j /∈ 2Z8, H(ω) ≥ 2
3R

}

,

Ω′
R :=

{

ω : ω(j) = 0, ∀j /∈ 4Z8, H(ω) ≥ 1
3R

}

.
(15)

Let
δ4

(

2
3R

)

:= min{〈ω, d〉 : ω ∈ Ω′′
R}

δ2

(

1
3R

)

:= min{〈ω, d〉 : ω ∈ Ω′
R}

be the GV-distances associated to the subconstellations4-PSK
and2-PSK, respectively, and define

δZ8
:= min

{

δ8 (R) , δ4

(

2
3R

)

, δ2

(

1
3R

)}

.

For R∗ > R, and a blocklengthn, consider the event

F :=
⋃

ω

{

GR
n (ω) ≥ 1

}

∩
{

H(ω) < R
∗

3 ζ(ω)
}

.

Observe that, since the set
{

ω : H(ω) ≥ R
∗
ζ(ω)/3

}

is con-

tained in the unionΩR∗ ∪ Ω′′
R∗ ∪ Ω′

R∗ , one has that the
inequalitydmin(G

R
n ) ≥ nδZ8

(R∗) holds wheneverF does not
occur. Then, by subsequently using the union bound, Markov’s
inequality, and Lemma 1, one has

P
(

dmin(G
R
n ) ≥ δZ8

(R∗)
)

≥ 1 − P (F )

≥ 1 −
∑

ω E
[

GR
n (ω)

]

≥ 1 −
∑

ω 2
n

“

H(ω)−R
3

ζ(ω)
”

≥ 1 − |Ωn|2
−n(R∗−R)

n→+∞
−→ 1 ,

(16)
the last step following from the fact that the number ofZ8-
types,|Ωn| =

(

n+7
7

)

, grows only polynomially fast withn (see
e.g. [12]). From the continuity ofδZ8

(R), and the arbitrariness
of R∗ > R, it thus follows that the typical group code has
normalized minimum distance not smaller thanδZ8

(R).
Clearly,δZ8

(R) ≤ δ8(R). We shall now prove that, in fact,
the equality holds. Observe that our arguments have relied only
on the algebraic structure of the groupZ8, while the geometric
properties of the8-PSK constellation have not played any role
so far. In fact, counterexamples can be constructed as in [8]
showing that Lemma 2 fails to hold true for other DMCs
with the same symmetry structure of the8-PSK AWGNC.
The geometry of the8-PSK constellation allows us to prove
the following result:

Lemma 2 For every design rate0 ≤ R ≤ 3,

δ8(R) = δZ8
(R) .

Proof: ForR = 3, trivially δ2(
1
3R) = δ4(

2
3R) = δ8(R) =

0, and thenδ8(R) = δZ8
(R) = 0.

Now, let us assume thatR < 3. Since the entropy function
is concave and the unique minimum of the mapω 7→ 〈ω, d〉
on Ω is achieved withω(0) = 1, we can apply Lemma 8
and claim that a minimizerω ∈ ΩR in the definition (7) of
δ8(R) necessarily satisfiesH(ω) = R. Then, using Lagrangian
multipliers, we obtain

δ8(R) = Z8(λ8)
−1

∑

x∈Z8

d(x)e−λ8d(x) ,

where Z8(λ8) :=
∑

x∈Z8
e−λ8d(x), and λ8 > 0 solves the

equationH
(

Z8(λ8)e
−λ8d

)

= R. Analogously,

δ4

(

2
3R

)

= Z4(λ4)
−1

∑

x∈2Z8

e−λ4d(x)d(x) .

whereZ4(λ4) :=
∑

x∈2Z8
e−λd(x), andλ4 > 0 is the solution

of H
(

Z4(λ4)
−1e−λ4d12Z8

)

= 2
3R, and

δ2

(

1
3R

)

= d(4)α , α := Z2(λ2)
−1

e−λ2d(4) ,

where Z2(λ2) := 1 + e−λ2d(4), and λ2 > 0 solves
H

(

Z2(λ2)
−1e−λ2d(4)

)

= 1
3R. Observe thatα ∈ (0, 1/2).

Elementary geometrical considerations based on Pythago-
ras’ theorems allow one to show that

d(4) = 2d(2) = 2d(6) (17)

d(1)=d(7), d(3)=d(5), d(1)=d(4)−d(3)<
d(4)

4
. (18)

It follows from (17) that

Z4(2s) =
(

1 + e−sd(4)
)2

= Z2 (s)
2
,

for all s ≥ 0. Then, (17) implies that

Z4(2λ2)
−1e−2λ2d(0) = Z2(λ2)

−2 = (1 − α)2 ,

Z4(2λ2)
−1e−2λ2d(2) = Z4(2λ2)

−1e−2λ2d(6) = α(1 − α) ,

Z4(2λ2)
−1e−2λ2d(4) = α2 .

Therefore,

H
(

Z4(2λ2)
−1e−2λ2d|2Z8

)

=2H(α)=2H
(

Z2(λ2)
−1e−λ2d|4Z8

)

,

so that2λ2 = λ4. Hence,

δ4

(

2
3R

)

= Z4(λ4)
−1

〈

e−λ4d12Z8
, d

〉

= α2d(4) + 2α(1 − α)d(2)

= αd(4)

= Z2(λ4/2)−1d(4)e−
λ4

2 d(4)

= δ2 (R/3) .

Sinceδ8(R) is defined in (7) as the minimum of〈ω, d〉 over
ΩR, in order to estimate it from above it is sufficient to
estimate〈ω̂, d〉 for some ω̂ ∈ ΩR. We do so forω̂ defined
by

ω̂(0) := (1 − α)3 , ω̂(1) := ω̂(2) := ω̂(7) := α(1 − α)2 ,

ω̂(4) := α3 , ω̂(6) := ω̂(5) := ω̂(3) := α2(1 − α) ,
(19)

It is straightforward to verify thatH(ω̂) = 3 H(α) = R, so
that ω̂ ∈ ΩR. Moreover, it follows from (17) and (18) that

〈ω̂, d〉 =
∑

x d(x)ω̂(x)

= α3d(4) + 2α2(1 − α) (d(4) − d(1))

+α(1 − α)1
2d(4) + 2α(1 − α)2d(1)

= 2αd(1)
(

2α2 − 3α + 1
)

− α
2 d(4)

(

2α2 − 3α − 1
)

= αd(4) + αd(4)
(

2d(1) − 1
2d(4)

) (

2α2 − 3α + 1
)

< αd(4) ,
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last inequality following from (18) and the fact that2α2 −
3α + 1 > 0 for everyα ∈ (0, 1/2). It follows that

δ8(R) ≤ 〈ω̂, d〉 < αd(4) = δ2 (R/3) ,

thus concluding the proof.

As a consequence of Lemma 2, and our previous arguments,
we have proven that the typical group code achieves the
GV bound. In order to complete the proof of Theorem 1, it
remains to prove that the normalized minimum distance of the
typical group code does not exceed the GV distance. This is
technically more involved, and will be the object of Sect. B.

We conclude this section by showing that the typical group
code achieves the expurgated exponentEx

8 (R). For this, we
shall use the union-Bhattacharyya bound [39], in order to
estimate of the error probability of the GCE in terms of its
type-enumerating functions:

pe(G
R
n ) ≤

∑

ω

GR
n (ω)2−n〈ω,d〉 . (20)

Similarly to what we have seen for the analysis of the
minimum distance, it is natural to consider the expurgated
exponents of the4-PSK and2-PSK AWGNC, given by

Ex
4 (2

3R) := min
{

〈ω, d〉 − H(ω) + 2
3R : ω ∈ Ω′′

R

}

,

Ex
2 (1

3R) := min
{

〈ω, d〉 − H(ω) + 1
3R : ω ∈ Ω′

R

}

,

whereΩ′
R andΩ′′

R have been defined in (15). Then, based on
Lemma 1 and (20), a first-moment argument as in (16) allows
one to show that

pe(G
R
n ) ≤ 2−nEx

8
(R′)+o(n) + 2−nEx

4
(
2
3 (R′))+o(n)

+2−nEx
2
(
1
3 (R′))+o(n) ,

(21)

for everyR′ > R. On the other hand, arguing as in the proof
of Lemma 2, one can show that

Ex
8 (R) ≤ Ex

4 (2
3R) ≤ Ex

2 (1
3R) . (22)

Hence, (21), (22), and the continuity ofEx
8 (R) as a function

of the rateR show that the typical group code achieves the
expurgated exponent.

IV. PERFORMANCE OF THE TYPICAL BINARY-COSET CODE

In the present section, we shall prove that the typical binary-
coset code is bounded away both from the GV distance and
the expurgated exponent. We shall proceed in two steps. First,
in Sect. IV-A, we shall prove that the normalized minimum
distance of the typical binary-coset code of design rateR is
betweenδη(R) and δη(R). This will involve the use of the
fist moment, and the second moment method, respectively.
Then, in Sect. IV-B, we shall prove the rightmost inequalityin
(12): this will involve some convex optimization arguments.
Throughout, we shall assume to have fixed an arbitrary label-
ing η : Z

3
2 → X , and use the notationΘ andΘn for the spaces

of joint probability vectors, and of joint types, respectively,
over Z

3
2 × Z

3
2. Also Υ, andΥn, respectively, will denote the

spaces of probability vectors, and of types, overZ
3
2.

It will prove convenient to consider a slightly different
version of the binary-coset ensemble, as explained below.

Observe that, since the rows ofΦR
n are mutually independent

and uniformly distributed overZ3n
2 , the probability that thej-

th row of ΦR
n is linear dependent on the other(3l−1) rows is

bounded from above by2−3n23l−1 ≤ 2−nR. Then a standard
union-bounding technique implies that the probability of the
event A := {ΨR

n is surjective} is at least1 − n2−nR, and
therefore converges to1 asn grows. Now, consider a random
vector Zn uniformly distributed overZ3l

2 , and independent
from ΨR

n . Notice that, givenAn, the conditioned probability
measures of the random cosetskerΨR

n +Wn, and(ΨR
n )−1Zn,

both coincide with the uniform distribution on the set of
affine spaces ofZ3n

2 of dimension3(n − l). Therefore, every
statement concerning properties of the typical binary-coset
ensemble is not altered if one replaces definition (4) with

BR
n := ηn

(

(ΨR
n )−1Zn

)

. (23)

Therefore, from now on, we shall consider (23) to be the
definition of the random binary-coset code.

A. Upper and lower bounds on the minimum distance of the
typical binary-coset code

A first observation is that, since binary-coset codes are not
GU, their minimum distance does not in general coincide with
their minimum weight, as it is the case forZ8-group codes.
Rather, it is necessary to look at all pairs of codewords of a
binary-coset code in order to evaluate its minimum distance. It
is therefore convenient to introduce the joint-type-enumerating
function

UR
n (θ) :=

∣

∣

{

(x, y) ∈ (Z3
2)

n
θ : ΨR

n x = 0, ΨR
n y = Zn

}
∣

∣ ,

counting the number of pairs(x, y) of different joint types
such that bothy andx + y belong to coset ofZ3n

2 given by
the counter-image ofZn throughΨR

n . We also introduce the
enumerating function

V R
n (υ) :=

∣

∣

{

x ∈ (Z3
2)

n
υ : ΨR

n x = 0
}
∣

∣ ,

counting the number ofn-tuples in the kernel ofΨR
n of dif-

ferent types. It is straightforward to check that the normalized
minimum distance of the random binary-coset codeBR

n is
given by

min
{

〈θ, Dη〉 : θ ∈ Θ,
∑

x θ(0, x) < 1, UR
n (θ) ≥ 1

}

.

The average value of the enumerating functionsUR
n (θ) and

V R
n (ω) is easily evaluated as shown in the following:

Lemma 3 For everyθ ∈ Θn, let υ( · ) =
∑

x θ( · , x) ∈ Υ be
its first-component marginal ofθ. If υ(0) < 1, then

E
[

UR
n (θ)

]

=

(

n

nθ

)

8−2l , E
[

V R
n (υ)

]

=

(

n

nυ

)

8−l .

Proof: For everyx andy in Z
3n
2 such thatx 6= 0 we have

thatΨR
n x andΨR

n y−Zn are independent and both uniformly
distributed overZ3l

2 . It follows that

E
[

UR
n (θ)

]

=
∑

(x,y)

P
(

ΨR
n x = 0 , ΨR

n y = Zn

)

=

(

n

nθ

)

8−2l ,
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where the summation above is extended to all pairs(x, y) of
joint type θ. The expectationE[V R

n (υ)] is computed analo-
gously.

Fix someR∗ > R. Using Lemma 3, an argument based
on a first-moment method, and analogous to the one applied
in Sect. III, proves that the probability thatUR

n (θ) ≥ 1 for
some joint typeθ with either H(θ) ≤ 2R

∗
, or H(θ1) ≤ R

∗

goes to zero asn grows to infinity. Thanks to the continuity
of δη(R) and the arbitrariness ofR∗ > R, this proves that
the normalized minimum distance of the typical binary-coset
code is bounded from below byδη(R).

We now want to obtain an upper bound on normalized
minimum distance of the typical binary-coset code, using a
second-order method [1]. Toward this end, we need to estimate
the variance of the joint-type-enumerating functionsUR

n (θ).

Lemma 4 For all n ≥ 1, and every joint typeθ,

Var
[

UR
n (θ)

]

≤

(

n

nθ

)(

n

nυ

)

16

83l
+

(

n
nθ

)2

(

n
nυ

)

1

83l
+

(

n

nθ

)

8

82l
,

(24)
whereυ is the first-component marginal ofθ.

Proof: We have

Var
[

UR
n (θ)

]

=
∑

(x1,y1)

∑

(x2,y2)

c
(

x1, x2, y1, y2

)

,

where the summations are extended to all pairs(x1, y1) and
(x2, y2) of joint typeθ, andc

(

x1, x2, y1, y2

)

is the covariance
of 1{ΨR

n x1=0,ΨR
n y1=Zn} and1{ΨR

n x2=0,ΨR
n y2=Zn}.

We are now going to estimate the covariance terms
c
(

x1, x2, y1, y2

)

, by separately considering four possible dif-
ferent linear dependency structures amongx1, x2, y1, andy2.
Observe that, sinceυ(0) < 1, x1 andx2 need to be nonzero in
order for the pairs(x1, y1) and(x2, y2) to have typeθ. First,
suppose thatx1, x2, y1 andy2 are linear independent. Then,
the r.v.sΨR

n x1, Ψ
R
n x2, Ψ

R
n y1 and ΨR

n y2 are independent, so
that c

(

x1, x2, y1, y2

)

= 0.
Second, consider the case whenx1 and x2 are linear

independent butx1, x2, y1 andy2 are not so. In this case we
have that the random variablesΨR

n x1, Ψ
R
n x2 andΨR

n y1−Zn

are independent, so that

c
(

x1,x2,y1,y2

)

≤ P
(

ΨR
n x1 =ΨR

n x2 =0, ΨR
n y2 =Zn

)

= 8−3l .

Since there are at most16
(

n
nθ

)(

n
nυ

)

possible choices of such
pairs (x1, y1), (x2, y2) of joint type θ, their contribution is
estimated by the first addend in the righthand side of (24).

As a third case, consider pairs(x1, y1), (x2, y2), such that
x1 = x2, andx1, y1 and y2 are linear independent. In this
situation the random variablesΨR

n x1, ΨR
n y1 and ΨR

n y2 are
independent so that

c
(

x1,x2,y1,y2

)

≤ P
(

ΨR
n x1 =0, ΨR

n y1 =ΨR
n y2 =Zn

)

= 8−3l .

Since there are at most
(

n
nθ

)2( n
nυ

)−1
possible choices of such

pairs (x1, y1), (x2, y2) of joint type θ, their contribution can
be estimated by the second addend in the right-hand side of
(24).

Finally, it remains to be considered the casex1 = x2,
with linear dependentx1, y1 andy2. There are at most

(

n
nθ

)

8

possible choices of pairs(x1, y1) and(x2, y2) in
(

Z
3
2 × Z

3
2

)n

θ
satisfying these requirements and for each of them

c
(

x1, x2, y1, y2

)

≤ P
(

ΨR
n x1 = 0, ΨR

n y1 = Zn

)

= 8−2l .

Therefore, their contribution can be estimated by the third
addend in the righthand side of (24).

Let us now fix someR∗ > R, and someθ∗ ∈ ΩR∗ such
that δη(R∗) = 〈θ∗, Dη〉. Denote byυ∗ the first-component
marginal of θ∗. Consider a sequence of joint types(θn)
converging toθ∗, with θn in Θn for every n ≥ 1, and
let (υn) be the corresponding sequence of first-component
marginals. Define the eventAn := {UR

n (θn) = 0}. We can
apply Chebyshev’s inequality and use Lemma 3 and Lemma
4 obtaining

P (An) ≤ Var
[

UR
n (θn)

]

E
[

UR
n (θn)

]−2

≤ 16
(

n
nυn

)(

n
nθn

)−1
8l +

(

n
nυn

)−1
8l + 8

(

n
nθn

)−1
82l

= 2n(R+H(υn)−H(θn))+o(n) + 2n(R−H(υn))+o(n)

+2n(2R−2H(θn))+o(n) .

Then, sincelimn θn = θ∗ ∈ ΩR∗ , with R∗ > R, one has that
limn P(An) = 0. From this, it follows that the typical binary-
coset code has normalized minimum distance not exceeding
〈θ∗, Dη〉 = δη(R∗). Finally, from the arbitrariness ofR∗ > R,
a standard continuity argument allows one to conclude that the
normalized minimum distance of the typical binary-coset code
is upper-bounded byδη(R).

B. Comparingδη(R) and δ8(R)

We now want to compare the distance boundsδη(R), δη(R),
and δ8(R) defined in (10), (11) and (7) respectively. First,
observe that any joint typeθ ∈ ΘR trivially satisfiesH(θ) ≥
2R, so thatΘR ⊆ ΘR. From this, it immediately follows that
δη(R) ≥ δη(R). Notice also that the inequality above holds
as an equality wheneverδη(R) = 〈θ, Dη〉 for some joint type
θ belonging toΘR. It can be shown that this is the case for
every binary labelingη : Z

3
2 → X for large enough values

of R, so that oftenδη(R) and δη(R) do coincide. However,
we will now concentrate on comparingδη(R) with the GV-
distanceδ8(R), in particular showing that the former is strictly
below the latter.

In order to do that, for a given0 < R < 3, we consider
the Z8-type ω∗ in ΩR giving the GV-distance, i.e. such that
δ8(R) = 〈ω∗, d〉. Since the entropy function is concave and the
mapω 7→ 〈ω, d〉 is linear and it achieves its global minimum in
ω(0) = 1, Lemma 8 can be applied to guarantee thatH(ω∗) =
R. Hence, using Lagrangian multipliers we may express it as

ω∗(x) = Z(λ)−1e−λd(x) , (25)

whereZ(λ) :=
∑

x e−λd(x) and λ ∈ (0, +∞) is the unique
solution of the equationH

(

Z(λ)−1e−λd
)

= R. Fromω∗ ∈ Ω,
we may define a joint typeθ∗ in Θ as follows. For everyz in
Z

3
2, consider the bijection

σz : Z
3
2 → Z8 , σz(x) := µ−1 (η(x + z)) − µ−1 (η(z)) ,
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where the+ sign refers to addition inZ8, while the− refers
to difference inZ

3
2. Now define

θ∗(x, z) := 1
8ω∗ (σz(x)) , x, z ∈ Z

3
2 , (26)

and let υ∗ be its first-component marginal. A few simple
properties ofθ∗ andυ∗ are gathered in the following:

Lemma 5 For all 0 < R < 3,

θ∗(x, z) > 0 , υ∗(x) > 0 , ∀x, z ∈ Z
3
2 , (27)

〈θ∗, Dη〉 = δ8(R) . (28)

H(θ∗) = 3 + R . (29)

H(υ∗) > R . (30)

Proof: The inequality (27) follows immediately from
(25).

It is easy to verify that

Dη(x, z) = D(η(z), η(x + z))

= d
(

µ−1(η(x + z)) − µ−1(η(z))
)

= d(σz(x)) .

Then (28) follows, since

〈θ∗, Dη〉 =
∑

x,z θ∗(x, z)Dη(x, z)

=
∑

z
1
8ω∗ (σz(x)) d (σz(x))

= 〈ω∗, d〉

= δ8(R) .

From (26) we have
∑

x θ∗(x, z) = 1
8

∑

x ω∗(σz(x)) = 1
8 ,

so that the second-component marginalθ∗2 is the uniform mea-
sure overZ3

2. Again from (26) we have that the conditioned
measure ofθ on Z

3
2 × {z} coincides withω∗ ◦ σz, for every

z in Z
3
2. Then, one has

H(θ∗) = H (θ∗2) +
∑

x θ∗
(

Z
3
2 × {x}

)

H(ω∗ ◦ σx)

= 3 + H(ω∗)

= 3 + R ,

showing (29).
Finally, observe thatυ∗ = 1

8

∑

x ω∗ ◦ σx is a convex
combination of permutations of the vectorω∗. As argued in
Sect. II-A, for every labelingη : Z

3
2 → X there exists at least

a pair of nonequal columns of the matrixDη, i.e.

Dη(·, z1) 6= Dη(·, z2) ,

for somez1, z2 ∈ Z
3
2. As a consequence,d ◦ σz1

6= d ◦ σz2

which, together with (25), impliesω∗◦σz1
6= ω(R)◦σz2

. Hence,
from the strict concavity and the permutation invariance ofthe
entropy functionH it follows that

H(υ∗) = H
(

1
8

∑

x ω∗ ◦ σx

)

> 1
8

∑

x H(ω∗ ◦ σx)

= H(ω∗)

= R ,

showing (30).

We are now ready to prove the rightmost inequality in (12).

Proposition 1 For every labelingη : Z
3
2 → Z8,

δη(R) < δ8(R) ,

for all 0 < R < 3,

Proof: For x ∈ Z
3
2, let mx := min{Dη(x, z) : z ∈ Z

3
2}

be the minimum element of thex-th row of Dη, andMx :=
{z ∈ Z

3
2 : Dη(x, z) = mx} the set of minimizers. Observe

that Dη(0, z) = D(η(z), η(z)) = 0 for every binary labeling
η and anyz ∈ Z

3
2. Therefore, one hasm0 = 0 and |M0| = 8.

On the other hand, since no binary labelingη is isometric,
there necessarily exist some non-costant row ofDη, so that in
particular

∃x, z ∈ Z
3
2 : mx < Dη(x, z) . (31)

For υ ∈ Υ, consider the setΘυ ⊆ Θ of joint mea-
sures with first-component marginalυ, and definef(υ) :=
min

{

〈θ, Dη〉 : θ ∈ Θυ, H(θ)−H(υ) ≥ R
}

. As an immediate
consequence of (30), one has thatδη(R) ≤ f(υ∗) . Therefore,
in order to prove the claim, it is sufficient to show that
f(υ∗) < δ8(R).

First, suppose that
∑

x υ∗(x) log nx ≥ R. Then, it is easy
to check thatf(υ∗) =

∑

x υ∗(x)mx. Hence, it follows from,
(27), (31) and (28) that

f(υ∗) =
∑

x mxυ∗(x)

=
∑

x

∑

z
1
8θ∗(σz(x))mx

<
∑

x

∑

z
1
8θ∗(σz(x))Dη(x, z)

= δ8(R) ,

thus proving the claim.
Now, assume that

∑

x υ∗(x) log nx < R. For anyx 6= 0 in
Z

3
2, we have

υ∗(0) =
∑

z θ∗(0, z)

= Z(λ)−1

> Z(λ)−1 1
8

∑

z e−λd(σz(x))

=
∑

z θ∗(x, z)

= υ∗(x) .

Hence,υ∗ is not the uniform measure overZ3
2 and, as a

consequenceH(υ∗) < 3. Therefore, from (29) and (30),
H(θ∗) = 3 + R > H(υ∗) + R . Then, thanks to the concavity
of the entropy function, we can apply Lemma 8, obtaining that

f(υ∗) < 〈θ∗, Dη〉 = δ8(R) ,

the last equality following from (28).

It immediately follows from Proposition 1, and the results
of Sect. IV-B, that the typical binary-coset code is bounded
away from the GV distance. In fact, the analogous statement
holds for the expurgated exponent as well. To see that, arguing
as in [6, p. 413], one can show that

pe(B
R
n ) ≥ 2− dmin(BR

n )+o(n) ≥ 2−nδη(R)+o(n) .

Since Ex
8 (R) = δ8(R) > δη(R), at low rates, this shows

that the typical binary-coset code is does not achieve the
expurgated exponent.
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V. EXTENSIONS AND CONCLUDING REMARKS

In this paper, we have analyzed the typical minimum
distances and error exponents of two code-ensembles for the
8-PSK AWGNC with different algebraic structure. We have
shown that the ensemble of group codes overZ8 achieves the
GV bound as well as the expurgated exponent with probability
one, whereas the ensemble of binary-coset codes, under any
possible labeling, is bounded away from the GV bound and,
at low rates, from the expurgated exponent. While the paper
has been focused on the specific case of the8-PSK AWGNC,
a closer look at the derivations shows that generalizationsare
possible to much larger classes of DMCs.

On the one hand, it is possible to consider DMCs which
are symmetric with respect to the action of an arbitrary finite
Abelian groupG, and to characterize the typical asymptotic
minimum distance achievable by the ensemble of group codes
over G. This idea has been pursued in [10], where it was
shown that on everyZm-symmetric channel, the normalized
minimum distance (respectively the error exponent) of the typ-
ical group code overZm asymptotically achieves the minimum
of the GV distances (the expurgated exponents) associated to
all the nontrivial subgroups ofZm. Then, one is left to verify
whether results analogous to Lemma 2 hold true, showing
that proper subgroups cause no loss in the performance of
the typical group code.

On the other hand, it is interesting to see how the im-
possibility results of Sect. IV can be generalized. Consider
a DMC with input X , of cardinality |X | = pr (where
p is a prime number andr a positive integer), outputY,
and transition probabilitiesP (y|x). Define the Battacharyya
distance function

D(x1, x2) := − log

∫

Y

√

P (y|x1)P (y|x2)dy .

Assume that the DMC has has zero-error capacity equal to
zero, so thatD(x1, x2) is finite for everyx1, x2 ∈ X , and
further that it is balanced (see [32]), i.e. that, for allx, z ∈ X ,

{D(x, z) : z ∈ X} = {D(x, z) : x ∈ X} = {d(x) : x ∈ X} ,

for somed : X → R. Then, the GV distance and the expur-
gated exponent are respectively given by (see [11, pag.185])

δ(R) := min{〈ω, d〉 : ω ∈ ΩR} ,

Ex(R) := min{〈ω, d〉 − H(ω) + R : ω ∈ ΩR} ,

where, for0 ≤ R ≤ log |X |,

R := log |X | − R , ΩR := {ω ∈ P(X ) : H(ω) ≥ R} .

Now consider the automorphism group, i.e. the subgroup of
distance-preserving permutations ofX ,

Π := {π : D(π(x1), π(x2)) = D(x1, x2) , ∀x1, x2 ∈ X} .

Assume thatΠ does not have any subgroup isomorphic to
Z

r
p. Then, for any labelingη : Z

r
p → X , the matrix Dη

defined as in (3) has at least two distinct columns. Then,
it follows that both Theorem 2 and Corollary 2 continue to
hold for the ensemble of coset codes overZp, which turns
out to be bounded away from the GV distance at any rate,

and from the expurgated exponent at low rates. Observe that,
if insteadΠ does contain a subgroup isomorphic toZ

r
p, then

the arguments of [2] can be used to show that the ensemble
of coset codes overZp (and in fact the ensemble of linear
codes overZp), achieve the GV-bound and the expurgated
exponent with probability one. In other words, we have that,
for balanced DMCs, having a Bhattacharyya distance function
symmetric with respect to the action of the groupZ

r
p is a

necessary and sufficient condition or the typical coset codes
overZp to achieve the GV-bound and the expurgated exponent.
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APPENDIX A
SOME LEMMAS ON CONTINUITY

This section is devoted to the proof of the continuity of
the some functions which have been defined in the paper as
solutions of finite-dimensional convex optimization problems,
such as the GV-distanceδ8(R) and the expurgated error
exponentEx

8 (R), as well as the boundsδη(R) and δη(R).
We shall obtain these results as a consequence of the general
lemmas presented below.

For some fixedd ≥ 1, let Ξ ⊆ R
d be a compact and convex

set. It is a standard fact that any lower semicontinuous (l.s.c.)
function achieves its minimum on every closed nonempty
subsetC ⊆ Ξ. Consider two functionsg : Ξ → R and
h : Ξ → R, and define

f : R → R , f(y) := inf
{

g(ξ)
∣

∣ ξ ∈ Ξ : h(ξ) ≤ y
}

.
(32)

It is immediate to verify thatf(y) is nonincreasing iny. The
following simple result was proved in [9, Lemma 8.1].

Lemma 6 If g andh are both l.s.c., thenf defined in (32) is
l.s.c.

Notice that, even ifg and h are both continuous,h fails
in general to be continuous; in fact it is simple to provide
counterexamples in this sense, whenh has local minima which
are not global minima. By ensuring that this cannot happen
(for instance requiring thath is convex), it is possible to
strengthen the previous result and prove continuity ofh.

Lemma 7 If g : Ξ → R is continuous andh : Ξ → R is l.s.c.
and such that every local minimum is necessarily a global
minimum, thenf defined in (32) is continuous on[h∗, +∞)
whereh∗ := min {h(ξ) | ξ ∈ Ξ}.

Proof: Sincef is nonincreasing and l.s.c. by Lemma 6,
it remains to show that

lim
n

f(yn) ≤ f(y) (33)
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for every increasing sequence(yn) ⊂ [h∗, +∞) converging
to somey > h∗. Notice that the existence of the limit in
the lefthand side of (33) is guaranteed by the monotonicity
of f . From the semicontinuity ofg and h, there exists
some ξ in Ξ such thatf(y) = g(ξ) and h(ξ) ≤ y. If
h(ξ) < y, then h(ξ) ≤ yn for sufficiently largen, so that
f(yn) ≤ g(ξ) = f(y) definitively in n and (33) follows. Thus
we can assume thath(ξ) = y. Sincey > h∗ the pointξ is not a
global minimum forh. Hence, it is not even a local minimum
for h, by assumption. It follows that every neighborhood of
ξ in Ξ contains someξ such thath(ξ) < h(x). It is then
possible to construct a sequence(ξn) in Ξ converging toξ
and such thath(ξn) < y for every n. From (ξn) we can
extract a subsequence(ξnk

) such thath(ξnk
) ≤ yk for every

k. Therefore we havef(yk) ≤ g(ξnk
) and so

lim
n

f(yn) ≤ lim sup
k

g(ξnk
) ≤ g(ξ) = f(y) ,

thus concluding the proof.

By consideringΞ = Ω, h(ω) = −H(ω) and g(ω) =
〈ω, d〉 (respectivelyg(ω) = 〈ω, d〉 + R − H(ω)), Lemma 7
implies the continuity ofδ8(R) (Ex

8 (R)). Indeed, observe
that −H( · ) is convex and therefore does not admit local
minima which are not global minima. Similarly, the continuity
of δη(R) follows by taking Ξ = Θ, g(θ) = 〈θ, Dη〉, and
h(θ) = max{− 1

2 H(θ),−H(υ)}, whereυ is the first com-
ponent marginal ofθ. Observe thath is convex, as it is the
maximum of two convex functions.

Finally, the continuity ofδη(R) follows again by applying
Lemma 7 with the choicesΞ = Θ, g(θ) = 〈θ, Dη〉, and
h(θ) = max{−H(θ) + H(υ),−H(υ)}. In this last case,
the absence of strictly local minima ofh can be verified
directly as follows. Ifθ ∈ Θ is a local minimum forh( · ),
and h(θ) = −H(θ) + H(υ), then, for everyx such that
υ(x) > 0, necessarily the conditional measure ofθ on{x}×Z

3
2

coincides with the uniform distribution overZ
3
2. It follows that

h(θ) = −3, and thereforeθ is a global minimum.
We end this section with the following result, giving suf-

ficient conditions for the minimizer of a convex optimization
problem to satisfy the constraint with equality.

Lemma 8 Let g, h : Ξ → R be convex functions. Letg∗ :=
minξ∈Ξ g(ξ) be the global minimum ofg, and consider the
set Ξ∗ := {ξ : g(ξ) = g∗} where such minimum is achieved.
Then, for all

y < h∗ , h∗ := min
ξ∈Ξ∗

h(ξ) ,

any minimizerξy for the convex optimization problem

f(y) := min
h(ξ)≤y

g(ξ)

necessarily satisfiesg(ξy) = y.

Proof: Let ξ ∈ Ξ be such thath(ξ) ≤ y, andg(ξ) = f(y).
Sinceh(ξ) ≤ y < h∗, necessarilyg(ξ) > g∗. Consider some
ξ∗ ∈ Ξ∗ such thath∗ = h(ξ∗), and, for0 ≤ λ ≤ 1, define
ξλ := λξ + (1 − λ)ξ∗. Then, by the convexity ofh, we have

h(ξλ) ≤ λh(ξ) + (1 − λ)h(ξ∗) ≤ λy + (1 − λ)h∗ ,

so that, sincey < h∗, there exists0 < λ∗ < 1 such that
h(ξλ∗) ≤ h(ξ) ≤ y. From the convexity ofg, it follows that

g(ξλ∗) ≤ λ∗g(ξ)+(1−λ∗)g(ξ∗) = λ∗g(ξ)+(1−λ∗)g∗ < g(ξ) .

Then,f(y) = min
h(ξ)≤y

g(ξ) ≤ g(ξλ∗) < g(ξ), so thatξ cannot

be a minimizer.

APPENDIX B
AN UPPER BOUND ON THE NORMALIZED MINIMUM

DISTANCE OF THE TYPICAL GROUP CODE

In this section we shall show that the normalized minimum
distance of the typical group code of design rateR does not
exceed the GV distanceδ8(R), thus completing the proof
of Theorem 1. Our arguments involve an application of the
second moment method [1, pagg.43-63].

The key point consists in estimating the covariance of the
type-enumerating functionGR

n (ω), for every typeω ∈ Ωn. For
this, one has to compute the joint probabilities

P(ΦR
n x = 0, ΦR

n y = 0) ,

for all pairs(x, z) ∈ (Z8)
n
ω × (Z8)

n
ω. Such a joint probability

does not depend on the typeω only, but on the specific choices
of x andz as well. In particular, letm = 2ζ(ω) be the order
of the smallest subgroup ofZ8 supportingω, and observe
that the subgroup ofZn

8 generated byx andz is necessarily
isomorphic to a group of type8mZ8⊕

8
hZ8 for someh dividing

m (possiblyh = 1 whenx = w). In other words, it is possible
to partition the set of ordered pairs ofn-tuples of typeω as
follows:4

(Z8)
n
ω × (Z8)

n
ω =

⋃

h|m An,ω,h , (34)

with An,ω,h denoting the set of all pairs(x, z) such that the
subgroup< x, z > generated byx and z is isomorphic to
8
mZ8 ⊕

8
hZ8.

The following lemma provides an estimation of the cardi-
nality of An,ω,h. For everyh | 8, consider the probability
measureτh over {0, . . . , 8/h− 1}, defined by

τh(i) := ω(i + 8
hZ8) .

Also, for all 0 ≤ i < h, let ωi
h be the conditional distribution

of ω over the coseti + 8
hZ8, i.e.

ωi
h(j) := τh(i)−1ω(j) , j ∈ i + 8

hZ8 .

Lemma 9 For everyn, ω in Pn(Z8), andh | m, one has that

|An,ω,h| ≤ 4

(

n

nω

)

∏

1≤i≤8/h:
τh(i)>0

(

ni

niωi
h

)

, (35)

whereni := nτh(i) is the number of entries from the coset
i + 8

hZ8 in any n-tuple of typeω.

Proof: Let x andz be in (Z8)
n
ω. A necessary condition

for the subgroup ofZn
8 generated byx andz to be isomorphic

4For two naturalsa andb, a | b stays for “a divides b”.
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to 8
mZ8 ⊕ 8

hZ8 is the existence of someα in the setZ∗
8 of

invertible elements ofZ8, such that

−hαx + hz = 0 . (36)

For (36) to hold, necessarilyz has to belong to the coset
αx+ 8

hZ
n
8 . Thus, whenever (36) holds, the set of positions of

the entries ofx belonging to any coseti+ 8
hZ8 and the set of

positions of the entries ofz belonging to the cosetαi + 8
hZ8

need to coincide. Notice that since bothx andz are assumed
to be of typeω, this implies that

τh(i) = τh(αi) , i = 0, . . . , 8/h − 1 . (37)

For thoseα for which (37) is not satisfied there exists no pair
(x, z) satisfying (36). Thus, with no loss of generality we can
restrict ourselves to considering values ofα such that (37) is
satisfied (as it is the case always forα = 1).

Notice that a necessary and sufficient condition forx and
z both to belong to(Z8)

n
ω is the existence of an index

permutationσ : {1, 2. . . . , n} → {1, 2. . . . , n} such that
σx := x ◦ σ−1 = z. Furthermore, (37) imposes an additional
constraint on the structure ofσ, which has necessarily to be
of the formσ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h ◦ σ̃, where:

• σ̃ is some permutation mapping, for alli, all the indices
corresponding to entries ofx in the coseti + 8

hZ8, into
the indices corresponding to the entries ofz in the same
coset;

• for every i, σi permutes only the indices corresponding
to the entries ofx in i + 8

hZ8.

Thus, for a givenx in (Z8)
n
ω and α in Z

∗
8 such that (37)

is satisfied, we have that the number ofz such that(x, z) ∈
An,ω,h equals the cardinality of the orbit of̃σx under the
action of the subgroup of index permutations

S := {σ = σ1 ◦ σ2 ◦ . . . ◦ σ8/h} ,

where, for everyi, σi permutes only the indices corresponding
to the entries ofx in i + 8

hZ8. Clearly the order of this group
is |S| =

∏8/h
i=1 ni!, while the cardinality of the stabilizer of

σ̃α,xx in S is
∏8

i=1 (nω(i))!, so that the orbit of̃σx in S has
cardinality

8/h
∏

i=1

ni!
/

8
∏

i=1

(nω(i))! =

8/h
∏

i=1

(

ni

niωi
h

)

.

This allows one to conclude the proof.

Lemma 10 For everyn ≥ 1, andω ∈ Ωn,

Var
[

GR
n (ω)

]

≤ 4

(

n

nω

)

m−l
∑

h|m
h<m

h−l

8/h
∏

i=1

(

ni

niωi
h

)

, (38)

for ni defined as in Lemma 9.

Proof: Assume thatx, z ∈ An,ω,h for some h | m.
Notice that, for every1 ≤ j ≤ l, the pair

(

(ΦR
n x)j , (Φ

R
n z)j

)

is uniformly distributed over the subgroup ofZ
2
8 generated

by {(xi, zi) : 1 ≤ i ≤ n}, which is isomorphic toK, the

subgroup ofZn
8 generated byx and z. As K is in turn is

isomorphic to a group of type8mZ8 ⊕
8
hZ8, it follows that

P
(

(ΦR
n x)j = (ΦR

n z)j = 0
)

= (hm)−1 , ∀ 1 ≤ j ≤ l .

Observe that the r.v.s
{

(ΦR
n x)j , (Φ

R
n z)j : 1 ≤ j ≤ l

}

are mu-
tually independent, since they correspond to different rows of
the random matrixΦR

n . Then, one has

P
(

ΦR
n x = 0, ΦR

n z = 0
)

= (hm)
−l

. (39)

It follows from (34), (35) and (39) that

Var
[

GR
n (ω)

]

=
∑

x,z∈(Z8)
n
ω

Cov
[1{ΦR

n x=0},1{ΦR
n z=0}

]

=
∑

h|m

|An,ω,h|
(

(hm)−l − m−2l
)

,

and the claim follows immediately from Lemma 9.

We are now ready to state the main result of this section,
whose proof will involve geometric considerations on the8-
PSK constellation:

Proposition 2 For every 0 < R∗ < R < 3, the minimum
distance of the typical group code of design rateR is upper-
bounded byδ8(R

∗).

Proof: Let ω ∈ ΩR∗ be such that〈ω, d〉 = δ8(R
∗). As an

immediate consequence of Lemma 1 and Lemma 10, one has

Var
[

GR
n (ω)

]

E [GR
n (ω)]

2 ≤

(

n

nω

)−1
∑

h

(m

h

)l
8/h
∏

i=1

(

ni

niωi
h

)

= 2
nmax

h

n

R
3

log m
h
−H(τh)

o

+o(n)
,

(40)
with the indexh, in both the summation and maximization
above, running over all divisors ofm, excludingm itself.

Observe that (17) and (18) imply that the entries ofω satisfy
the following ordering

ω(0)>ω(1)=ω(7)>ω(2)=ω(6)>ω(3)=ω(5)>ω(4).
(41)

Define the setsA0 := {0, 1, 7, 2}, B0 := {0, 1, 6, 3}, and
C0 := {0, 5, 6, 7}. Let A1, B1 andC1 be the complements, in
Z8, of A0, B0, andC0, respectively. It follows from (41) that

ω(A0) ≥ ω(2Z8) , ω(A0) ≥ ω(2Z8 + 1) ,

ω(B0) ≥ ω(2Z8) , ω(B0) ≥ ω(2Z8 + 1) ,

ω(C0) ≥ ω(2Z8) , ω(C0) ≥ ω(2Z8 + 1) .

(42)

Moreover, it is easy to check that|Aa ∩ Bb ∩ Cc| = 1, for
every choice of(a, b, c) in {0, 1}3. Thus,f : Z8 → {0, 1}3,
wheref(x) = (a, b, c) if and only if x is in Aa ∩Bb ∩ Cc, is
a bijection. Then, it follows from (42) that

H(ω)≥H (ω(A0))+H (ω(B0))+H (ω(C0))=3 H(τ4). (43)

Let us now introduce the setsD := {0, 2} andE := {1, 7}.
We have from (41) that

ω(D) ≥ ω(4Z8) , ω(D) ≥ ω(4Z8 + 2) ,

ω(E) ≥ ω(4Z8 + 1) , ω(E) ≥ ω(4Z8 + 3) .
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It thus follows that

H(τ2)= H(τ4)+τ4(0)H
(

ω0
4(4Z8)

)

+τ4(1)H
(

ω1
4(4Z8 + 1)

)

≥ H(τ4)+τ4(0)H
(

ω0
4(D)

)

+τ4(1)H
(

ω1
4(E)

)

.
(44)

Observe that

ω0
4(D) = τ4(0)−1ω(0) + τ4(0)−1ω(2)

= ω0
4(4Z8)ω

0
2(0) + ω0

4(4Z8 + 2)ω2
2(2) .

By the concavity of the entropy function, one has that

H
(

ω0
4(D)

)

≥ ω0
4(4Z8)H

(

ω0
2(0)

)

+ ω0
4(4Z8 + 2)H

(

ω0
2(2)

)

.

An analogous reasoning leads to

H
(

ω1
4(E)

)

≥ω1
4(4Z8+1)H

(

ω1
2(1)

)

+ω1
4(4Z8+3)H

(

ω3
2(3)

)

.

Upon substituting the two inequalities above in (44), one gets

H(τ2) ≥ H(τ4) +
∑3

i=0 ω(4Z8 + i)H(ωi
2(i))

= H(τ4) + H(ω) − H(τ2)

≥ 4
3 H(ω) − H(τ2) ,

last inequality following from (43). Then

H(τ2) ≥
2

3
H(ω) . (45)

Now let (ωn) be a sequence converging toω, with ωn ∈ Ωn

for everyn. By successively applying Chebyshev’s inequality,
(40), (43) and (45), one gets

P
(

GR
n (ωn) = 0

)

≤ Var
[

GR
n (ωn)

]

E[GR
n (ωn)]−2

≤ 2
n max



R
3 −H(τ4),

2
3R−H(τ2),R−H(ω)

ff

+o(n)

≤ 2n(R−H(ω))/3+o(n)

≤ 2−n(R−R∗)/3+o(n) ,

the last inequality following from the fact thatω ∈ ΩR∗ .

Finally, observe that, from Proposition 2 and the continuity
of δ8(R), it follows that the normalized minimum distance
of the typical group code of design rateR is upper-bounded
by δ8(R), thus completing the proof of Theorem 1. From the
bound

pe(G
R
n ) ≥ 2− dmin(GR

n )+o(n) ,

it also follows that the error exponent of the typical group
code does not exceedEx(R) for every design rateR ≤ Rx

8 .

REFERENCES

[1] N. Alon, and J.H. Spencer,The probabilistic method, 3rd edition, Wiley,
Hoboken, NJ, 2008.

[2] A. Barg, and G.D. Forney, Jr., “Random codes: minimum distances and
error exponents”,IEEE Trans. Inf. Theory, vol. 48, pp. 2568-2573, 2001.

[3] A. Bennatan, and D. Burshtein, “On the application of LDPC codes
to arbitrary discrete memoryless channels”,IEEE Trans. Inf. Theory,
vol. 50, pp. 417-438, 2004.

[4] A. Bennatan, and D. Burshtein, “Design and analysis of nonbi-
nary LDPC codes for arbitrary discrete memoryless channels”, IEEE
Trans. Inf. Theory, vol. 52, pp. 549-583, 2006.

[5] R. Blahut, “Composition bounds for channel block codes”, IEEE
Trans. Inf. Theory, vol. 23, 656-674, 1977.

[6] R. Blahut, Principles and practice of information theory, Addison-
Wesley, 1987.

[7] G. Caire, and E. Biglieri, “Linear block codes over cyclic groups”,IEEE
Trans. Inf. Theory, vol. 41, pp. 1246-1256, 1995.

[8] G. Como, and F. Fagnani, “The capacity of finite Abelian group codes
over memoryless symmetric channels”,IEEE Trans. Inf. Theory, vol. 55,
pp. 2037-2054, 2009.

[9] G. Como, and F. Fagnani, “Average spectra and minimum dis-
tances of low-density parity-check codes over Abelian groups”, SIAM
J. Discr. Math., vol. 23, pp. 19-53, 2008.

[10] G. Como, and F. Fagnani, “On the Gilbert-Varshamov distance of
Abelian group codes”, in Proc. of IEEE ISIT 2007, Nice 26-30 June
2007, pp. 2651-2655.
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[30] M. Mézard, and A. Montanari,Information, Physics, and computation,
Oxford University Press, Oxford, 2009.

[31] J.K. Omura, “On general Gilbert bounds”,IEEE Trans. Inf. Theory,
vol. 19, pp. 661-666, 1973.

[32] J.K. Omura, “Expurgated bounds, Bhattacharyya distance and rate
distortion functions”, Information and Control, vol. 24, pp. 358-383,
1974.

[33] J.N. Pierce, “Limit distribution of the minimum distance of random
linear codes”,IEEE Trans. Inf. Theory, vol. 13, pp. 595-599, 1967.

[34] T. Richardson, and R. Urbanke,Modern Coding Theory, Cambridge
University Press, 2008.

[35] D. Slepian, “Group codes for the Gaussian channel”,Bell System
Tech. J., vol. 47, pp. 575-602, 1968.

[36] D. Sridhara, and T.E. Fuja, “LDPC codes over rings for PSK modula-
tion”, IEEE Trans. Inf. Theory, vol. 51, pp. 3209-3220, 2005.

[37] A. Vardy, “What’s new and exciting in algebraic and combinato-
rial coding theory?”,Plenary Lecture at ISIT 2006, [online] av. at
http://media.itsoc.org/isit2006/vardy/



14

[38] R.R. Varshamov, “Estimate of the number of signals in error correcting
codes”,Dokl. Acad. Nauk., vol. 117, pp. 739-741, 1957.

[39] A.J. Viterbi, and J. Omura,Principles of digital communication and
coding, McGraw-Hill, New York, 1979.

Giacomo Como Giacomo Como received the BSc, MS and PhD degrees
in Applied Mathematics from Politecnico di Torino in 2002, 2004 and
2008, respectively. In 2006-07 he was Visiting Assistant inResearch at
the Department of Electrical Engineering, Yale University. He is currently
a Postdoctoral Associate at the Laboratory for Informationand Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA. His current
research interests include information theory, coding theory, and distributed
estimation and control.


