Group codes outperform binary-coset codes on
non-binary symmetric memoryless channels
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Abstract—Typical minimum distances and error exponents (DMCSs). In this case, while structured code ensembles are
are analyzed on the 8-PSK Gaussian channel for two capacity- expected to outperform purely random code constructioiss, i
achieving code ensembles with different algebraic structe. It not a priori clear which algebraic structure is the optima¢o

is proved that the typical group code over the the cyclic grop . . . . .
of order eight achieves both the Gilbert-Varshamov bound ad indeed, many non-isomorphic groups typically exist of orde

the expurgated error exponent. On the other hand, the typica €qual to some non-prime number [25]. As it will be shown in
binary-coset codes (under any labeling) is shown to be boued this paper, it turns out that the choice of the algebraictting

away both from the Gilbert-Varshamov bound (at any rate) s critical for the typical code performance of the ensemble
and the expurgated exponent (at low rates). The reason for tb Rather than presenting a general theory, we shall focus on

phenomenon is shown to rely on the symmetry structure of the - o . . .
8-PSK constellation, which is known to match the cyclic grop a specific case, the additive white Gaussian noise channel

of order eight, but not the direct product of three copies of he (AWGNC) with input restricted to th&-Phase Shift Keying
binary group. (8-PSK) signal constellation: our choice is motivated both by

The presented results indicate that designing group codes the applicative interest of this channel, and by the fact itha
matching the symmetry of the channel guarantees better tygal-  ,re5ants most of the key characteristics of the general case

code performance than designing codes whose algebraic stture - .
does not match the channel. This contrasts the well-known While the arguments of [2] can be easily extended to show that

that the average binary-coset code achieves both the capgcand ~ the typical-code performance of the random coding ensemble
the random-coding error exponent of any discrete memoryles (RCE) is suboptimal, we shall provide precise results far th

channel. ensemble of group codes (GCE) over the cyclic group of order

Keywords: random codes, linear codes, group codes, co&ght: Zs, and the ensemble of binary-coset codes (BCE),

codes, minimum distance, error exponent, Gilbert-Varsham€sPectively (see Sect. II-A for their formal definitionghese
bound, expurgated exponent. results will show that the typical group code has both better

minimum distance and better error exponent than the typical
binary-coset code.
The Gilbert-Varshamov (GV) bound [22], [38] is one of the
As low-complexity modern coding has emerged, based @fost well known and fundamental results of coding theory.
random constructions of linear codes with sparse graphi@iven a rateR in (0,1), and defineds,(R) as the unique
representation [34], the analysis of random codes with-algsolution in (0,1/2) of the equationH(z) = 1 — R (where
braic structure has recently attracted renewed attentiom f F(;) denotes the binary entropy), it states that for every
the research community [2], [30]. In fact, a precise evatut ;, > 1 there exist binary codes of block-length rate at
of the performance of random linear codes, with no conssaineast R, and minimum Hamming distance at leasi,(R).
on their density, is propaedeutic to the theory of low-dgnsit |ts asymptotic tightness is still considered one of longest
parity-check (LDPC) and turbo codes, since it allows one t9anding unproved conjectures in coding theory [23], [37].
quantify the loss in performance due to the sparsity comstra A closely related issue concerns the tightness of the exyperg
On the other hand, it has long been known that randogponent, which is conjectured by many to coincide with the
constructions of algebraically structured codes can otdpe reliability function of the DMC, i.e. the highest achievabl
purely random code constructions. For instance, this is tBeror exponent [18], [31], [32], [5], [39]. Although botheh
case in some problems in multi-terminal information theorglassical GV bound and expurgated bound are mere existence
where random linear codes allow to achieve larger capaci®sults, for binary symmetric memoryless channels it iskmo
regions than purely random codes do [26]. Confining attentighat the typical binary-linear code achieves both the GVriabu
to point-to-point communication, which will be the framesko and the expurgated exponent [17], [33], [2]. It is also known
of the present paper, random binary-linear codes are knowntiat the same does not hold true [2] for the typical random
outperform purely random codes on binary-input symmetrigode, whose performance is bounded away from the GV
output memoryless channels in terms of typical minimumound, as well as (at low rates) from the expurgated error
distances and error exponents [2].

The present paper is concerned with the performance anafMore precisely, using a basic sphere-covering argumeribe@i [22]
proved that for every positive integers and d, there exist binary codes of

ySiS of code ensemples Wit.h group or coset structure, Whﬁ@ck—lengthn, minimum Hamming distancée, and cardinality not smaller
employed over non-binary discrete-input memoryless casnnthan2" /3>, _, (). Varshamov [38] improved on this bound, for finite
lengths. Together with the upper bound on the volume of aretiscsphere

n
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exponent. in terms of typical-code performance. They provide theoaét
Generalizations of the above issues to non-binary DMCs dmindation for the analysis and design of bandwidth-efficie
considered in the present paper. Here, the GV distance andhigh-performance coding schemes based on LDPC or turbo
expurgated bound are defined as solutions of simple finitedes matched to geometrically uniform constellations [3]
dimensional convex optimization problems, having the fori36], [20], [9], [21]. It was empirically observed in [36]
of distortion-rate functions for the Bhattacharyya disesee that LDPC codes oveF.g perform better than their binary-
(7) and (13)). Analogously to the binary case, the RCE can beset counterparts on tleePSK AWGNC: the results of the
easily shown to be bounded away with probability one frompresent paper point out to an analytical explanation fos thi
both the GV distance and the expurgated error exponentptfenomenon.
the 8-PSK AWGNC. The main results of the this paper show We observe that, in spite of the fact that the cyclic gré@igp
that the typical group code achieves the GV bound (Theoramatches the&-PSK constellation, the average error exponent
1), while the typical binary-coset code is bounded away froof the GCE has been shown [8] to be strictly smaller than the
it (Theorem 2). Similarly, the typical group code achieves t random-coding error exponent at low rates (more in general
expurgated exponent (Corollary 1), while the typical bjrar this is the case for group code ensembles over finite Abelian
coset code does not (Corollary 2). groups not admitting Galois field structure, confirming arlyea
As it will be clarified in the sequel, the reason for the&onjecture of [13]). Since, as already mentioned, the asera
outperformance of the GCE over the BCE resides in theror exponent of the BCE coincides instead with the random-
symmetry structure of th8-PSK AWGNC. Such a channelcoding error exponent, it turns out that, at low rates, th&eBC
is symmetric with respect to the action of two groups of ordeutperforms the GCE in terms of average error exponentgwhil
8, the cyclic groupZs and the non-Abelian dihedral groupthe latter outperforms the former in terms of typical error
Dy, none of which supports Galois field structure. In contragtxponent. While this phenomenon might appear paradoxical a
the additive group of the Galois field with elements, which a first glance, it can be explained by the fact that the average
is isomorphic toZ3, the direct product of three copies of thesrror exponent (aannealedaverage in the statistical physics
binary group, does not match tl8ePSK in the sense of [29]. language [30, Ch. 5.4]), provides only a lower bound to the
Thus, the results of the present paper suggest that randiypical error exponent (ajuenchedquantity), by Markov’s
group codes matching the symmetry of the channel outperfomequality. This estimation fails to be tight at rates natsd to
random codes whose algebraic structure does not match ttegtacity, where the average error exponent is dragged down
symmetry. by an asymptotically vanishing fraction of codes with poor
It is well known that, despite not matching the symmetry gferformance. In fact, at low rates, the error probability of
the channel, the BCE achieves the capacity and the randdhre average group code is dominated by the error probability
coding exponent of the3-PSK AWGNC, likewise of any of its binary subcode, i.e. the set of its codewords whose
other DMC [18, pagg.206-209]. Recent works [24], [3], [4]entries belong to the binary subgrodps [8]. Therefore, the
analyzing the performance of binary-coset LDPC codes @nror exponent of the average group code coincides with the
non-binary input DMCs, find information-theoretical basis random coding exponent of the binary-input channel obthine
the aforementioned fundamental results. In contrast, idmo by restricting the input from the whol8-PSK to a pair of
2 and Corollary 2 imply that, when the symmetry of thés opposite elements. This is strictly smaller than thedcan
channel is not matched, the BCE is suboptimal in terms tleeding exponent of the—PSK AWGNC, which is achieved by
typical minimum distance and the typical error exponent. Tihe uniform distribution over the wholg-PSK constellation.
the best of the author’'s knowledge, such a limitation of th@n the other hand, at low rates, the typical error event isesmad
performance of binary-coset codes had not been provedéefdretween the two closest codewords in the code, and the error
On the other hand, group codes for symmetric channels hasponent coincides with the minimum distance. As it will be
been widely investigated in the channel coding literatlifeey shown in the present paper, the typical group code has larger
allow to use more spectrally efficient signal constellationminimum distance than the typical binary-coset code, hénce
while inheriting many of the structural properties enjoyedlso has better error exponent.
by binary-linear codes: uniform error property, invarialis- The remainder of the paper is organized as follows. In
tance profiles, congruent Voronoi regions, minimal encedeiSect. 1, we formally introduce the GCE and the BCE
syndrome formers and trellis representations. The reagler($ect. II-A), and state the main results of the paper (SHeBs
referred to [35], [15], [29], [7], [14], [16] and referencesand II-C). In Sect. lll the most relevant part of Theorem 1,
therein. It is well known [13] that group codes over Abeliashowing that the GCE achieves the GV bound, is proved
groups admitting Galois field structure (i.e. isomorphictp by an application of the first-moment method followed by
for some primep) allow to achieve the capacity and thesome considerations on the geometry of $aBSK constel-
random coding exponent. More recently, information-tie¢ior lation. Proving the tightness of this result requires a sdeo
limits of finite Abelian group codes were investigated in, [8lmoment method and is technically more involved: for the sake
where it was shown that group codes o%gy, allow one to of completeness, a proof is provided in Sect. B. Theorem
achieve capacity on the-PSK AWGNC whenm is the power 2 is proved in Sect. IV by applying the second-moment
of a prime (thus including the case = 8). Theorem 1 and method (Sect. IV-A) and some convex optimization technsque
Corollary 1 show that, at least on tBePSK AWGNC, random (Sect. 1V-B). Finally, Sect. V presents some concluding re-
group codes matching the symmetry of the channel are optimmaérks and points out to generalizations of the results to



101 n : Z3 — X, not all the columns of the induced distance

111 001 function
011 000 Dy : Z3xZ; — RT, Dy (21, 22) := D(n(z2),m(22+21)) ,
3)
010 (00 coincide.
0 We shall consider block-codes C X", and denote their
(b) rate by R(C) := n~llog|C|, their minimum distance by

dmin(C) = min{>." , D(z;,z): * # z € C}, and their
Fig. 1. The8-PSK constellation with: (a) the isometric labelipg Zs — X,  maximume-likelihood error probability b)pe(C). The focus
(b) a binary labelingy : zg — X. The latter is a so-called Gray labeling: f thi il b block-cod ith alaebrai
neighbor signals are assigned labels differing in one digiy. of this pape_r wi _e on block-codes W't alge ra_l(? struc-
ture compatible withZs or Z3, respectively. Specifically,
a group code (over Zg) is the image of a subgroup
) ] ] of the direct group producZg through the componentwise
balanced DMCs. Sect. A is of a technical nature and d'scus%%ensionun . 70 — X" of the isometric labelingy.

some continuity ISSues. As a consequence of the symmetry properties discussed in
Before proceeding, let us establish some basic notatiafaet lI-A, it is easy to check that the minimum distance
The i-th entry of a vectorz will be denoted byz;. The of 4 group codeG := 1, (K) coincides with its minimum
scalar product of two functiong,g : A — R, where A is weight, i.e. duin(G) = min{>,.... d(z;)|lz # 0 € K}.
some finite alphabet, anl is the set of real numbers,_will Similarly, group codes are Kknown to enjoy the uniform error
be denoted by(f,g) := >_; f(i)g(i). Throughoutlog will  hroperty. A binary-coset codes the imageB of a cosetJ
denote the logarithm in bageandH(0) := —>_; 6(i)log 6(i)  of the direct group producE3" through the componentwise
will denote the binary entropy of a probability distributi@. extensiony, : Z3" — X" of an arbitrary binary labeling
With a slight, and common, abuse of notation, foe [0, 1], n:Z3 — X. As opposed to group codes, in general, neither
H(z) will denote the entropy of a Bernoulli distribution with binary-coset codes enjoy the uniform error property, negsdo
parameter:. Finally, 1, will denote the indicator function of tejr minimum distance coincide with their minimum weight.
a setA. In the sequel, we shall see as this reflects on the performance
of random group and coset codes respectively.

Il. PROBLEM STATEMENT AND MAIN RESULTS For every design rat& € [0, 3], and a blocklengttm > 1,
setR :=3— R, andl := |Rn/3|. We shall consider the two

A. Two capacity-achieving code ensembles for §aBSK following code ensembles:

Gaussian channel Group code ensembleFor n > 1, let & be
We shall consider transmission over a memoryless AWGNC a random matrix uniformly distributed ovet,<".

with input constrained on the&-PSK signal constellation Define the random group code

X = {e'¥% . 0 < k < 8} and output spac® = R2. R R

The Bhattacharyya distance function associated tBtRSK Gr = pin (ker ) ;

AWGNC is Binary coset ensemblelet n : Z3 — X be an

N loge ) arbitrary labeling.Forn > 1, consider a random

D:XxX—>R",  Dlz,22):= 22 (|21 =", (1) matrix W%, uniformly distributed oveiz3'**", and

W, be an independent random vector, uniformly
distributed ove#3". Define the random binary-coset
code as

o? being the noise variance. The symmetry grdlipi.e. the
subgroup of permutations & leaving D invariant, is isomor-
phic to the dihedral grous with 16 elements [15], [29],
generated by the rotation around the origin by an angle of B =, (ker UE +W,,) . 4)
%’T and the reflection through a straight line forming an ang
of 2% with the real axis. The constellatiof’ is said to be
geometrically uniform [15], meaning that for every, o € X
there existsr € II such thatr(x;) = 2. Moreover, the cyclic
groupZs is a generating group of [29], i.e.II has a subgroup
G isomorphic toZg such that for allzy, 2o € X there exists
a uniquer € II such thatr(z1) = z3. In particular, let
1u(z) := €5 * be the standard isometric labeling, and consid
the functionD,(z1, z2) := D(u(z1+22), 11(22)). Then, all the
columnsD,,( -, z) coincide with the distance profile

LF‘hroughout the paper, we shall say that txgical group code
(respectively, theypical binary-coset codesatisfies a certain
(in)equality if, for all > 0, the probability thag? (resp. by
BE) violates such (in)equality by more thanvanishes as
the block-lengthn grows large, and the design rakeis kept
constant. We observe that the group code ensemble and the
binary-coset ensemble are sometimes defined as images of
Fhindom generating matrices rather than kernels of random
syndrome matrices, as above. However, while leading to
different properties for finite lengths, it can be shown thath

d:Zs — R, d(z) := D(u(0), u(2)). ) alternative definitions do not alter the asymptotic prapsrof

the typical group, and binary-coset, code.

On the other hand, observe thaly has no subgroup iso- An immediate consequence of the symmetry properties
morphic to Z3. This implies that, for any binary labelingdiscussed in Sect. lI-A is that the optimal input distributis



the uniform one o', both for the8-PSK AWGNC Shannon whered is the squared Euclidean weight function defined in
capacityCs and for its random coding error exponent [18]2). In Sect. A,ds(R) is proved to be continuous and non-
EZ(R). Itis not hard to show that binary-coset codes achiewecreasing as a function of the rae The GV bound for th&-

capacity and PSK AWGNC [6, Th. 10.5.1] states that, for evér< R < 3,
E [pe(Bff)] < 2 nBs(R) and anyn > 1, there exists a block codé, of lengthn
and rate not smaller thaR.®> While the aforementioned is a
lim 1 log E [pe (BR)] = EX(R). mere existence result, the question we want to address here i
n—+4oo N " whetherds(R) is achieved by either the typical group code

In fact, the standard random coding averaging arguments®f the typical binary-coset code. In fact, using arguments
[18, pagg.206-207] as well as the tightness consideratigha2l0gous to those in [2], it is not difficult to see that the
of [19] apply, upon observing that, for every € Z3", the the typical random code sampled from the random coding

event 4, = {UFz = WEW,) has probability8~!, and ensemble does not achieve the GV bound. This is because
thatA.,, A., and A,, are mutually independent for linearlyth® minimum distance of the RCE of design raieturns
independent, 2y, z3 € Z3". out to be the minimum of the relative distance between all

2 n . - . . H
As far as group codes are concerned, the situation HQSS'F’IEU , ') choices of pairs of distinct codewords. Since
different due to the presence of zero-divisorsZig In fact the differences between such pairs of codewords are pairwis

the eventB, := {®%z =0}, for & € Z, does not have independent random variables, uniformly distributed oVér
probability 8 Whengverw lies in a proper subgroup G2, the normalized minimum distance of the typical random code
Nevertheless, it has been shown in [8] that the group codg& P& shown to coincide withy(2R).

achieve capacity, and that their average error probalutity We shall therefore concentrate on the performance of the

be upper-bounded by a term exponentially decreasing in BUP coding ensemble, and the binary-coset ensemble, Here
block-lengthn the algebraic structure prevents the differences betwifen-d

. ent pairs of codewords to be pairwise independent, and this
E [ e(gfj)] < 2 "B (R (5) will be proven to lead to higher typical minimum distances.

o ) ) .. In particular, the following result concerns the GCE:
The exponent appearing in the righthand side of (5) is given

by Theorem 1 (Minimum distance of the typical group code)

T — : s (2 (1

Ej,(R) := min { E§(R), E{(3R), E5 (3 R)} , For all 0 < R < 3, the normalized minimum distance of the
with Ej(2R) and E5(1 R) denoting the random coding errortypical group code of design ratB coincides withis(R).
exponents of the AWGNCs with input restricted over the ]
PSK and the2-PSK constellation, respectively. As shown in Proof: See Sect. Il and Sect. B. .
[8], the bound (5) is necessarily tight for the average error For the BCE instead, we will prove that a typical code
probability both at rates close @, whereE; (R) = EZ(R), sequence almost surely does not meet the GV-bound. More
and at low rates, where insteéd_(R) := E3(1R) < E{(R). precisely, let© be the set of joint probability vectors over

Thus, the error exponent of the average binary-coset cafié x Z3. For0 < R < 3, define the sets

of design rateR (i.e. the exponential decay rate Bfp. (B%)]) _ _
coincides with the random coding exponédft(R), while the Op:={0cO: H(0)>2R, H(v) >R}, (8)
error exponent of the average group code (i.e. the expaienti = ] _ - =
decay rate ofE[p.(GE)]) is strictly smaller thanE;(R) for Or:=10€®: H(#)-H(v)2R, H(v) 2R}, (9)
low R. In other words, even if algebraic constraints do NQtherev(-) = 3, 6(-, z) is the first-component marginal of
affect the capacity achievable by group codes over the 8-P8KpDefine the functions
AWGNC, they do lower the error exponent achievable of the

average group code. In fact, we argue that this claim can be 0,(R) =min{(0,D;): 0 € Og}, (10)
somehow misleading. Indeed, it refers to the performance of - ] _
the average code rather than to the performance of the typica 0y(R) :=min {(0, Dy) : 0 € O} (11)

code sampled from the two ensembles. In contrast, the sesult

stated in the two following subsections show that the tylpicheorem 2 (Minimum distance of the typical binary-coset

group code outperforms the typical binary-coset code, thagde)For every0 < R < 3, the normalized minimum distance

reversing the hierarchies outlined by the average-codgsisa ©f the typical binary-coset code is lower-boundedhy2)
and upper-bounded by, (R). Furthermore,

B. Gilbert-Varshamov bound and typical minimum distances 9,(R) < 0n(R) < 6s(R) . (12)

Let Q2 be the space of probability vectors ov&g, and, for
0 < R < 3, define

L . - 3The definition (7) can be shown to be equivalent to thaEgf R) defined
Qr = {w € H(w) = R} (6) in [6, pag. 399], upon observing that, in the case ofgeSK, the optimizing
distribution in the definition ofE';, (R) has to be symmetric with respect to

0s(R) := min {{w,d) : w € Qgr}, (7)  rotations.

Proof: See Sect IV. [ |



0s Corollary 1 (Error exponent of the typical group code)
0ss For every0 < R < R§, the error exponent of the typical

— Zafgroup

-4 group code of design rat& coincides withEZ (R).

+ RCE

Proof: See Sect. lll. [ |

Corollary 2 (Error exponent of the typical binary-coset
code) There exists som&] > 0 such that, for every) <

R < Ry, the error exponent of the typical binary-coset code
of design rateR is strictly smaller thanEg (R).

Proof: See Sect. IV. |
Fig. 2. A comparison ofg(R) (purple line) ands, (R) wheren : Z3 — X
is the Gray labeling described in Fig.1. As a referefg&R) (which is the
typical normalized minimum distance of the RCE) is plotteddotted red. 11l. PERFORMANCE OF THE TYPICAL GROUP CODE
For the specific choice of the binary labelimg: Zg — X, and the chosen
resolution, it seems thak, (R) = 4, (R). In this section we shall show that the typical group code has

normalized minimum distance, and error exponent, bounded
from below by the GV distance, and the expurgated exponent,

In Fig.2 the normalized minimum distances of the typicar]ﬁspectively. The proof of tightness of these bounds will
group code and of the typical binary-coset code are ploisl;edI stead be given in Sect. B, thus completing the proof of

X ) i . eorem 1. Throughout the sectian,will denote the space
a _fu_nct|on (_)f the design ratB_, together with the normalized of all probability vectors oveZs, (2, C 2 will denote the set
minimum distance of the typical random code.

of all types (i.e. empirical frequencies, see [12]) of ldngt
strings with entries ifZs, and(Zs)" C Z7 the set of lengths

C. Expurgated bound and typical error exponents strings of typew.

We shall apply the first-moment method [1, Ch. 2] to the

For every rate) < R < 3 the expurgated exponermf the )
type-enumerator function

8-PSK AWGNC is

EZ(R) = min {{w,d) + R~ H(w): we Qp} . (13) Gyl (w) = |(Zs)g Nker 7]

counting the number of codewords of typein the random
group code of rateR and lengthn. As a first step in our
analysis, we evaluate the expected vali&?(w)]. It will
prove convenient to denote [2¢(“) the order of the smallest
subgroup ofZg supportingw.

We have the following result:

The expurgated exponefity (R) and the GV distancés(R)
coincide at small rates. Indeed, let := e~/ =) be
the minimizer of the map — (w,d) + R — H(w) over the
whole type spac€, R := H(w") > 0 be the minimum rate
R for whichw® € Qp, andR :=logy", 2e~4(*) denote the
so-called cut-off rate. We have that:

. forratesR? < R < RY, the minimum in (13) is achieved

by w*, and EZ(R) = R} — R;
o for rates0 < R < RZ, Lemma 8 implies that the

Lemma 1 For every design raté < R < 3 and Zg-typew
in P, (Zg) such thatv(0) < 1,

minimum in (13) is achieved by some typesuch that n(H(w)—EC(w)>
H(w) = R, so that E[GHw)] <2 3 .
Eg(R)=0ds3(R), YO<R<Rg. (14) Proof: Let z be ann-tuple of typew, and leth := 23-¢(«)

be the largest power of two dividing all the nonzero entries
The expurgated bound (see [18, pagg.153-157], and [Jc]f'm. Then, every entry;; belongs tohZs, and there exists

pagg.185-186,192-]..95]) guarantees, for all rales ,R <3, somel < ¢* < n such thatz;« is not divisible by2h. For
andn > 1, the existence of a codé, C ™ with rate | _; . ‘et ys denote by; thei-th column of ®%, which
not Estr(nRa)lller_ thanR, and error probability not exceedingjq y y yniformly distributed oveZl. Then, one has that
2 s(B) Sw_nﬂarly to the GV _bound, the_ expurgate_d bound; ._ 2,2 Y, and thatK := Z#i* z;Y; takes values it ZL..
is a mere existence result, while we are interested in whetherovs that

the expurgated exponeh¥ (R) is achieved by random codes. R

In fact, arguments as in the binary case [2] show that theP(®n®z=0) = > pcnP(H = -k, K =k)
expurgated exponent is not achieved, at low rates, by the = Y penz 2~ KWP(K = k|H = —k)
typical random code. Therefore, we shall be concerned with 7l<(w)8

the error exponents of the typical group code, and of the 2 :

typical binary-coset code. The following results will b@pen Now. observe thak, [GR(WH = |(Zs)7| P (@Rm _ 0)_ Then
as consequences of Theorem 1, and Theorem 2, respectivg{¥ c|aim follows from the standard estimation for the birem
(Zs)2] = () < 27O (see e.g. [12)). n

nw



For 0 < R < 3, consider the sets
% {w w(j) =0, Vj ¢ 2Zs, H(w) > %E} ,
Qp = {w:w(j)=0,Vj¢4Zs, Hw) > 1R} .
(15)
Let
64 (3R) = min{(w,d): we Q}}
52 (3R) = min{(w,d): we Q}

be the GV-distances associated to the subconstellatidtaK
and 2-PSK, respectively, and define
R)} .

R). 84 (5R) .0 (5

For R* > R, and a blocklengt, consider the event

F:= U{Gf(w) >1}n {H(w) < %*C(w)} .

Observe that, since the S%w :H(w) > R'¢(w)/3} is con-

tained in the unionQg- U Q%. U Q%., one has that the
inequality dpin (GF) > ndz, (R*) holds whenevef does not

528 := min {58 (

occur. Then, by subsequently using the union bound, Maskov’

inequality, and Lemma 1, one has

P (dwmin(GF) > 62,(R*)) > 1-P(F)
> 1->,E[GEw)]
2 1_2 2 ( W)—RC(W))
> 1—|Q2 B -R)

)

(16)
the last step following from the fact that the numberZaf
types,|Q,| = ("*7) grows only polynomially fast with. (see
e.g. [12]). From the continuity ofz, (R), and the arbitrariness

of R* > R, it thus follows that the typical group code has

normalized minimum distance not smaller than (R).
Clearly, 6z, (R) < és(R). We shall now prove that, in fact,

the equality holds. Observe that our arguments have refigd o

on the algebraic structure of the grofp, while the geometric

properties of th&-PSK constellation have not played any role

so far. In fact, counterexamples can be constructed as in

where Zg(As) = Y, e ), and Ag > 0 solves the
equationH (Zs(As)e~*¢?) = R. Analogously,

64 (3R) = Z e M@ () .
x €27
whereZy(\1) == Y, coz, e~ (@) and)\, > 0 is the solution
of H (Z4()\4)_1€_)‘4d]].228) = %E, and
62 (1R) = d(4)e

where Zy(\2) 1 4 e A2d()
H (Z3(Ao) e R2d®) =

Zy(Mg) 7t

Q= ZQ(AQ)_1€7A2d(4)

)

e and \» > 0 solves
1R. Observe thatv € (0,1/2).

Elementary geometrical considerations based on Pythago-

ras’ theorems allow one to show that

d(4) = 2d(2) = 2d(6) (17)
d(1)=d(7), d(3)=d(5), d(1)=d(4)—d(3) %. (18)
It follows from (17) that
Z4(25) = (1 + e*5d<4))2 =75 (s)°,
for all s > 0. Then, (17) implies that
Z4(2X2) tem P20 = 7,(A0) 72 = (1 — )2,
Z4(2X0) e 2@ = 7,(2)y) TTem 22240 = (1 - a),

2

Z4(2)\2)_1€_2>\2d(4) = Qo .

Therefore,

H (24(2/\2)—16—2>\2d|2z8) — 2H(a) —9H (ZQ(/\Q)—le—Azdlug) ’

so that2\, = \4. Hence,
04 (%R) = Zs(\)H <67A4d]lgzs,d>
= a?d(4) +2a(1 — a)d(2)
= ad(4)
= Zg()\4/2)_1d(4)e_%d(4)
= 62 (R/3) .

(8]

showing that Lemma 2 fails to hold true for other DMCssincedg(R) is defined in (7) as the minimum dfv, d) over

with the same symmetry structure of ti8ePSK AWGNC.

Qg, in order to estimate it from above it is sufficient to

The geometry of th&-PSK constellation allows us to proveestimate(w, d) for some& € Qr. We do so foro defined

the following result:

Lemma 2 For every design raté < R < 3,
ds(R) = 0z5(R).

Proof: For R = 3, trivially 02(3R) = 64(2R) = 6s(R) =
0, and thendg(R) = dz,(R) = 0.

Now, let us assume thdt < 3. Since the entropy function
is concave and the unique minimum of the map- (w, d)
on Q is achieved withw(0) = 1, we can apply Lemma 8
and claim that a minimizew € Qg in the definition (7) of
5s(R) necessarily satisfigdd(w) = R. Then, using Lagrangian

multipliers, we obtain
Ss(R) = Zs(As) ™" Y d(w)e 4
TEZsg

by
©(0) == (1 — )3, o) = w(2) :==0(7) == a(l — a)?,
04) == a?, 0(6) :=(5) == @(3) := a?(1 — a),
(19)
It is straightforward to verify thatl(w) = 3H (o) = R, SO

thatw € Qg. Moreover, it follows from (17) and (18) that

@,d) = X, d=z)w(z)
= a’d(4) +2a*(1 - a) (d(4) - d(1))
+a(l — a)dd(4) + 2a(1 — a)2d(1)

201d(1) (20% — 3+ 1) — $d(4) (20° — 3a — 1)
ad(4) + ad(4) (2d(1) — 2d(4)) (20* = 3a +1)
ad(4),

1
2



last inequality following from (18) and the fact that? — Observe that, since the rows &f* are mutually independent
3a+ 1> 0 for everya € (0,1/2). It follows that and uniformly distributed oveZ3", the probability that thg-
. th row of ®Z is linear dependent on the oth@ — 1) rows is
ds(R) < (@,d) < ad(4) = &2 (R/3) , bounded from above by 3723~ < 2-nR Then a standard
thus concluding the proof. B union-bounding technique implies that the probability o t
_ event A := {UZ is surjectivg is at leastl — n2-"#, and
As a consequence of Lemma 2, and our previous arguments, ofore converges tbasn grows. Now, consider a random
we have proven that the typical group code achieves g o 7 uniformly distributed overZg!, and independent
GV bound. In order to complete the proof of Theorem 1, o 2 Notice that, givend,, the conditioned probability
remains to prove that the normalized minimum distance of the. - <\ \res of the random coskés VR4 W, and(UF)-1Z
typical group code does not exceed the GV distance. ThiSygi, coincide with the uniform distribution on the set of
technically more involved, and will be the object of Sect. B_¢ine spaces oZ3" of dimension3(n — ). Therefore, every
We conclude this section by showing that the typical 9roWtement concerning properties of the typical binaryetos

code achieves the expurgated exponBgit?). For this, we onsemble is not altered if one replaces definition (4) with
shall use the union-Bhattacharyya bound [39], in order to

estimate of the error probability of the GCE in terms of its B =mn, ((¥YH™'Z,) . (23)

type-enumerating functions: .
yp g Therefore, from now on, we shall consider (23) to be the

pe(GH) < ZGf(w)2_"<‘“=d> . (20) definition of the random binary-coset code.

Similarly to what we have seen for the analysis of thg Upper and lower bounds on the minimum distance of the
minimum distance, it is natural to consider the expurgateghical binary-coset code

exponents of tha-PSK and2-PSK AWGNC, given by A first observation is that, since binary-coset codes are not

Ef(3R) = min{(w,d) —H(w)+2R: we Q}}, GU, their minimum distance does not in general coincide with
Eo(lp) — . d)—H IR we Q) their minimum weight, as it is the case fdk-group codes.

2(58) — {<w ) W) +3 w R} Rather, it is necessary to look at all pairs of codewords of a
whereQy, andQ}; have been defined in (15). Then, based apinary-coset code in order to evaluate its minimum distatice
Lemma 1 and (20), a first-moment argument as in (16) allowstherefore convenient to introduce the joint-type-entatieg
one to show that function

P(GE) < 27nBE(R)toln) 9= nBIGUR)) kolr)

4 nES (G (R)to(n)

UR

0) = {(z,y) € (Z3); : V]x=0,0]ly = Z,}

)

(21)

counting the number of pairge,y) of different joint types
for every R’ > R. On the other hand, arguing as in the progfuch that bothy andx + y belong to coset oZ3" given by
of Lemma 2, one can show that the counter-image of,, through¥Z. We also introduce the
enumerating function

E*(R E*(2R EXLIRY. 22
$(R) < B{(3R) < B3 (3R) (22) VW) = |{z € 23); : ¥ie =0}

)

Hence, (21), (22), and the continuity & (R) as a function _ _ _
of the rateR show that the typical group code achieves theounting the number of-tuples in the kernel ofé ;' of dif-
expurgated exponent. ferent types. It is straightforward to check that the noireal

minimum distance of the random binary-coset cds@ is
IV. PERFORMANCE OF THE TYPICAL BINARY.COSET cope diven by

In the present section, we shall prove that the typical jinar  min {(9,D,) : 6 € ©, 3", 6(0,z) <1, UF(0) > 1} .
coset code is bounded away both from the GV distance and ) )
the expurgated exponent. We shall proceed in two steps, Firs;-he average value of the enumerating functlbﬁ_HG) and
in Sect. IV-A, we shall prove that the normalized minimunt»' (w) is easily evaluated as shown in the following:
distance of the typical binary-coset code of design rates
betweend, (R) and 8, (R). This will involve the use of the Lemma 3 For everyd € ©,, letv(-) =3, 0(-,z) € T be
fist moment, and the second moment method, respectivdl§.first-component marginal df. If v(0) <1, then

Then, in Sect. IV-B, we shall prove the rightmost inequaility n n

(12): this will involve some convex optimization arguments E [US(6)] = <n9) 8%, E[V(v)] = (nv) 8"
Throughout, we shall assume to have fixed an arbitrary label-

ingn : Z3 — X, and use the notatio® and®,, for the spaces Proof: For everyz andy in Z3" such thate # 0 we have

of joint probability vectors, and of joint types, respeetiy that¥’z andVy — Z,, are independent and both uniformly
overZ3 x Z3. Also T, andY,,, respectively, will denote the distributed overZ3'. It follows that
spaces of probability vectors, and of types, o%ér

It will prove convenient to consider a slightly differentE [Uff(o)} = Z P(\I/ffcc =0, Uhy = Z’n.) _ <n)821’
version of the binary-coset ensemble, as explained below. (z,y) nf



where the summation above is extended to all pairgy) of Finally, it remains to be considered the cage = o,
joint type 6. The expectatiorE[V,/(v)] is computed analo- with linear dependent, y; andy,. There are at mogt”, )
gously. B possible choices of paifs1,y1) and (2, y2) in (Z3 x Z3)

Fix some B* > R. Using Lemma 3, an argument base&atlsfymg these requirements and for each of them

on a first-moment method, and analogous to the one applied(z1, z2,y1,y2) <P (¥Fz, =0,V y, = Z,) =872
. - Rip) >
n SecF._III, proves.that- the prObab'“tX*thﬁ” (0) = 1f_o*r Therefore, their contribution can be estimated by the third
some joint typef with eitherH(f) < 2R, or H(#;) < R ; : .

S . . addend in the righthand side of (24). ]
goes to zero aa grows to infinity. Thanks to the continuity _
of 4,(R) and the arbitrariness aR* > R, this proves that Let us now fix someR* > R, and some&)* € (2. such
the normahzed minimum distance of the typical binary-tosthat 6,,(R*) = (¢*, D,;). Denote byv* the first-component
code is bounded from below by, (R). margmal of *. Consider a sequence of joint typés,)

We now want to obtain an upper bound on normalizegbnverging to6*, with 6¢,, in ©, for everyn > 1, and
minimum distance of the typical binary-coset code, usinglet (v,) be the corresponding sequence of first-component
second-order method [1]. Toward this end, we need to estimatarginals. Define the event,, := {U[* (9,) = 0}. We can
the variance of the joint-type-enumerating functidh&(¢).  apply Chebyshev’s inequality and use Lemma 3 and Lemma

4 obtaining
Lemma 4 For all n > 1, and every joint typd, P(4,) < Var [Uff(Hn)} E [Uf(en)]_z
2
16 " 1 8 n n\—1 n y—1 n\—1
Var [Uf(@)} S " " — + (nG) + " —57 S 16(nvn) (nen) 8l + (n'un) 8l + 8(71971) 82l
nd ) \nv /) 83! ( ) 83l nf ) 82 () H(8 ) F-H(o))
(24) = on( +_(Un (0))+o(n) 4 9n(R—H(vn))+o(n)
wherew is the first-component marginal 6f 4-2n(2R-2H(0n))+o(n)
Proof: We have Then, sincdim, §,, = §* € Qg+, with R* > R, one has that
lim,, P(A,,) = 0. From this, it follows that the typical binary-
Var UR Z Z wuwz,yhyz), coset code has normalized minimum distance not exceeding
(z1,y1) (2,92) (0%, Dy) = §,/(R*). Finally, from the arbitrariness at* > R,

a standard continuity argument allows one to conclude teat t
normalized minimum distance of the typical binary-coseateo
is upper-bounded by, (R).

where the summations are extended to all p&irs y;) a
(z2,y2) of joint typed, andc(ml,wg,yl,yg) is the covariance
of ]].{\pr] =0,0Ry;=Z,} and ]]‘{‘I’sz =0,0Ryy=2Z,}

We are now going to estimate the covariance terms

¢(1, @, y1, 1), by separately considering four possible difB. Comparingd, (1) and os(R)
ferent linear dependency structures amengxs, y1, andys. We now want to compare the distance boufigls), oy (R),
Observe that, since(0) < 1, ; andxz, need to be nonzero in and §g(R) defined in (10), (11) and (7) respectively. First,
order for the pairgz1,y1) and(z2, y2) to have type. First, observe that any joint typé € O, trivially satisfiesH(6) >
suppose that, z2,y; andy, are linear independent. Then2R, so that®r C © . From this, it immediately follows that
the rv.sW iz, Utz,, Uy, and ¥ty, are independent, sod,(R) > 4, (R). Notice also that the inequality above holds
that c(x1, 2, y1,y2) = 0. as an equality whenevér (R) = (0, D) for some joint type

Second, consider the case when and x, are linear ¢ belonging toOp. It can be shown that this is the case for
independent buk, z2, y; andy, are not so. In this case weevery binary labeling; : Z3 — X for large enough values
have that the random variablégz,, ¥ iz, and¥ly1 — Z, of R, so that oftey, (R) and g, (R) do coincide. However,
are independent, so that we will now concentrate on comparing,(R) with the GV-
C(:c1,w2,y1,y2) <P (\I/ffccl — Wi, —0, \I/fny:Zn) _ g3l glesltjlvcct?:(lgt)t,ew particular showing that the former is strictly
Since there are at most6(",) (")) possible choices of such In order to do that, for a gived < R < 3, we consider
pairs (z1,y1), (z2,y2) of joint type 6, their contribution is the Zs-type w* in Qg giving the GV-distance, i.e. such that
estimated by the first addend in the righthand side of (24).ds(R) = (w*, d). Since the entropy function is concave and the

As a third case, consider paif$;,y:), (x2,y2), such that mapw — (w,d) is linear and it achieves its global minimum in
x, = x9, andx;, y; andy, are linear independent. In thisw(0) = 1, Lemma 8 can be applied to guarantee that*) =
situation the random variableB/z,, U%y, and U7y, are R. Hence, using Lagrangian multipliers we may express it as
independent so that W () = Z(/\)—le—kd(w) (25)

cler@z,yry) <P @1 =0, Uy =Ulyy=2,) =877 where Z(\) := 3, e *®) and X € (0,+00) is the unique
i 1,—Ad
Since there are at moét”)Q( i )71 possible choices of such solution of the equatiofl (Z*(/.\) ) = R. Fromw* & &,
. n/ \nv . S we may define a joint typé* in © as follows. For every in
pairs (x1,y1), (x2,y=2) of joint type 4, their contribution can 73 consider the biiection
be estimated by the second addend in the right-hand side 81’ )

(24). 23— Ts,  ou(x)i=p (n(z+2) —p (n(2))



where the+ sign refers to addition iiZs, while the — refers We are now ready to prove the rightmost inequality in (12).
to difference inZ3. Now define N )
Proposition 1 For every labelingy : Z3 — Zs,
0*(z,2) == 2w* (0:(2)) , z,2 €Z3, (26) -
L _ _ on(R) < ds(R),
and letv* be its first-component marginal. A few S|mplef l0<R<3
properties of9* andv* are gathered in the following: orall < fv<s,
Proof: For z € Z3, let m, := min{D,(z,2) : z € Z3}
Lemma 5 Forall 0 < R < 3, be the minimum element of the-th row of D,,, and M, :=
3 = he set of minimizers. Observe
o* 0 “(2) >0, v 73, (7) 12€ L5 Dylwz) =ma}t . .
(z,2) >0, V(@) >0, v, z€Ly, (2D that D,,(0, z) = D(n(z),n(z)) = 0 for every binary labeling
(0%, D) = 03(R) . (28) 7 and anyz € Z3. Therefore, one hasiy = 0 and |M,| = 8.
o — On the other hand, since no binary labelings isometric,
H(") =3+ R. (29) there necessarily exist some non-costant rougf so that in

H(v*) > R. (30) particular

) ) ) ) EJ:C,ZEZ%: My < Dy(x,2). (32)
Proof: The inequality (27) follows immediately from ) o
(25). For v € T, consider the se®, C © of joint mea-

It is easy to verify that sures with first-component marginal and definef(v) :=
min { (0, D,) : 6 € ©,, H(#)—H(v) > R} . As an immediate

Dy(z,z) = D(n(z),n(z+ 2)) consequence of (30), one has tk_ig(R) < f(v*). Therefore,
= d(p 'z +2)—ptn2)) in order to prove the claim, it is sufficient to show that
= d(o,(x)) f(v*) < ds(R). 3
- z : First, suppose tha} ", v*(x)logn, > R. Then, it is easy
Then (28) follows, since to check thatf(v*) = >~ v*(x)m,. Hence, it follows from,
(0*,D,) = >, 0%(x,2)Dy(z,2) (27), (31) and (28) that
= ¥, tw(0.(2) d (0. (z)) fr) = Xymev(z)
= &(R). < XX, 507(0: (@) Dy(x, 2)

= 03(R),
thus proving the claim. .
Now, assume tha}  v*(z)logn, < R. For anyz # 0 in

From (26) we havey_ 6*(z,2) = £ >, w*(0.(z)) = %,
so that the second-component margifiais the uniform mea-
sure overZj. Again from (26) we have that the conditioned

measure of) on Z3 x {z} coincides withw* o ., for every Z3: We have
z in Z3. Then, one has v*(0) = 3.0%0,2)
H(0*) = H(03)+ 3, 0" (23 x {a}) H(w* 0 0y) = ZN)!
= 3+ H(w") > Z(/\)*lézz e—Ad(o=(2))
= 3+R, = > . 0%z, 2)
showing (29). = v*(x).
Finally, observe thaw® = §3° w" o 0, iS @ CONVEX Hence o+ is not the uniform measure ovéE} and, as a

combination of permutations of the vector. As argued in consequencdl (v*) < 3. Therefore, from (29) and (30)
Sect. II-A, for every labeling; : Z3 — X there exists at least H(6*) = 3+ R > H(v*) + &. Then thanks to the concavit;y/
a pair of nonequal columns of the mat,, i.e. of the entropy function, we can apply Lemma 8, obtaining that

Dy (- 21) # Dy, 22) f(w*) < (0", Dy) = ds(R),

for somezy,z; € Z3. As a consequencé,o 0., # doo., the last equality following from (28). [ |
which, together with (25), implies*oco,, # wgyoo.,. Hence,
from the strict concavity and the permutation invariancéhef
entropy functionH it follows that

It immediately follows from Proposition 1, and the results
of Sect. IV-B, that the typical binary-coset code is bounded
away from the GV distance. In fact, the analogous statement
H(v*) = H (% S owro 01) hoIQs for the expurgated exponent as well. To see that, mggui

L as in [6, p. 413], one can show that
> gZzH(w* 00y)

= H(w") _

_ B Since E§(R) = d3(R) > 0,(R), at low rates, this shows

- ’ that the typical binary-coset code is does not achieve the
showing (30). B expurgated exponent.

pe(Brlf) 2 2_dmin(65)+o(n) Z 2_n377(R)+0(n) .
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V. EXTENSIONS AND CONCLUDING REMARKS and from the expurgated exponent at low rates. Observe that,

In this paper, we have analyzed the typical minimurlf insteadIl does contain a subgroup isomorphicZy), then
distances and error exponents of two code-ensembles for #@ arguments of [2] can be used to show that the ensemble
8-PSK AWGNC with different algebraic structure. We hav@f coset codes ovef, (and in fact the ensemble of linear
shown that the ensemble of group codes dierchieves the COdes overZ,), achieve the GV-bound and the expurgated
GV bound as well as the expurgated exponent with probabilgxPonent with probability one. In other words, we have that,
one, whereas the ensemble of binary-coset codes, under KHypalanced DMCs, having a Bhattacharyya distance functio
possible labeling, is bounded away from the GV bound an@/Mmetric with respect to the action of the groép is a
at low rates, from the expurgated exponent. While the pag¥cessary and sufficient condition or the typical coset sode
has been focused on the specific case ofSHRSK AWGNC, overZ, to achieve the GV-bound and the expurgated exponent.
a closer look at the derivations shows that generalizatiwas
possible to much larger classes of DMCs. AKNOWLEDGEMENTS

On the one hand, it is possible to consider DMCs which The author is indebted to Prof. Fabio Fagnani of Politec-
are symmetric with respect to the action of an arbitrarydinitjco di Torino for motivation, encouragement and suggestio
Abelian group(;, and to characterize the typical asymptotigyhich have led to this work. Some of the proofs, especially
minimum distance achievable by the ensemble of group codggse concerning the arguments on the expurgated exponent,
over G. This idea has been pursued in [10], where it Wasaye been considerably simplified thanks to the valuable

shown that on every.,,-symmetric channel, the ”Ormanzedsuggestions of one of the anonymous referees.
minimum distance (respectively the error exponent) of yipe t

ical group code over.,,, asymptotically achieves the minimum
of the GV distances (the expurgated exponents) associated t
all the nontrivial subgroups dZ,,. Then, one is left to verify ) S o
whether results analogous to Lemma 2 hold true, showingTh'S section is devoted to the proof of the continuity of
that proper subgroups cause no loss in the performancetl'éﬁ some functions which have been defined in the paper as
the typical group code. solutions of finite-dimensional convex optimization prexols,

On the other hand, it is interesting to see how the in$ich as the GV-distancés(R) and the expurgated error
possibility results of Sect. IV can be generalized. ConsidgXPonentEg (R), as well as the bounds, (k) and é,(R).
a DMC with input X, of cardinality |X| = p" (where We shall obtain these results as a consequence of the general
p is a prime number and a positive integer), outpup, |emmas presented below.
and transition probabilities®(y|z). Define the Battacharyya For some fixedi > 1, let= C R” be a compact and convex

APPENDIXA
SOME LEMMAS ON CONTINUITY

distance function set. It is a standard fact that any lower semicontinuous().s
function achieves its minimum on every closed nonempty
D(x1,22) ::—log/ v/ P(y|z1)P(y|z2)dy . subsetC C Z. Consider two functiongy : = — R and
Y h:Z — R, and define

Assume that the DMC has has zero-error capacity equal to _ ) _
zero, so thatD(z,x2) is finite for everyzy,z, € X, and f:R—R, fly) =1nf {g(&)|§ €2 h(§) <y} .

further that it is balanced (see [32]), i.e. that, foralk € X, _ _ _ _ (3
It is immediate to verify thaff (y) is nonincreasing iny. The

{D(z,2): z€ X} ={D(z,2): v € X} ={d(x) : z € X'}, following simple result was proved in [9, Lemma 8.1].

for somed : X — R. Then, the GV distance and the expur-
gated exponent are respectively given by (see [11, pag).18é|-]e
s

§(R) := min{{w,d) : w € Qgr},

mma 6 If g and h are both l.s.c., therf defined in (32) is
.C.

Notice that, even ifg and h are both continuoush fails
E*(R) := min{{w,d) — H(w) + R : w € Qr}, in general to be continuous; in fact it is simple to provide
where, for0 < R < log | X|, counterexamples.ir! this sense, wﬁehas Iocal_minima which
o o are not global minima. By ensuring that this cannot happen
R:=log|X| - R, Op:={wePX):Hw)> R}. (for instance requiring thab is convex), it is possible to

Now consider the automorphism group, i.e. the subgroup %t{engthen the previous resuilt and prove continuity.of

distance-preserving permutations f

—_ —_

Lemma 7 If g : = — R is continuous andh : = — R is |.s.c.
IT:= {r: D(n(x1),7(x2)) = D(x1,22),Vr1,22 € X} . and such that every local minimum is necessarily a global
minimum, thenf defined in (32) is continuous gh*, +00)

Assume thatll does not have any subgroup isomorphic t\%hereh* — min {h(¢) | € E)

Z,. Then, for any labeling; : Z, — &, the matrix D,
defined as in (3) has at least two distinct columns. Then, Proof: Since f is nonincreasing and |.s.c. by Lemma 6,
it follows that both Theorem 2 and Corollary 2 continue tg remains to show that

hold for the ensemble of coset codes oy, which turns

out to be bounded away from the GV distance at any rate, lim f(yn) < f(y) (33)
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for every increasing sequendg,) C [h*,+00) converging so that, sincey < h*, there exists) < A* < 1 such that
to somey > h*. Notice that the existence of the limit inh(&y-) < h(£) < y. From the convexity ofj, it follows that
the lefthand side of (33) is guaranteed by the monotonicity . . . . o
of f. From the semicontinuity ofy and h, there exists 9(&x-) < Ag()+(1-A")g(€") = A"g()+(1-A")g" < g(£) -
some ¢ in £ such thatf(y) = g(¢) and h(¢) < y. If Then, f(y) = min g(€) <

h(§) < y, thenh(§) < y, for sufficiently largen, so that S h(©<Zy

Flyn) < g(€) = f(y) definitively in n and (33) follows. Thus P& @ minimizer. u
we can assume that{¢) = y. Sincey > h* the point{ is not a
global minimum forh. Hence, it is not even a local minimum
for h, by assumption. It follows that every neighborhood of
¢ in = contains some such thath(¢) < h(z). It is then
possible to construct a sequen@,) in = converging to¢

g(€x-) < g(€), so that¢ cannot

APPENDIXB
AN UPPER BOUND ON THE NORMALIZED MINIMUM
DISTANCE OF THE TYPICAL GROUP CODE

and such that(¢,) < y for every n. From (&,) we can  In this section we shall show that the normalized minimum

extract a subsequen€g,, ) such thath(&,,) < yi for every distance of the typical group code of design rateloes not

k. Therefore we hav¢ (yx) < g(§,,) and so exceed the GV distancés(R), thus completing the proof
. . of Theorem 1. Our arguments involve an application of the
lim f(yn) < hmksupg(gnk) =9(&) = fy). second moment method [1, pagg.43-63].

thus concluding the proof - The key poir_1t consis_ts in estimating the covariance of the

' type-enumerating functio6Z (w), for every typew € €,,. For
By consideringZ2 = Q, h(w) = —H(w) and g(w) = this, one has to compute the joint probabilities
(w,d) (respectivelyg(w) = (w,d) + R — H(w)), Lemma 7 R R
implies the continuity ofds(R) (EZ(R)). Indeed, observe P(®yz = 0,0,y = 0),

that —T(-) is convex and therefore does not admit locghy o pajrs (2, z) € (Zs)" x (Zs)r. Such a joint probability
minima which are not glqbal minima. Similarly, the contityui 4oaq not depend on the typeonly, but on the specific choices
of d,(R) follows by taking = = ©, g(0) = (0, D), and o - and » as well. In particular, letn = 2¢) be the order
h(f) = max{—5H(6), -~ H(v)}, wherev is the first com- of the smallest subgroup dfs supportingw, and observe
ponent marginal ob. Observe_tha’h is convex, as it is the that the subgroup of generated byr and z is necessarily
maximum of two convex functions. isomorphic to a group of typé Zs @ 8 Zs for some dividing
Finally, the continuity ofé,, (R) follows again by applying ;,, (possiblyh = 1 whenz = w). In other words, it is possible

Lemma 7 with the choiceg = ©, g(0) = (0,D,), and o partition the set of ordered pairs aftuples of typew as
h(#) = max{—H(0) + H(v),—H(v)}. In this last case, fg|iows:*

the absence of strictly Ioca] minima df. can be verified (Zs)" x (Zg)" = Unjm Aot (34)
directly as follows. If¢ € © is a local minimum forh(-),
and h(9) = —H(6) + H(v), then, for everyz such that with 4, ,; denoting the set of all pairge, z) such that the

v(x) > 0, necessarily the conditional measuréai {z} xZ3 subgroup< x,z > generated byr and z is isomorphic to

coincides with the uniform distribution ovés. It follows that 2 7Zg & $7Zs.

h(f) = —3, and thereford is a global minimum. The following lemma provides an estimation of the cardi-
We end this section with the following result, giving sufnality of A, . . For everyh | 8, consider the probability

ficient conditions for the minimizer of a convex optimizatio measurer, over{0,...,8/h — 1}, defined by

problem to satisfy the constraint with equality.

(1) == w(i + %Zg) )

Lemma 8 Letg, h : = — R be convex functions. Ll := 155 for all 0 < i < h, letw!, be the conditional distribution

mineez g(§) be the global minimum of, and consider the of w over the cosef + 87, i.e

set=* := {¢ : g(¢) = g*} where such minimum is achieved. hommr

Then, for all wi(G) = () 'w(),  jEit s,
y < h*, h* := min h(£), _
ge=r Lemma 9 For everyn, w in P,(Zs), andh | m, one has that
any minimizerg, for the convex optimization problem n ng
F) = min_g(© e <1(0) T (1) @9
h(E)<y U

necessarily satisfie =q. . .
y §(&) =y wheren; := n7,(¢) is the number of entries from the coset

Proof: Let¢ € = be such thab(¢) < y, andg(€) = f(y). i+ 2Zs in any n-tuple of typew.

Sinceh(&) < y < h*, necessarily(£) > g*. Consider some . " .
¢* € =* such thath* = h(€*), and, for0 < A < 1, define Proof: Let  and z be in (Zg)_,. A necessary condition

£x := A + (1 — \)&*. Then, by the convexity of, we have for the subgroup ofZg generated by andz to be isomorphic

h(&x) <A+ (1 =Nh(E) <Ay+ (1 —=Nh", 4For two naturalsa andb, a | b stays for ‘@ divides b".



to £7Zs & $Zs is the existence of some in the setZj of
invertible elements o¥g, such that

—hax +hz=0. (36)
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subgroup ofZg generated byr and z. As K is in turn is
isomorphic to a group of type Zs @ £Zs, it follows that

P ((®fz); = (®52); =0) = (hm) ™", Vi<j<lI.

For (36) to hold, necessarilg has to belong to the cosetObserve that the r.v.§(®fz);, (®5z2);: 1 < j <1} are mu-
oz + %Zg. Thus, whenever (36) holds, the set of positions déially independent, since they correspond to differentsrofv
the entries ofc belonging to any coset+ %Zg and the set of the random matrix®Z. Then, one has

positions of the entries of belonging to the coset: + %Zg

need to coincide. Notice that since bathand z are assumed

to be of typew, this implies that

(i) = (i), i=0,...,8/h—1. (37)

For thosex for which (37) is not satisfied there exists no pair
(z, z) satisfying (36). Thus, with no loss of generality we can

restrict ourselves to considering valuescobuch that (37) is
satisfied (as it is the case always for=1).
Notice that a necessary and sufficient condition #oand

P (9Fz = 0,882 = 0) = (hm) ™" . (39)

It follows from (34), (35) and (39) that
Var [GE(w)]

> Cov[L{erz—oy; Liaorz—o}]
x,z€(Zs)"
m72l) ’

E |An-,w-,h| ((hm)il -

h|lm

and the claim follows immediately from Lemma 9. |

We are now ready to state the main result of this section,

z both to belong to(Zs)” is the existence of an indexwhose proof will involve geometric considerations on #ie

permutations : {1,2....,n} — {1,2....,n} such that

PSK constellation:

ox = x oo ! = z. Furthermore, (37) imposes an additional
constraint on the structure of, which has necessarily to beProposition 2 For every0 < R* < R < 3, the minimum

of the forme =l 002 0...008" 0 5, where:

e § is some permutation mapping, for aJlall the indices
corresponding to entries of in the coseti + %Zg, into

the indices corresponding to the entrieszoiin the same . .
P 9 immediate consequence of Lemma 1 and Lemma 10, one has

coset;

« for everyi, o permutes only the indices corresponding

to the entries ofc in i + £Zs.
Thus, for a givenz in (Zs) and « in Z§ such that (37)

is satisfied, we have that the numberzofuch that(x, z) €
An.w.n €quals the cardinality of the orbit afz under the

action of the subgroup of index permutations

S:={oc=0'00%0...00%"},

distance of the typical group code of design rdtds upper-
bounded bys(R*).

Proof: Let w € Qg+ be such thatw, d) = ds(R*). As an

,8/h

n ( n;
i
L1 \niw},

(L) ST

n m}?x{ ?log o —H(Th)}+o(n)

Var [Gf(w)]
E[GE(w)]”

)

(40)

= 2

with the indexh, in both the summation and maximization

above, running over all divisors ofi, excludingm itself.
Observe that (17) and (18) imply that the entries)afatisfy

where, for every, o' permutes only the indices correspondingne following ordering

to the entries ofc in ¢ + %Zg. Clearly the order of this group
is |S| = Hfl} n;!, while the cardinality of the stabilizer of

Gazxin Sis ]'[f:1 (nw(1))!, so that the orbit oz in S has
cardinality

8/h

I

i=1

8/h 8
ng

]:[ln'/lj[l (nw(i))! = (mw,ﬁ) .

This allows one to conclude the proof.

Lemma 10 For everyn > 1, andw € Q,,

Vas (6] <41 ot S0 0

h|m
h<m

8/h

() ©

for n; defined as in Lemma 9.

Proof: Assume thatr,z € A, . for someh | m.
Notice that, for everyt < j <, the pair((®]Jz);, (P5z);)
is uniformly distributed over the subgroup @£ generated
by {(x;,2) : 1 < i < n}, which is isomorphic toK, the

w(0)>w(l)=w(7)>w(2)=w(6) >w(3)=w(5)>w(4).
(41)
Define the sets4, := {0,1,7,2}, By := {0,1,6,3}, and
Cy :={0,5,6,7}. Let A;, B; andC} be the complements, in
Zs, of Ay, By, andCy, respectively. It follows from (41) that
w(A4p) > w ) w(Ao) > w(2Zs + 1),
w(By) > w ) w(By) > w(2Zs + 1),

w(C’O) Z w(2Zg) 5 W(C()) Z w(2Zg + 1) .

(2Zs)
(2Z8 ) (42)
Moreover, it is easy to check that, N B, N C.| = 1, for
every choice of(a, b,¢) in {0,1}2. Thus, f : Zg — {0,1}3,
where f(z) = (a,b,c) if and only if z is in A, N B, N C,, is
a bijection. Then, it follows from (42) that

H(w)>H (w(Ao))+H (w(Bo))+H (w(Co)) =3H(r4). (43)

Let us now introduce the sef3 := {0,2} andF := {1, 7}.
We have from (41) that

w(D) > w(4Zs),
W(E) > w(dZs +1),

(D) > w(1Zs +2).
w(F) > w(4Zs + 3) .



It thus follows that
H(m)= H(74)+74(0)H (w
> H(T4)+T4(O) H (w

7]
(4Zs)) +72(1) H (w}(4Zs + 1)) i8]

(D)) +74(1)H (wi(E)) .

O Ao

(44) (9

Observe that
AD) = 74(0) w(0) +74(0) 'w(2)

wi (4Zs)w (0) + wi(4Zs + 2)w3(2).

By the concavity of the entropy function, one has that

H (w3(D)) > wj(4Zs) H (w3(0)) + wi(4Zs + 2) H (w3(2)) -

An analogous reasoning leads to

H (w}(E)) 2w} (4Zs+1) H (w} (1)) 4wl (4Zs+3) H (03(3) . Y
[15]

Upon substituting the two inequalities above in (44), ones ge

[20]

[11]
[12]

[13]

Hi) > Hir) 45wtz + ) HEAD) O
= H(m)+ Hw) — H(m) [17]
> 2H(w) —H(r), (18]

last inequality following from (43). Then [19]

2
H(rz) 2 3 Hw). (45) 20
Now let (w,,) be a sequence convergingtowith w,, € ,,
for everyn. By successively applying Chebyshev’s |nequallt¥21]
(40), (43) and (45), one gets

P (G,}f(wn) = 0) < Var [Gf(wn)] E[GE(w,)] 2 [22]

2n max{ g —H(74), %E—H(Tg),E—H(w) } +o(n) [23]

< on(R-HW)/3+o(n) (24]
< 2771(1%71%*)/3+0(n)7
the last inequality following from the fact that € Qp-. B EZ}

Finally, observe that, from Proposition 2 and the contiuit
of dg(R), it follows that the normalized minimum distance27]
of the typical group code of design rafeis upper-bounded
by és(R), thus completing the proof of Theorem 1. From the
bound [28]

pe(gf) > 27dmin(g§)+0(n)

)

it also follows that the error exponent of the typical grouf®
code does not exceeld”(R) for every design raté? < R§. 30
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