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Abstract—Minimum distances and maximum likelihood error  power law decay, usually referred to as theerleaver gain
probabilities of serial turbo codes with uniform interleaver are \was shown to depend only on tlieee distanceof the outer
analyzed. It is shown that, with high probability, the minimum ancoder, which turns out to be the main design parameter of

distance of serial turbo codes grows as a positive power of . . .
their block-length, while their error probability decreases ex- serial turbo codes. The effect of the inner constituent daco

ponentially fast in some positive power of their block-lengh, Was analyzed by considering the limit performance in thé hig
on sufficiently good memoryless channels. Such a typical ced signal-to-noise ratio (SNR). The fundamental design patem
behavior contrasts the performance of the average serial tho  characterizing the performance in this regime is éfiective
code, whose error probability is dominated by an asymptotielly  fee gistanceof the inner encoder, defined as the smallest
negligible fraction of bad interleavers, and decays only asa iaht of cod ds obtained wh ,th . t dofthei
negative power of the block-length. The analysis proposedni weightorco ewolr S obtainedw ep € inputword o .elnner
this paper relies on precise bounds of the minimum distance €ncoder has weight two. These ideas have been rigorously
of the typical serial turbo code, whose scaling law is shown formalized first in [20] and then, in a more general setting,
to depend both on the free distance of its outer constituent in [18], where also a lower bound is proved differing from the
encoder, which determines the exponent of the sublinear gvath upper bound only by a multiplicative constant, thus showing
in the block-length, and on the effective free distance of & that the b d is tiaht for th ial t l; d
inner constituent encoder, which appears as a linear scal@ al the bound is tignt tor averagg serial turbo code .
factor. Hence, despite the lack of concentration of the marium In fact, the average code analysis has been the main tool
likelihood error probability around its expected value, the main used in the literature to study the performance of turbo and
design parameters suggested by the average-code analysisnt turbo-like codes in the ‘waterfall’ SNR region, see e.g.][11
out to characterize also the pe(form_ance of the typlcal se_al 191, [26], [1], [23], [19] for a (non-exhaustive) list of eraples
turbo code. By §howmg for the first time that.the typlcgl seral of papers on the averade error probability of serial tuike-|
turbo code’s minimum distance scales linearly in the effedte free pap ) ) 9 p Yy -
distance of the inner constituent encoder, the presented selts €nsembles, including recent work. The effectiveness of the
generalize, and improve upon, the probabilistic bounds of Kthale ~design based on the average performance might lead one to
and Urbanke ('97), as well as the deterministic upper bound b pelieve that there is a concentration phenomenon, i.e stim
Bazzi, Mahdian, and Spielman ('09), where only the depend@® 5| codes perform closely to the average one. In this paper, w
on the outer encoder’s free distance was proved. L . .
_ ~shall prove that this is not the case, as the typical serialotu
Index Terms—Turbo codes, serially concatenated codes, mini- code performs much better than the average one. Neversheles
mum distance, error probability, typical code analysis. as explained in the sequel, the typical serial turbo codlysisa
shows the relevance of the same design parameters higddight
|. INTRODUCTION by the average code analysis, namely, the free distance of

Serially concatenated convolutional codes with random ime outer encoder and the effective free distance of therinne

terleaver, briefly serial turbo codes, were introduced i [5ENCOder. _ _ _
together with an analytical explanation of the simulation A notable exception to aforementioned literature based on

results. The authors based their analysis on the so-call3§ average turbo code analysis is provided by the early
uniform interleaver a conceptual tool first introduced in [6]Manuscript [22], whose focus is on the probability distion

in order to explain the performance of Berrou et al.'s pataIIOf the minimum distance of parallel and serial t_u_rbo code
turbo codes [7]. In a nutshell, the idea consists in fixing gfhsembles, rather than on the _ML error probability of the
outer and the inner constituent encoders, and in estiméting 2Verage turbo code. A related line of research has focused
maximum likelihood (ML) error probability averaged ovet alon detgrmlnlstlc bounds on the minimum distance, mmatgd
possible interleavers. The main result in [5] is an uppemioouPY Breiling [8] for parallel turbo codes, and developed in
to the average error probability which decays to zero asif Serial case in [4], [25]. A side research effort has also

negative power of the interleaver length. The exponentolﬁsuconcemed algorithms for numerical computation of minimum
distance, see in particular [16].

An earlier version of this work has been presented at the t#rriational It is shown in [22] that, with high probability, the minimum

Symposium on Turbo Codes and Related Topics held in Munigrm@ny, distance of serial turbo codes grows liRel—2/d¢ where N
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have ML error probability decreasing to zero exponentiadly weight enumerators of convolutional codes which will beduse
a positive power of the block-length, thus showing that, dubroughout the paper. Section 4 contains all the main resuilt

to the presence of an asymptotically vanishing fractionad b minimum distances of serial codes. Finally, in Section 5 we
codes, the average-code analysis provides too consanatiprove our main results on the typical behavior of minimum
prediction of the behavior of thgypical serial turbo codeln distance and ML error probability and a number of related
fact, an analogous phenomenon has long been known to ocasults. The most technical proofs are deferred to Appehdix
for other code ensembles, most notably LDPC ensembles [1®hile Appendix Il contains some extensions.

as well as for random (linear) code ensembles at low rates [3] Before proceeding, we establish the following notational
However, despite the lack of concentration of the seridddur convention, to be used throughout the paper. When deal-
code ensemble’s performance, the results in [22] show thayy with quantities depending on many parameters, such

the scaling law of the typical serial turbo code’s minimunas w,d, N,n..., we shall implicitty assume that all the
distance is characterized by the outer encoder’s freerdista parameters are depending v, but we shall avoid cum-
d¢, which is the same main design parameter suggested i®rsome notationvy,dy .... Hence, a statement such as

the average code analysis [5], [20], [18]. On the other hartds N grows large, ifd = o(N) and w < d, then
no design parameter of the inner encoder emerges from thev,d, N) = o(N®)" means that ifd = dy, w = wy
analysis proposed by [22], [4]. satisfy wy < dy and dy/N — 0 when N — oo,
The main contribution of the the present paper consists tinen limy . f(wn,dn, N)/N® = 0. When we say o is
showing that the scaling law of the performance of the typicaonstant’ we mean it does not depend ®n We shall also
serial turbo code does depend also on the inner constituemite f(N) = w (g(N)) to meang(N) = o(f(N)).
encoder’s effective free distance, to be denoteddby We
shall prove (see Theorem 1) that, with high probability, the Il. PROBLEM SETTING

minimum distance of serial turbo codes scales like In this section we establish some notation on convolutional

di N1=2/d7 encoders, and introduce the serial turbo code ensemblee Sin

we do not want to put a priori limitations on the rate of

UPl toTsh(_)me colnstants \?.'h'Ch de(sz_end on the outelr] en?og%stituent encoders and/or their structure (e.g., Syaiem
only. 1his result generalizes and Improves upon the afor, ncoders), we shall consider below general convolutional
mentioned probabilistic bounds of [22, Thm. 2]. We shall | 4ers

also prove (see Theorem 2) a deterministic upper bound on

the minimum distance of serial turbo codes, which shows )

an analogous dependance on the inner and outer encodrgconvolutional encoders

parameters. This result generalizes and improves upon somin this section, we recall a few definitions and properties

of the bounds of [4], with the main improvement consistingf convolutional encoders that are essential for this paper

in highlighting the dependance of the bound on the inn&ve refer the reader to [13] and [21] for classical results on

encoder’'s parameters. Also, it improves asymptotically aronvolutional encoders, and to [14], [12], [18] for moreaikst

the best known deterministic bound for minimum distancen those properties which are useful in the study of turke-li

of serial turbo codes, presented in [25]. Finally, by meam®ncatenations.

of code-expurgation techniques, these results will allestas  Consider a map

show (see Theorem 3) that the ML error probability of the

typical turbo code decreases exponentially fast in a pesiti

power of the block-length. i.e., » maps an input word which is an infinite sequence of
The analysis performed in this paper involves, on the oR@ctord havingr bits each into an output word which is an

hand, precise bounds on the tails of the probability distidn infinite sequence of vectors havingbits each. We say that

of the serial turbo code’s minimum distance, whose proofse map¢ is a convolutional encodeif it admits a linear

heavily rely on the combinatorial ideas developed in [22}. Ofinite state-space realization. This means that the reiship

the other hand, our proof of the deterministic upper bounsbtween the input and the output words (codewords) can be

makes use of some of the techniques devised in [4]. For @bscribed by a linear dynamical system with finite memory.

the probabilistic bounds, we shall present completely-seffiore precisely, there exist a state spate= Z5 and matrices

contained proofs. Our choice is in the interest of readgbili . ¢, H, W of suitable dimensions and with binary entries,

both since the manuscript [22] has not been published yelt, aguch thaty = #(u) if and only if there exists a (unique) state
because our results do not follow from the statements in [22dquence: < (Z5)N such thatz(0) = 0 and, for allt,

but rather involve some suitable modification of the argutsien
therein. Moreover, we shall consider a family of constituen®(t+1) = Fz(t)+Gu(t),  y(t) = Hz(t)+Wu(t). (1)

encoders which is more general than the one defined in [2@Je shall say thar is the state sequence associated with
where only systematic recursive convolutional encoderatef  The state realization is usually pictorially representecha
1/2 were used. labeled graph, called trellis. To construct the trellis; éach

~ The remainder of the paper is organized as follows. In Secz 1y, draw 2+ points, corresponding to elements of the state
tion 2 we introduce in a formal way the serially concatenated

codes. Section 3 gathers some fundamental bounds on tHe&hroughout this paper, vectors are column vectors.

¢ (Zp)" — (23)",
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Fig. 2. A serially concatenated encoding scheme.

—
/ choose the terminating input§ N),...,a(N + v — 1) to be
{ i a linear state-feedback, i.e., to have the farth) = — Kxz(t)
N forallt=N,...,N+v—1, for a suitableK € Z," which
o |/ ~,) U/ depends only on the encodér not onw nor on N. In this
L L — paper, we shall assume that, given a convolutional encoder
Fig. 1. Section of the trellis associated to a convoluticeratoder. At time & matrix K’ has been chosen allowing one to construct the

t > 0, the state isz(t) € Z&. Then, in response to an inpu(t) € Z5, an  terminating inputs. Then, the block termination gfafter N

outputy(t) = Hxz(t) + Wu(t) € Z3 is produced, and the state is updatedra|lis steps is defined as the map
asxz(t+ 1) = Fa(t) + Gu(t) € Zk.

\.

on 25N — Z3 )

spaceX; then draw an edge from stateat timet to statex’ which associates to an input word
at timet + 1, with input labela € Z5 and output labeb € Z3 (u”(0),uT(1),...,ut (N = 1))T
if and only if 2’ = Fx + Ga andb = Hxz + Wa (see Fig. 1).

The minimal realization (i.e., the one having the smalle
1) of a given convolutional code is unique (up to a chang@T(o)’yT(l)
of basis for the state space), and has the observability and
controllability properties which are essential for defipithe Such that
terminated encoders (see below) and for proving Lemma 1. 1a(u(0), u(1),...,u(N=1),a(N),...,a(N+v—1),0,...)

the output word
vy T (N=1),y (N),o gt (N v = 1)7

this paper we shall always assume that we are using a minimal

R : . ) = (y(0),y(1),...,y(N=1),y(N),...,y(N+v—1),0,...),
realization, in a fixed choice of coordinates for the statrsp (4(0),5(1) u ) y( ) y(N+v ) ) _
and we shall refer to it as the trellis of the encoder. where@(N),...,a(N+v—1) is the above-described termi-

A convolutional encoden is said to berecursiveif, for ~nating input obtained as a linear state-feedback. Suctcehoi
every input wordu with Hamming weight wy (u) = 1, the of the terminating input immediately implies that; is a Z-
corresponding codeword(u) has infinite Hamming weight. linear block encoder.

The encoder is said to hen-catastrophidf every codeword
¢(u) having finite Hamming weight comes from an input word. Serially concatenated convolutional encoders with @nd
u which also has finite Hamming weight. THiee distance interleaver

and theeffective free distancef ¢ are defined as We start from two convolutional encoders

dg := min{wr(d(u)) : u# 0}, ¢ (ZHN = (ZEY, ¢ (2N — (ZL)N.
and Let v, and v; be their corresponding constraint lengths and
de := min{wy(¢(u)) : wu(u) =2}, let N be a positive integer such thatividesr(N +1,). Let
My be such that
respectively.
Givenu e (Z3)N, we define thesupportof u assupp(u) := sMy =7(N + o),

{t € Z : u(t) # 0} . Theblock-terminatiorof a convolutional 5.4 |et

encoder¢ after N trellis steps is defined as follows. Fix

N € N, consider an input word: with u(t) = 0 for all Ky =1(Mn +v) =U(5(N +vo) +14).

t > N, and letx be the associated state sequence. NOt'e,eonsider the block terminations of and¢' after N' and My
that the state sequence and the output wordy = ¢(u) trellis steps, respectively:

may not be supported in the same interval. Indeed, it can

happen thatz(N) # 0 andy(N) # 0. However, thanks to ¢+ ZEN -z o) oy - ZMN - 7h

the controllability of the minimal realization (see, e.f27]

or [14]) there exists an integer € [0, u] (called constraint Finally let my be a permutation of lengthi,y and denote

by the same symbaty : Z3MY — Z3M~ the corresponding

lengthand not depending on the particulamor on N), and : : . X
; T . linear isomorphism. The serially concatenated encodesiden
an input wordz coinciding withw on [0, N — 1] and supported Lo ; o
e(raed in this paper is the composition

inside [0, N + v — 1] such that the associated state sequenc
7 hasi ., = 0 and thus also the corresponding output word Py o TN 0 % 1 ZEN — ZEN
is supported if0, N 4+ v — 1]. Moreover, the pole placement

theorem (see, e.g., [27]) ensures that it is always posaibledep'Cted in Fig.2. We shall refer t6° as theouter encoder

to ¢' as theinner encoderand towy as theinterleaver
2Throughout this paper, Hamming weight is to be intendedmse, i.e., . ThrothOUt thls.paper we shall make the fOllOWIhg assump-
the number of ones in the word, and not the number of non-zectoss. tions on the constituent encoders:



0,0

Assumption 1. The outer encoden® : (Z5)N — (Z5)N is  [o}— 17@
non-catastrophic, and its free distandg is even and satisfies \

2 > 2. e o]

Assumption 2. The inner encoder' : (Z5)N — (Z4)N is NaA'S
non-catastrophic and recursive, has scalar input (ie=1) —/ —
and is proper rational (i.e., the matri¥’ of its minimal state
space representation (1) is invertible).

Among such assumptions, the ones which are truly needg@ 3 An error event with active windo,., t].
in order to obtain the claimed asymptotic behaviour of min-

imum dista_m_ce and error probability are the follpwing: nong.o corresponding state sequencéias support equal to the
catastrophicity of bOth_ encoderdy > 2_and FECUrsiveness _Of_discrete intervadupp(x) = [t1+1, t2]. Notice that this implies
¢'. The other assump'qons have been mtroo_luced for S|mpl_|0|rt¥|atu(t1) # 0 and that the corresponding codeward- ¢ (u)
they aIIovy one to avoid cumbersome notation and _deflnltlo as supporsupp(y) C [t1, £2]. Thelengthof the error event is

to have simpler proofs, and make it éasy to underline the riggq ag, — ¢, + 1 and the discrete intervét,., t-] is called

of de (the effective free d|stance)_ as the main d§5|gn Paramefgl 4 ctive window See Figure 3 for a pictorial representation.
for the_lnner encoder. In Appen_dlx I we shall briefly comment Every finitely supported input sequencsuch that(u) has

on which results can be obtained in the most general caggy, finite support, can be obtained as the summation of & finit

with a particular focus on the case of odd, while we refer -, \per of error events with non overlapping active windows.
the interested reader to the first author’s Ph.D. thesis fdr7] 1,0 following useful result was proved in [12, Lemma 20].
further detail.

In the rest of this paper, we shall investigate the perfomeanLemma 1. Given a non-catastrophic convolutional encoder,
of the above-described serially concatenated coding sebenthere exists a constamtsuch that any of its error events with
assuming that the interleavéfy is a random element uni- output Hamming weight has length not greater thanuw.
formly distributed on the group of permutations éffy

/N //’\\ p, // \ / Ny AN

SN/ / N\ /N
A VAN VN AR TN TR TR

Let v be the constraint length af and consider the block

symbols. This is the classical ‘uniform interleaver’ ensésn termination of lengthN, ¢y : Z5N — 75N+t An error
of [6], [5]. Since the interleaver  is random, the minimum event forgy is any inpl.;t word(u:’z(o) QUT(N— 1)) such
distance Y
that
dy™ := min{wg (¢ oy 0 P (w)) :u #£0)} (u(O),u(l), o u(N =1),aN, -, a4(N +v—1),0,.. )

is a random variable itself. Similarly, assuming transioiss s an error event fop (wherei is the usual linear terminating
over a binary-input output-symmetric memoryless channgkiension ofu). Such an error event is said to legular if its
with ML decoding, the word error probability of the serialyctive window([t, t,] lies inside[0, N — 1] (the termination
turbo code is a random variable, to be denoted by @ is 0). Otherwise, the error event is calléerminating It is
P(e|Tly). clear t_hf';lt any input word fop can be written as the sum
of a finite nhumber of regular error events plus, possibly, a
While the focus of most of the literature (see, e.g.,[5]]]ts terminating one, all having disjoint active windows.
been on the error probability of treverage serial turbo code  Considerg® : (Z5)N — (Z5)Y and¢' : ZY — (Z,)N to be
E[P(e|lIx)], in this paper we shall be concerned with théhe outer and inner encoder of the turbo encoder described in
minimum distance and error probability of tiypical serial the previous section (notice that we are considering 1).
turbo code namely with the high-probability behavior df2™  We shall denote by, and; the constants defined in Lemma 1

and P(e|lly), asN goes to infinity. for ¢° and¢' respectively.
For the outer encoder, we define the enumerating coefficient
N i
lll. WEIGHT ENUMERATORS OF THE CONSTITUENT Ay~ to be the number of input words @fy, whose corre-
ENCODERS sponding codewords have weight For it, we need only the

. . . . . following simple upper bound, which holds true for all non-

This sections deals with the input-output weight enumer- . . : .

. . . . catastrophic terminated convolutional encoders, and islgna

ating functions of the constituent encoders. We define the . : .
. a restatement of [22, Lemma 3]. Its proof is provided in

error events and the weight enumerators, we recall SONE | ndlix 1-A1

properties of convolutional encoders related with the Wwedf PP '

codewords, and we state the bounds on the weight enumerat@sima 2. If ¢° is non-catastrophic, then the following

of outer and inner encoder, which will be used in the follogvininequalities hold true:

sections. The proofs of such bounds, many of which rely on(a) If |d/d¢] < N/2, then

variations of the arguments developed in [22], are defetoed N

Appendix I-A. AZ,N < 2(kno+no+1)d+1< ) > :

Consider a convolutional encodere (Z5)N — (Z3)N. We d/d?]
say that an input word: € (Z5)" is anerror eventif there  (b) If m? denotes the number of different error events for

existt; < to such thatu has supportupp(u) C [t1, 2] and ¢° starting att; = 0 and producing output weight?,



then (b) If d < My/(2m), then

o,N o i,N d cv w w .
AG <mgN. N - Rw,gd,w/2+ﬁw_wNL 121qTw/2l if weven,
CEET o w2 gles] if wodd,

As for the inner encoder, we shall need a weight enumerator . _ _
which considers both input and output weight. Defitig"., WhereC'is a constant only depending on the inner convolu-
to be the number of input words efl, with input weight tional encoder.

w and output weight not greater thah Another weight  The following result is essentially a restatement of [22,
enumerator which will play a key role i&, ", ,, defined | emma 2], with the dependence diy made explicit, and is

as the number of input words afl, with input weightw proved in Appendix I-A3.
and output weight not greater thahn consisting of exactly

regular error events. Lemma 4. Let Assumption 2 be satisfied.udf is even and
By recursiveness af', wi(¢'(u)) is infinite for all weight- diw di My

one input wordsu. In contrast, it is well known that there 2 sds< 25

exists a positive intege¥ such that an input word of weight 2

where the two ones are at distant@roduces a finite output . ow/2 o | d w/2

weight (see e.qg. [18, Proposition 3.6] for a proof). Bedenote R;,gd,w/z > FMﬁ/ {d—lJ .

the smallest such value, and lgbe the corresponding output
word. Then, it is easy to see that an input word of weight %

. - : . V. MINIMUM DISTANCE OF THE TYPICAL SERIAL TURBO
produces a finite-weight output word if and only if the two
input ones are at a distance multipled®f sayad;. Moreover, _ _ _
under the assumption tha is proper rational, such output In this section, we state and prove our main results on the
word is made ofa consecutive disjoint copies af and thus Minimum distance of the typical serial turbo code. Our ressul

has Hamming weightw (7). In particular, this means thatwill indicate that, if d¢ is even, then the minimum distance
wi(y) = dL. dwin scales asli N with high probability, where

CODE

Recursiveness of' ensures that any error event fo#
has input weigh® or larger. When considering,;, however, : g
one has to be slightly more careful: regular error eventg hav
indeed weight at lea&, while this is not necessarily true for a
terminating event: which could have weight, the remaining ) )
weight being in the extended paitand not counted in the " Theorem 1, improve upon some of those in [22]. Then,
weight of u. The bounds we shall give rely on such inputVe shall prove a deterministic upper bound &™. Such a

weight limitation of error events. Notice in particular theor Pound, stated in Theorem 2, generalizes and improves upon
every evenw, the input words contributing tw-N will some of the results of [4]. As explained in the Introduction,

. w,<d,w/2 ; . . i
exclusively be composed of regular error events each havifilg Most novel contribution of both Theorems 1 and 2 with
input weight equal te. respect to the existing literature consists in highlightthe

. - . role of the effective free distance of the inner encodgr,as
For the weight enumerator coefficients @f;, we have the _". . n Br
a linear scaling parameter faiy'™.

two bounds stated below. The following lemma is proved in We start by observing that a standard application of the

Appendix I-A2. While its part (b) follows from minor changes . . )
to the arguments in [22, Lemma 1], its part (a) is a key novgplon bound gives the useful bound (see [22, Lemma 6]):

First, we shall provide precise upper and lower bounds of
the left tail of the distribution ofl%}". These bounds, stated

contribution, since it explicitly captures the dependeoicthe ' nid My NN
leading term on the inner encoder’s effective free distatice P(AN™ < d) < ( w > AN Ay <qs VA< Ky
In fact, part (a) of the following lemma will turn out to be w=dg

a fundamental ingredient in the next section, when showir_wrc?1 o , 2
the linear scaling ofii» in di. In contrast, the bound of [22, The limitation w < #7id is due to the remark that any
Lemma 1] depends on a term, therein denote®¥y), which term_lnatlng or regular error event @l with output weightd
can be traced back to equat,/7;, and cannot be chosenhas input weights bounded from above bynd (and here we
inversely proportional ta/di: therefore, [22, Lemma 1] does@"® considering = 1).

not allow one to prove the linear scaling @£ on di. _ Now,_ using the_ bounds on the weight enumerat_ors estab-
lished in the previous section, we obtain the following fesu

Lemma 3. Let Assumption 2 be satisfied. Then, the followingn minimum distances, which is a refinement of [22, Thm.2.a].

inequalities hold true: Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume

(a) If w is even, then thatd = o(N?), as N grows large. Then, there exisi§, > 0
such that

°
df

RN < (2e)v 2 d|"“"? _ A\ 7
w,<d,w/2 = ww N d_l ’ ]P)(d%m < d) < C (N_Bg) ’




for all N > Ny, whereC := 2mg (26/\/F)d?.

Proof: Define

1
d 2

and observe that the assumptiér- o( N?) implies that

d

ev=oll), 5 =ol

§N) ’ (3)

as N grows large. Now consider Eq. (2), and split the

summation therein in three parts:
]P)(d%in < d) < Sd? + Sodd+ Sevena (4)

where

-1
My o,N 4i,N
Sd? = <d? Ad? Ad‘f),gd’

My\ " .
Sodai= Y <w> AGN AN

df <w<n;d
w odd

d do+2 1
(1 + N) 2K5T % < - (10)
for sufficiently largeN. Eq. (8) implies that the series in right-
hand sides of both (6) and (7) are convergent, and dominated
by twice their first term. From this, (9), and (10), it follows

that

o (1 d o (1 1
Sap < € (§C+KW) <&y (§C+60) . (1)

d\? o
Sodd§<ﬁ> 2 (Kqxtn) % < 20, (12)

Son= (14 3 )2056) T2 < g0 @9
Then, the claim follows by combining Eq.s (4), (11), (12)dan
(13). |

It is possible to obtain also a lower bound for the left tail
of the minimum distance distribution, showing that, asyotpt
ically in the block-length, the upper bound in Proposition 1

and Seven is defined similarly taSoqq, considering terms with s tight. This lower bound, stated below as Proposition 2 is
evenw > dg. Then, for the enumerating coefficients we usg novel result. Its proof combines techniques similar tes¢ého
the upper bounds from Lemmas 2 and 3, and we also use 8122, Thm. 2b] with the inclusion-exclusion principle [2,

simple bound

w - owWw

() 25

p. 124].
First of all, we fix an error event* for the outer convolu-
tional encoder®, having active window0, 7 — 1] for some

We obtain that, for some suitable positive constanfs: and with an outgut* = ¢°(u”) such thatwg(c") = dy.
K1, K», K3, K4 (depending on the constituent convolutiondNote that2 < 7" < dg,. ConsiderN > T'. For a nonnegative

encoders only):

o (C d
Sag Sf?\/f (§+K1N) ; (5)

IN

S KpN/aRI=fw/ g/

dg <w<nid
Z KéuNl_w/d?j—w/2dw/2

w odd
df <w<n;d

g\ 12
(%)
w odd

<%>1/2 i (K26n)" 5

w:d?Jrl

Sodd

(6)

IN

w

o w d ° w w
Seven< D KyNL/MHT4% + SRENL/ATE g

e
d > w
< (1+y > (Ksén)",
w:d‘f’+2
()
where K5 = max{ K3, K4}. It follows from (3) that
1 1
Kyén < 3 Ksén < 3 (8)
1
d 1 d2+1 d\? 1
— < Z £ — < Z
KlN‘()’C’ 2K, ¢ (N) _60 (9)

integer j, definec; as the codeword obtained by shiftirg
for j trellis steps, so that the active windowl[jsT + j — 1];
clearly, if [k — j| > T, thenc} andc; have non-overlapping
supports.

Now consider the terminated encodgy, and, with a slight
abuse of notation, let; denote its codewords corresponding
to the above-constructed codewordsgst Define the set of
indicesJ := {dfn,j, j € Z*} n{0,1,...,.N — 1 — d¢n,},
so that if j and & both belong toJ, andj # k, then clearly
|k —j| > dg¢n, > T'. Forj € J andd € N, define the event

B (d) = {wal¢y (Ix (c)))) < d}
N{¢y (In(c})) hasdg/2 regular events.

Clearly, for anyj, E(d) implies dy™ < d, so that
P(AN™ < d) > P(Ujes B} (d)) .

The following lemma, provides an expression ﬁb@E}‘(d))
and shows that, asymptotically, the evehtqd) are ‘almost’
pairwise independent. Its proof, deferred to Appendix I-B1
closely parallels the arguments of part of the proof of [22,
Thm. 2.a]. The main difference with respect to [22, Thm. 2.a]
is in the definition of the evenk’; (d), which in our case has
the additional restriction thabiN(HN(c;*-)) hasdg/2 regular
events. Our definition does not significantly modify the groo
of this result, but turns out to be a key point in order to show
the role ofd! in Proposition 2.



Lemma 5. Let Assumptions 1 and 2 be satisfied. Then, for allle find an upper bound for the second summation in (16)

j£ked,
My\ "'
P(E¥(d)) = ( dév) Ry aey- (14)
P(ES, (d) N ES,(d) < WP(Ejl (d))P(E7,(d)). (15)
dg

We shall get our lower bound by estimating the probability

of the union eventJ,_; E7(d) with the inclusion-exclusion
principle. '

Proposition 2. Let Assumptions 1 and 2 be satisfied. Assu
that d > 3dpdl, andd = o(N”), as N grows large. Then,

there existsVy > 0 such that, for allN > Ny,
ag
P(dp® < d) > K (N‘Bd—i> ,

where K := (1 —2/d2)%/2/ (rdi/2edi dn,).

Proof: Using the inclusion-exclusion principle we obtain

iy <) > (U B(@)
JjedJ
> P(E;(d) - Y P(E;(d)NE;,(d).
JEJ jl_,j<2]§2J

(16)

We give a lower bound for the first summation using Lemma g?qsts a finiteNo

Lemma 4, and Eq. (23). Also, recall thgt| = [N/(d$n,)].

We get:
; My\ "
* i, N N
SEEW@D) 2 VIR e )
JjeJ f .
N 2d§’/2 ey i dg/2
= ldene | edt TN di
ag
K @ fd\?
> —Nl==2 [ —
=M (dz) |

(17)
with the last inequality following from the fact that

d d di 2
—| > 1-=)>(1-=
-9 0-5)

S d
thanks to the assumptieh> 1d?d., and from the inequalities

N N
My > 2rN, LO JSTa
dfno 2df770
which hold true for sufficiently largev.
Now, let
M
N ( dN)

r

=T

2
d o —de d
. L (2¢)20% | Myt {—.
dmo) ) voo@

using Lemma 5, Lemma 3, and Eq. (23):

Il (J\gifgy) i,N My\"! ’
< 2 > (Mj\é;dg) <Rdg,gd,dg/2< d;’ >
D P(E;,(4) N E}, ().

J1,J2€J
j<k

r

Notice that

lim
N—oo

My (My —dg\ ™" _ .
g g '

r=o0 (N2—d?dd?) N (di)

Thanks to the assumptiah= o(N”), as N grows large,

This implies that

me

m‘,.,,%

o o
_df  df

N ~=2d=2 =o0(1).

Hence, for sufficiently largeV,

a4
K @ (d
N (2
S (

2
i)

Together with (17), the foregoing yields the result.

I'<

|
We may combine Propositions 1 and 2, in the following:

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then, for
every positive sequendey} such thatlimy ey = 0, there
> 0 such that

o df/2

Coed/? <P (A" < dNPey) < Coen/?,

for all N > Ny, whereC§ and C} are positive constants
depending on the outer encoder only.

Theorem 1 provides fundamental insight into the effect
of the constituent convolutional encoders on the minimum
distance of the typical serial turbo code. On the one hand,
it shows that the minimum distance of the typical serial turb
code grows as a positive power of the block-length. In fdct, i
implies that the probability that the minimum distangg
grows any slower thaiV? vanishes asV grows large. The
exponent of such a power law growth, depends only on
the free distance of the outer encoddy, in an increasing
way. This is in line with the results of [22]. On the other
hand, it shows that the minimum distance of the typical turbo
code scales linearly in the effective free distance of thneiin
encoder,di. While the effect ofdi on the average error
probability of serial turbo codes has been studied in [53],[1
up to our knowledge no results have previously appearedein th
literature relatingll to the minimum distance. Such a scaling
effect ofd!, ondi" is particularly relevant for moderate block-
lengths.

The result stated below provides a deterministic upper
bound on the minimum distane&%", showing an analogous
dependence on the parametdgsand d..



Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, fonemoryless channels—we shall assume the channel to be
all ) the binary-input additive white Gaussian noise channekmwh

N > 22/ 8d§no5idf, w € {0,1} is transmitted, the output of the channel is
(—L)* + Q, whereL € (0,400) and Q2 is an independent
Gaussian random variabfe ~ A(0, o%). The signal-to-noise
ratio is
A% < 242 (8d§ne) ¥/ U 2dl NP log N . pi=1L%/(20%).

and for every realizationr of the interleaverIly, the
minimum distance satisfies

It is worth comparing the upper bound (2) with the high As already mentione_d, the focgs of mo§t of the previous
probability scalingV?di. implied by Theorem 1. On the oneliterature on the analysis g_nd design of serial turbo codeas _h
hand, the dependence aN of the right-hand side of (2) !oe_en on the error probability of the average code, for which
involves an additional factolog N. On the other hand, the it i known [S], [18] that
right-hand side of (2) shows a linear dependencaighough CyN-LdE-1/2) < E(P(e|lly)) < C, N~ Ldf=1)/2]
multiplied by a factors?, which depends itself on the inner - - ’
encoder, and is therefore relateddpitself. It is important to for some constant§’;, C» whose dependence ofi in the
highlight the fact that, in contrast to Theorem 1, Theorem figh SNR regime can be made explicit.
holds for every choice of the interleaver, and not only with However, the error probability of the average code turns out
high probability with respect to its random choice. In fdtt, to be much larger than that of the typical code. Indeed, the
may be conjectured that such greater strength of the statenfermer is dominated by an asymptotically negligible franti
could be the main reason for the additional factors in theeuppf poorly performing codes. In the sequel, we shall use expur
bound (2). gation techniques in order to show that the decay rate of the

Theorem 2, whose proof is deferred to Appendix |-B2ypical serial turbo code is of order faster thawp(—N°~¢),
may be thought of as a generalization of [4, Thm.2]. Therfyr all ¢ > 0.
only the case when the outer encoder is a repetition codeNe define, for everyV € N ande > 0, the eventEy; :=
was considered, while we extend it to general serial turda®® > N°~<} . It follows from Theorem 1 that
codes. Moreover, our modification of [4, Thm.2] unveils the
fundamental role played by the inner encoder’s parameters

andg;. The following proposition gives an upper bound on the averag

Indeed, [4] consider serial turbo codes as well, in an evgp, 4 error probability of the serial turbo ensemble, condi-
more general setting with growing memory, but the result, ed on the evengs,.

they obtain ([4, Thm. 3]), when specialized to the constant- - _ o
memory case, gives a bound which is asymptotically weakéfoposition 3. Let Assumptions 1 and 2 be satisfied. Then,

P(ES) >1— CyN—e%/2, (18)

than Theorem 2. In fact, [4, Thm. 3] gives there exists some fini{g > 0 such that, if the signal-to-noise
) 1 (ot 2))-1 ratio p satisfiesp > po, then, for alle € (0,73) there exist
dy < ONTTe some finite constan®®’, > 0 and C' > 0 such that
for some positive constarit, and wherey, is the dimension E[P(e|lly)|ES ] < Cexp(—2NP~9)
of the state space of the outer encoder. It is easy to show that
d? < r(po + 1) and thus that for all N > Nj.
B<1—(r(uo+2)"". Proof: The main tool for this proof is the classical

union-Bhattacharyya bound, introduced for the averagererr
In fact, we can always construct a non-zero outer codewgigbhability in serial ensembles in [5]. Here we use a modified

of weight at most-(1, +1), as follows. Take a non-zero inputyersjon, where we consider the ensemble expurgated from the
at time zero, and then drive the state back to zero by applyipgdes with low minimum distance:

the termination procedure: the corresponding codeword is

supported in[0,»,] C [0, uo] and thus has weight at most 1 S s A()’NAMZ
o] C 10, 1o E[P(e[TIx)|ES] < — ",
The result we obtain in Theorem 2 is also asymptotically ! (19)

tighter than the currently best known bound for serial turt\ﬁherey = exp(—p).
codes, presented in [25], which, a6 grows large, grows as prove this bound, first notice that
fast asC N1 —1/d7, '

E\xP(elll
BIP(elT)| ] = SN
V. ERROR PROBABILITY OF THE TYPICAL SERIAL TURBO (EX)
CODE where x denotes the indicator function of the evefi,. The

In this section, we discuss implications of the previous rétion-Bhattacharyya bound (see e.g. [5] or [20]) gives
sults to the analysis of the error probability of the typisatial Ky
turbo code. .For the sake of cons:reter!ess—even if the resqlts Pe|lly) < Z AzeriaLHN,yh :
can be easily generalized to binary-input output-symroetri 1



where byAfLe”amN we denote the number of codewords witlior some positive constant’s which depends only on
weight i of the serial code obtained from the given ensemblel, v,, v;, n;. Finally, putting all terms together, we have
when the interleavdr y is sampled. Then Eq. (19) is obtainecroved that there exists some constafjt> 1 such that

as follows: K

EP(elln)y] = X% ELACRIN y]yh E[PEVIENS D (@) D (@'
h=NB—¢ h=NB-¢

_ Kn o,N ALN (My\~1_p
B neno-e 2w Au Aw"h( v ) R Assuming thaty < 1/Cy, the series is convergent, and equal
where the last equality is obtained by applying to the ternts (C4’Y)Nﬁ7£/(1 — Cyy). If we assume thay < 1/(Cye?),
with h > N#~¢ the expression [20, Eq. (7.1)], while notic-the claim easily follows withC' = Cy /(1 — e~ 2). ]
ing that terms withh < NA—¢ are zero. The limitations
df < w < nh come from the fact that, by definition efp
and by Lemma 1, if these inequalities are not sat|sf|ed then

Is is large enough.

o,N gl

A% A wh =0 From Proposition 3 and Theorem 2, we can obtain the
By Theorem 1[P(EY) approaches, asNV grows large. So, following result, characterizing the asymptotic decayeraf

for somec > 0, P(E%) > c¢. Now we need bounds for thethe error probability of the typical serial turbo code.

weight enumerating coefficients of the constituent encader
We start by considering the terms with< N/(27;). For

It is worth pointing out that the consta@tin Proposition 3
is independent from the signal to noise ratioprovided that

Theorem 3. Let Assumptions 1 and 2 be satisfied. Then, there

the outer encoder, having < nd < N/2, we can apply exists some finitg, > 0 such that, if the signal-to-noise ratio

Lemma 2 to find a bound faAS; N For the inner encoder we ? Saisfiesp = po, then for all= € (0, 3) there exist some
i,N hd finite Ny > 0 and C > 0 such that

use the simple bound’" < A" and then, thanks to the

inequalityd < N/(2m;) g KN/(2771) we can apply Lemma 3. p (exp(_NﬁJrs) < P(e[lly) Sexp(_Nﬂfs)) >1-CN—ed/2
Hence, we can find a positiv@; such that:

N g for all N > Ng.
Ao w_ . . .
ZZ MNw h h < ZZCI (E) (%) LS _Proof: By applying Markov's inequality to the random
variable P(e|Ily) conditioned on the everfs,, one gets
where the summation indicésand w run, respectively, over ]P’( P(e|lly) > aE [P(€|HN ‘E]sv} ‘ E]sv) < 1 Va>0.
all the integers betweeW”~¢ and N/(21;), and betweenl? a

— z (20)
and ylh Then, observe that the functigriz) := (a/z2) has Now, consider the event

maximum valueg(a/e) = e%/¢, so that

F5 := {P(e|lly) > exp(~N"79)}.
)l < o) 5 = {P(elly) > exp( )}
N From Proposition 3 and inequality (20) withw =

Moreover,w < ¢N for someé > 1, so Cy ' exp(NP~¢), one gets that
E[P(e|y)| £%] ‘ EN>

P(FEIER) < P(Plellly) > S Pl
Cyexp(—NP~¢).

IN

Hence, asv < n;h, we can find a constarit, > 1 such that:

NIC0) g 4N N/(2n1) !ﬁt ILIJS de?ote tge c(cirg)piﬁnlent of the evént by E5. Then,
wh h it follows from Eq. a
Z Z < Z (Ca)".
I\{N N
powieuzgy Cu) W P(F) = P(F5NEL) +P(FSNES)

For the remaining terms, havinyj/(2n;) < h < Ky, we use < 1-P(ER) +P(FRIEY) P(EY) 1
the f(l)lllowing trivial upper bounds on the weight enumergtin < O N—%/2 4 Cyexp(—NP~9) (21)
coefficients: .
< C N —&d¢ /2 ’
AoN < My d AN Ky i ) i
wo ={ an wh S R where the last inequality holds witlh := C; + Cj, for
sufficiently largeN.
from which we have On the other hand, using the inequality
AoN ABN Ky P(e|ly) > pi&"
Z Z M - "< Z nih(KN) : : . . o
e N i) w—d? (") e N ) h wherep = erfc(,/p)/2 is the equivocation probability of the

channel, and Theorem 2, one gets that

Now notice that, under the assumpti 2m; h < Ky,
w notice that, u umpBaly (2m) < b < Kx PleflTy) > exp(~ N0 (22)

one has

Ky < eKn h <ch for every realization of the random interleadéy,. Then, the
h =78 claim is an immediate consequence of (21) and (22). H
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We conclude this section by observing that both Theoremdth binary coefficients, where the powers bf will simply
1 and 3 only imply weak probabilistic convergence resultbe place-holders, indicating the position where the bitsuac
since the left tails ofd® and P(e|lly) decrease slowly This is a very common notation for convolutional encoders,
in N. Indeed, one may prove [10] that, while converginwhere the powers oD denote the number of trellis steps
in distribution to 3, both the growth rate of the minimumand coefficients are vectors of a suitable number of bits, but
distance, here we will rather use it for the terminated encoders, and
powers of D will count the number of bits, not of vector
labels (this distinction is important for the outer codedsr
in the proof of Theorem 2, otherwise the assumptios 1
makes it irrelevant).

Xy := (log N) " log d%™™
and the decay rate of the error probability,
Yy := (log N) "' log(—log(P(e|Tly))),

densely cover the intervddy, 5] with probability one, where

a=1-2/[d?/2]. A. Proofs of the results presented in Sect. IlI

Our proof techniques are based on ideas from [22]. We
retrace here the proofs in all detail, both since [22] has not

_In this paper we have studied the behaviour of the minimugyneared yet, and in order to be able to underline the role of
distance and ML error probability of serial turbo codes witfi

uniform interleaver. We have shown that the minimum di%ancel) Proof of Lemma 2:This is essentially a restatement of
of the typical serial turbo code grows as a positive powehef t [22, Lemma 3]. We start by introducing some notation:
block-length, whose exponent is an increasing functiorhef t
free distance of the outer encoder, and scales linearly téh
effective free distance of the inner constituent encodechS
a scaling law has been proven by means of a detailed study of
the left tail of the minimum distance’s probability distuitoon,

and of a deterministic upper bound. As a consequence, we
have characterized the decay rate of the ML error probwgbilit

VI. CONCLUSION

. Let RN and Ty denote, respectively, the number of
input words to¢, having output weight!/ and consist-
ing exclusively of regular error events, or containing a
terminal error event. We thus have

N N N
AT =Ry + Ty

of the typical turbo code, which turns out to be exponential ,
in some positive power of the block-length. This contralses t
decay rate of the ML error probability of the average serial
turbo code, which is known to decay only as a negative power

Let Rz’f._.dn) be the number of input words teQ,
consisting ofn regular error events whose output weights
areds,...,d,, respectively. Similarly, IeT&fv___ ) be

the number of input words t@%, consisting ofn — 1
regular error events having output weights, in order,
di,...,d,—1 and a final terminating one of weight,.

Assume thatl; + - - - + d,, = d. Then, one has that

of the block-length. In spite of such lack of concentration
of the typical code performance around the average code
performance, our results confirm the centrality of the two
main design parameters for serial turbo codes suggestdtby t
average-code analysis, namely the free distance of the oute
encoder, and the effective free distance of the inner encode

In fact, we are considering error events, with lengths at most
dimo, ..., dnno respectively, so that the sum of their lengths

. . is bounded bydn,. Thus, the number of distinct choices for
In the present appendix, we provide the proofs of som o : o . .
the bits in the input word inside the active windows of such
of the statements of Sect.s Ill and IV. Throughout, we sha d -
. . ‘error events are at mo&t7o. The only remaining freedom
make repeated use of the following well-known combinatoria_ . . . .
AR is in the choice of the starting points of the error events an

bounds. For positive integefa < n, one has

the number of possibilities is clearly bounded (ﬁ)

APPENDIX |
PROOFS

n" < (n> < (en)™ ’ (23) Hence, one has
mm m mm
. Ld/dg]
n o,N o, N
( ) <em. (24) RGN = ) > Rigy,...n)
m n=1 di,...,dp:
For realsw > t > 0, one has 4 i di=d izl
tt( t)w_t > ( /2)w forall t e [O ] (25) < Z <d> deno< N > (27)
w — w , W)y, — o
- = o\ Ld/dg]
while, for ¢ > 1, < 2(1+kno)d( N ) |
1 et (26) Ld/dg]

t— 1)1 = ¢t
. ( ) ) o where we are using the fact thad/d?| < N/2. Similarly,
Throughout this section, whenever we find it useful, we

will write input and output words of the terminated encoders

N
o,N kdno
(finite strings of bits) as polynomials in the indeterminéle T(dl-,---ydn) =2 (n — 1) dno
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because thei-th event, being terminating and having length Notice that

at mostdn,, starts in a position betweeN — dn, and N — 1 w/2
on the trellis. Therefore, di Zat < ?7/12 wit (¢ (1 4 D¥ar))
fa/ag1 = —
oN 0N — (¢( /2 pbi (1 4 Doias )) .
Td - Z Z T(d1 ..... dn) =1 ( )
=t Zf;;;'fgél The restrictionwy (¢'(u)) < d thus implies
d
d N (28) i
< 2kdno < )d o dC Z ar < d,
<X <n> [d/ag] 1) 1<tz
N i
< 2(1+kno+n0)d<td/d0J)' and there are(L‘fU/fQCJ) choices forai,...,a, , satisfying
! this relation. Finally, there are at mogt.") choices for the
. . . 2 .
Summing up (27) and (28) we get statement (a) of Lemmastarting positions;, ..., b,/ of the error events. Summing

The tighter bound of statement (b) of Lemma 2 is easilyp, and using (23), we obtain

obtained from the observation that input words with output ; w w2
weight d? necessarily consist of just one error event startin_gi;l\gd w2 < (Ld/wdeJ) (A{UN) < (%) Mﬁ/fz {iJ _
in the interval[0, N — 1]. u = 2 2 w de

2) Proof of Lemma 3:Our arguments parallel those ofThIS yields Eq. (14) of Lemma 3.
[22, Lemma 1]. The main novelty consists in proving sep- [N order to prove Eq. (15) of Lemma 3, we start by
arate bounds for the leading term (14), and the other orf¥sidering the case whenis even. We first show that
(15). While the proof of (15) is essentially the same as the . dny

) ) RUN < ! (29)

one of [22, Lemma 1], with different handling of some of w,b,<dn = :
the constants involved, the proof of part (14) is novel, and N )
fundamental in showing the correct scalingdp Notice indeed that?,,, _, , is smaller than the number of

Similarly to what we have done before, we need to introdu@nary words of lengthiz; with exactlyw — n ones, because
several auxiliary weight enumerators for it is possible to exhibit an injective map between the words

we want to count and such words. Given an input word (of
length My) producingn error events having input weights

-~ wi,...,Ww,, fixed starting pointsy,...,b,, and total output
not larger thand, and containing: regular error levents weight < d, map it into a word of lengthir; in the following
(resp.,n — 1 regular error events plus a terminating one

ON i N xvay: remove all the zeros outside the active windows of the
. let _RJJ,Sd,n (respect.lvely,T@éd?n) denot_e the number g events, and furthermore remove the bit corresponiing
of input words for¢); having input weightw, output the starting point of each error event (which is surely a one)
weight not larger thani, and consisting ofn regular The word obtained in such a way has surely lengthin;,
events (respn — 1 regular error events plus a terminatingnen add dummy zeros at the end to get a word of ledgth
one); _ the number of ones is — n. This map is injective since the
« Fix two vectors of integersv = (wi,...,wn) @nd gtarting points of the error events are fixed and known. This
b = (b1,...,b,) with w; > 0 andb; € [0, N — 1]. Let proves (29).
Ry <a,n (respectively,T,.% _, ) denote the number ™ now, consider the decomposition
of weight«w input words to¢};, such that: the output has

w—"n

. let RE™., (respectively, 75 ) denote the number of
input words forgl, having input weightv, output weight

. X , _ i,N
weight not larger thani, and contains: regular error RL,gd,n = E E Rlu,b,gd,na
events (respn— 1 regular error events plus a terminating w:>(;m »»»»» wy): o<Z:<(b1’%in")1:w

. k . . Jp— < <bp <V
one); for all1 < j < n the j-the error event starts in wiZ2 Pwy=w 0Shis< Y

positionb,; and has input weight; . where, once again, the constraimj > 2 comes from the

) ) recursiveness ad'. Using (29), we obtain the bound
In order to prove (14), for any input word witlw /2 error

events and input weighv, recursiveness of' forces input N w—n—1\ /My dn;
weight 2 for each error event. So the input words contributing Z R <dn < Z n—1 n w—n
i n=1 n=1

i,N :
to 1%“1_5(1@/2 can be written as w1

Z ewfnfl(eMN)n (edni)win

w/2—1 w/2—1

& Db 1 Dé-a : n=1 n" (U} - n)w_”
v= Z (1+ ) w/2—1
t=1 2w

e
< M (mid)* ™"
with b; > dia;—1 (S0 that the error events have disjoint active (w/2) nz::l
windows). We also have the restriction; (¢'(u)) < d, but egwn@/z i e
we can obtain an upper bound on the number of such words < WMNiN ,
by imposing a weaker condition. w a1
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where the second inequality follows from (23) and (24), and, ..., b|,/2)—1- The overall output weight is< d, and

the third one from (25). this implies the weaker conditiod: > [/~ 4, < d and
Finally, we have to consider weight enumerators of type ¢ < o/ < 5;d. There are:
For them, we have md : ,
. . « choices for suchu, a’;
T = T i
s 1<Z;w s ( ld/d.] ) choices for :
<n<5 . Afy.ee.y Qo — 1>
DD VRN DR - R, ey
10 % w=(wr,wn): be(brbn): e N0 more than |w/2] wj\; choices  for
w;=w 0<b; <--<bp, <M
wjzzz\:fj@,wnzl TS My bi,...,blw/2j—1,b, where the factor|[w/2] comes

from the choice of the position where to put the error

Everything is similar to the regular case, except for the , ,
event of weight 3 in between the other events.

additional conditionb,, > My — dn;. This comes from the
remark that the terminating event has clearly output weigRtmmarizing:

smaller thand, hence of length smaller thadl);. Being a RIN < Jw|( My y(mdy( ld/d]
terminating event, it cannot start befakéy — dn;. Moreover, sdlw/2] = 2] (me)( )(me 1)£ B
the recursiveness imposes > 2 for the regular events, while > we® ML”/2J d? { J
for the terminating event only,, > 1 is required. < 4;2 B (2]
With the same proof as for the bound (29) &y _, ., g () -1 5]
we have also T 2 p3(2e)@ 3]-1
N w?(2e) lw/2] 2| d
i dn; < =——M | = ,
Ty <an < ( ! > - 16w N dg
T w=n (31)
so that where the second inequality follows from (23), and the last
w/2 J inequality follows from (25) and (26).
N < ( T ) The remaining regular terms are bounded exactly as in the
wosd 2,:1 _ Z . Z w—"n case whenw is even:
b sl ) o<bb<(b1<'z;”7<b7\2f —1 lw/2]—1 [ L
ijQZV;Ué;’lfun21 lan]uN—dﬁiN R 5w/277i ? dlrf]]\4N2 32
Z w, <d n — w My ( )
w/2 (w/2)w  Zx -1
< MN g (@ | dn
Z n—1 )Y\ We now pass to studying the temﬁgN Differently from
w/2 the even case, we shall consider the main t&Hmf’
/ Mn—l(dn_)w—n w, <d,[w/2]
< 72 dy Z (]r\iil) : =y separately. Input words contrlbutlngff)1 <d.[w/2] consist of
-1 (w—mn) |w/2] regular error events, each with input weight and
- 2w dn; wZ/Q M2 (dny) @™ one tﬁtr?iga;[li\?g event witth inp#t.wei?mt w(ijth overall output
< 2 My 2= wi(w ) weight < d. We [es)zrjesen such input words as
o2w w dm w/2 - Z Dbt(1+Déiat)+DMN4
S (U)/2 Z MN dnl t=1
) and we observe that the following conditions hold:
- e2w 4y M;«\‘;/ (dm)w/Q
— . <mnd, . <d.
where the third inequality above follows from (23) and (24), Lsmd d zt: a < d
the forth one from (26), and the fifth one from (25). Now,
“we thus get:
Eqg. (15) of Lemma 3 follows from the fact that .
> RSy Tisatus = (dﬁ%)dn(ﬂfﬁ >
Avea =Rl Caupt D Rilcin . (30) ) w 33
<d — <d /2 Z <d, ﬁw(Qe)wMLw/% ; d [w/2] (33)
2 ww N di '

The case of oddv requwes slightly more care. We start

with the analysis owa " d.[wy2)- INPUL words contributing to The remaining terms are bounded as in the even case,

this term are made af//2 — 1 events with input weigh? and [w/2] Pw/2— w/2 w
one event with input V\{eigm: P ° Z TN e Mfkf P ()72 . (34)
w,<d,n — ’U}/2) Il\if_nN _
[w/2]-1 oo _ _
w— Z DY (1 + D%at) + Db(1 4 D% + Da’). By boundlng the addends of the right-hand side of (30) as in

(31), (32), (33), and (34), one finds that the leading term is
in fact the one on the right-hand side of (33), and Eq. (15)
Yollows. This completes the proof of Lemma 3. |

t=1
All the error events have disjoint support, which implie
the weaker condition that; < --- < b, 2—1 andb #
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3) Proof of Lemma 4:We shall use ideas similar to thosewvhere the summation index runs over all[M ]9 .
of [22, Lemma 2]. We con5|der a subclass of input words Then, notice that
contributing to the ternR <dw/2 exactly those which can ( . |

be written as ET) = P(E;; (d)‘ET) . (36)

Z (Dit+ht,15i 4 Dit+ht5i) Also notice that
-1
1<t<w/2 i,N <J\/‘[N - d(f))

P )|Er) < R, 0 . 37

with (E,(d)|Br) < do,<d,dg /2 de (37)
0< iy <ipg< - <iyjp < My—35 ld/di], In fact, after having fixed the p(_)sitions where Iy maps

the d¢ ones ofc} , we need to find how many choices for

0="ho <hy <hy <+ <hyp<l|d/d]. the posmons of the ones of, will produce an output weight

My —df
It is evident that they have input weightand consist ofv/2 less than or equal td, out of the (", “f) ways to choose

disjoint error events. The only property which remains to b& Positions among/y — dp. The number of such favorable

verified is whether they produce output weight not exceedig§oices is bounded by the number of favorable choices that
d. In fact, thet-th error event has input word we would have if we could choose among afly positions,

including the unavailable positions already assigned toi.e.,

it+he— Si(ht—hi—1)
D ‘A+D Y R§§V<d J10/2» Which proves Eq. (37).

so that the output has weight If:'q S (f36) and (37), together with Eq. (14), give:
i 6i(ht—ht—l) < i _ X —_ de° -1
wu(¢'(1+ D )) < db(hy — i) P(EL ()| B (4) 1 B < P(ES (d) (JZN) (MNdO df)
Thus, the total output weight can be bounded from above as £ £
w2 Therefore,
di Y (e = him1) = iy < d. P(E; (d) N EZ, (d)) 1
t=1 " « ]\/[N—d(f) - My
Observe that, for every choice of the tweo/2-tuples = ZP(EJ’I (d) N Er ) (E, (d))< dg ) ( dg )’
(i1,2,...,1y2) @nd (hy, ha, ..., hy/2), One obtains distinct T )
input words. It follows that where the summation index runs over the sefMy]dr.
; - Finally, observe that
R (MN ~ 5 Ld/du) (Ld/du) as
w,Sdw/2 = w/2 w/2 > P(Ej(d)NE.) =P(E}(d)).
Notice that, because of the assumption of the Lemma, one has re[Mn]%
that From this, the claim immediately follows. |

d w d d My . . .
2 < My—4; < ||, Mn—6 > ——. 2) Proof of Theorem 2:The key idea, introduced in [4],
2 di, 2 di di o . -
_ e consists in turning the problem of finding codewords of small
The final bound follows by applying (35) and (23). B weight into the problem of finding a generalized cycle on an
hypergraph. We describe here the construction of the daitab
hypergraph, adapting the construction from [4] to our sgtti

B. Proofs of the results presented in Section IV
and then we state the Lemma on hypergraphs given in [4]
Along these proofs, we will use the words, ¢} and the \yhich completes the proof.

set of indices/ defined in Section IV. The aim is to show that, for any interleaver, it is possible to
1) Proof of Lemma 5:This proof closely follows part of find a suitable subset of the words with cardinality growing
the proof of [22, Thm. 2.b]. at most asclog N, such that the corresponding output has
The first statement is immediate, let us prove the secofgight smaller tharfkk N* log N.
one. Let @ Let Zs, be the ring of integers modul. Define a map
ot = Z Dtm o:J — Z ¢ by associating with an index € J a vector
L= (o1(5), - ado (4)) in the following way: if
Given a multi-index ag
7':(7'1,...,7110)6[]\/[1\/]‘1?, C;:ZlDtm’ ay(D'r) = D™,
where[My] := {0, . — 1}, define the event with ¢,,, an increasing sequence, thep,(j) = 7,, mod &;.
E, = {HN(Dtm) =D VYm=1,...,d¢}. By the p|geonhole principle, clearly there exigfsC J with
|U|>|J|/5fsuchthata() o(j) foralli,jeU.
Clearly, From now on, we shall consider only with j € U. The
]P’(E* d)NE( ZP IP’( * ’Et (d)ﬂET) idea is that, as all the ones in these words are permuted to

‘positions at a distance multiple ¢f, when applyinge' any
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pair of ones gives an output weight which is proportional to Our choice ofb gives

the distance within the ones. So, the aim is to find a subset . 9

of indexesS C U such that the correspondirg's form pairs log(b) < log(N?/4%) = T log(N)
of ones in such a way that the number of pairs grows at most f
logarithmically in V, and that the distance within ones of th@&nd

. 1 o o
same pair grows at most aé°. 3 < 2(8d2n, )%/ s2 N 247 |
Now, consider the sgt\/x] = {0, ..., My — 1} and divide )
itin bintervalsly,..., I, each of length My /b| (except for which conclude the proof. n

a possibly longer one at the end)js a parameter depending
on N that will be properly chosen later in this proof.
Define a hypergrapH = (V, E) in the following way. Take

adg-partite vertex set” being the union ofl? disjoint copies _
of W = {I1,...,I,}. The set of hyperedgés has cardinality ~_ Parts of Assumptions 1 and 2 were stated for the sake of
U| and isdg-regular in the sense tha C W, i.e., every simplicity, and are in fact not essential for the validity tag
hyperedge contains exactly one vertex from each ofdhe results preser)ted. In this appendix, we s_hortly discuss how
copies of W. Any hyperedge inE corresponds to an indexSuch assumptions can be weakened, pointing out the role they

APPENDIXII
GENERALIZATIONS

j € U, and is defined as = (I, ,...,I,,.) € W where, Playedinthe proofs and stating the results that can berwai
denoting o in greater generality, while we refer the interested reader
¢ = Z Dtm [17] for more details and proofs.

The following formulation is the one truly needed in order to
obtain the claimed asymptotic behavior of minimum distance

as beforef,, is such thatry (D) € I,,. and error probability:
Define the degree of a vertex in the hypergraph as .ﬂA%sumption 3. The outer encoder® : (Z5)N — (Z5)N is
'hon-catastrophic, and its free distandg satisfiesdf > 3.

1<m<de

number of hyperedges that contain that vertex. The follgwi
lemma holds true: .
Assumption 4. The inner encoder' : (Z5)N — (Z5)N is

Lemma 6 ([4], Lemma 3) Given ak-partite, k-regular hy- non-catastrophic and recursive

pergraph(V, E) with b vertices in each part, #lb/*/21 < |E|,

then there exists a non-empty subSet F, with |S| < klogb, Non-catastrophicity of both constituent encoders andrrecu
such that in the induced subhypergrafih S) every vertex has siveness of the inner encoder are needed in order to engure th
even degree (possibly zero). W properties of the weight enumerating coefficients (Lemmas 2

and 3), and to give the limitations on the input weights
We shall show here that this lemma implies Theorem 2. (due to Lemma 1 and to the absence of input-weight-1 inner

the above construction of the hypergrafih we choose codewords) in the summations in the proofs of Propositions 1
and 3.
| ]| 2/ 1 N 2/d; The assumptiod? > 3 is needed in order to ensure titat>
b= 4% - 45 Ld—o%J : 0, and is essential in order to have minimum distance growing
i i f with high probability as some positive power 8f. Indeed,

whendf = 2 (and thusg = 0), Theorem 2 still holds true,
and states that, for any choice of the interleavers sequence
4p38/2 < ﬂ <|U|=|E| the minimum distance grows at most logarithmically with
- 5id? - ’ Moreover, a slight modification of the proof of Proposition 2
so that we can apply Lemma 6 and find the sulsset ' '
By construction of the hypergraph, there is a bijection PAy" <dg) > ¢
between hyperedges and indexeslinc J; let S ¢ U be
the indexes corresponding to the hyperedges$,iso that any
s €S corresp_onds to some word, j € S. Observe that P (P(eIHN) Zpd;) > ¢,
¢ =) jcscj is clearly a non-zero codeword of the outer
code. Hencegly (my(c)) is a non-zero codeword of the serialwherep is the equivocation probability of the channel.
turbo code. The assumptions that the inner encodehas scalar input
By constructionsy (c) is composed ofS|dg /2 pairs of1’s. (s = 1) and is proper rationalK is invertible) have been
Each pair has both ones lying in a same intetjabnd at a cons_,idered in order to simplify the analysis of the codeword
distance multiple ob;. Hence, of ¢y made of error events with input weight 2 (proofs of
o Lemma 3 and Theorem 2), and to have clean expressions of the
Wy ((biN(?TN(C))) < % d‘eﬂ constants depending ati,. Indeed, under such assumptions,
2 b an input word with weight two produces a finite-weight output
Finally use the bound of| which is the key contribution of word if an only if the two ones are separatedddy— 1 zeros,
Lemma 6:|S| < dflogb. and the output weight iad!, because the word is made of

This ensures thdt is an integer satisfying

(see [17, Sect. 4.5.1]) allows one to prove that, whgn= 2,

for some positive constamt which implies that
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shifted copies of the same error event, with non-overlagppibound, and either one can be the dominant one, depending on
support. Whenp' is not proper rational, the above-mentionetiow fastd grows with N: defining

error events have overlapping support, so that the weight is 2

smaller thanad;: this allows one to prove bounds on the k=1- ©—1

one side, while for the other side it is necessary to intreduc £

another parameter of the inner encoder, for which the opmodinotice thatx < f), if d = o(N"™) the dominant term is the
inequality holds true. Whew' has non-scalar inputs (> 1), first one, while otherwise it is the second one.

we have to look separately at pairs of ones being in different Proof: From (2), by estimating the enumerating coeffi-
components of the entry vector, so that we need to defipients of the constituent encoders with Lemmas 2 and 3, one
s parameters;(j) and corresponding weightt (5), one for 9€ts:

each componenj = 1,...,s (d, being their minimum); mid
moreover, we need to take into account also possible pairs of P(d%™ < d) < Z Cow Nlw/dg]—Tw/2] gTw/2] (38)
ones where the second one is not in the same component as the w=d?

first one (which turn out to have an asymptotically negligibl

role). For more details, see [17], Sections 4.5.2 and 4.5.3.
Removing the assumptions that has scalar inputs(=

1) and is proper rationalH is invertible) does not change

any of the asymptotic results wheN grows large: except |\ ih v — do + 1 dominate ifd = o(N*), and otherwise the
for the value of the constants and their dependencé’oall dominant térm is the one withy — 2d° ’To prove this, let's
= 2d¢. ,

the statements of this paper remain true under Assumptionéo]nsider separately the terms with odd and evein (38)

and 4. . . . . For the odd terms, usingw/d¢| < w/d¢ and the fact that
Removing the assumption thaf is even requires some w/2] = (w+ 1)/2 for odd w, we get:
more effort, because of the key role that was played t[y ’ '

words where an outer codeword with weigtt (or multiples o|_ d\? _8 1\¥
of it) was producing inner codewords g?tmposed of error Z S S(_) Z(CN 2d2) :
events each with input weight two. In the remainder of thi§<®=md
section, we consider the case of odgl and for simplicity (39)
we focus again on the simpler case where the inner encoffer evenw, we need to split once more the summation in
satisfies Assumption 2, while we replace Assumption 1 witiwo parts. A first summation will contain the terms with
the following: multiple of dg, for which |w/d?] = w/d$; notice that such
terms havew > 2dg. All the other terms will have

for someC' > 0 depending on the constituent convolutional
encoders only. For evetf, the asymptotically dominant term
in the summation was the one with= d?. Here, for odddg,
we have different dominant terms: the ones with= d¢ and

w>dy

Assumption 5. The outer encodep® : (Z5)N — (Z5)N is
non-catastrophic, and its free distandg is odd and satisfies lw/d? | < w_ 1 ow>de+1.
dg > 3. e dp
We will state and prove the main results (the asymptotid€Ce:
typical behavior ofd%™ and P(e|lly), while we will refer o Nlw/dg]=Tw/2] g[w/2]
the reader to [17] for details on some results we will only 4o .=, 4
. . f >
quickly mention. w even w S
Notice that, under Assumptions 5 and 2, Lemmas 2 and 3< ° (CN‘gd%) NN (ON‘%d%) .
hold true without any modification. However, Proposition 1 w>242 w>dg+1
needs to be modified, because the dominant term in the (40)

summations is not the same, due to the ceilings and ﬂO(gﬁ'nilarly to the proof of Proposition 1, we can use the

of the fractions in the exponents. The following PrOpos‘t'Qassumptiord — o(N®) to conclude that, for sufficiently large

zolds tc;ue, Wh?rtehfor S'mfl'ct'ty we d?j not lot?]k at the eX?I'C'N, the series in (39) and (40) are convergent and each one is
ependence of the constants @ and on other parame ersggunded by twice its first term. -

of the inner encoder such as the output weight of terminat
error events with input weight 1 or of regular error eventthwi ~ Similarly to what was done for the even case with Propo-
input weight 3. sition 2, a lower bound can be found, which ensures that the
. , - upper bound given in Proposition 4 is tight fdr= o(N"*);
Proposition 4. Let Assumptions 5 and 2 be sausﬁed. ASSUN&s is useful in order to findy — 1 — 2/[dg/2] such that
thatd = o(N”) as N grows large. Then, there existg, > 0 the growth rateXy := (log N)~'logd®® and the decay

and Cy,Cy > 0, depending on the constituent convolutionq]ateYN .= (log N)~" log(— log(P(e|Ily))) densely cover the
encoders only, such that, for a¥ > No, interval [«, 5] with probability one, but we will not discuss
) d\ Y2 a2 /2 o such issue here.
P(Ay™ <d) <4 <N> (N7Pd)™'" + Cy (N~Pd)™" . For evend?, Proposition 1 (or equivalently the upper bound
in Theorem 1) was completed by Theorem 2: the two results
Before giving the proof, we underline the fact that, differtogether imply that the growth rat€y := (log N)~! log di»
ently from Proposition 1, we have two terms in this upperonverges in probability t@. For oddd?, it is indeed possible
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to prove a deterministic upper bound, analogous to Theoremwthere, forj = (j) € J4,

by a slight modification of the construction of the bipartite . .
graph from the hypergraph in the proof of Theorem 2 (see the Aj = ]P)(Ejl G O ES 5, (d))
proof of [4, Thm.2] for repeat-accumulate codes, or see)[17hq

Unfortunately, such bound is o~f the form = . Z ]P’(E;-‘_’j,(d)) _
dyin < ONPlog N J'e i’
where The following steps aIIow_one to find bounds fE_randAj.
T I - 2 >3 First, notice thatP(E? ;,(d)) is the same for all pairg # j/,
Bi= [de/2] — de+1 so that= = |[J|(|J| — 1)P (E;{j/(d)). Then, notice that the

. . nion in the definition ofE* . (d) is a disjoint union, so that
However, as suggested in [22], it is still possible to prdvat t uniont i (D)1 ISjoint uni

N¥ is the actual growth rate of®¥®, using a second-order IP’(E;J-, (d)) _ Z ]P’(Ej,j/ b, e)).

method, as shown below. (be)eB

Theorem 4. Let Assumptions 5 and 2 be satisfied.dlf=" Moreover,

NPB) as N grows large, then there exist positive constants
w(N) as N grows larg P ()2 (M — 2d7)!

Cq, Cy, and Ny, such that P(Ej,j/(b, e)) — ]
min Cl NB . . . .
PAN" <d)>1- N Cz and the sef3 can be conveniently described in the following
equivalent way (which was already used in the proof of
forall N > N,. Lemma 4):

Proof: Let the outer codewords®, ¢; and the set of
indices.J be the same as in Section IV and in Appendix I-B. B = {(b,€) S.t.Vt, by =it + hy—16; ande; = i¢ + hud;,
We define events quite similar to ti#€’s involved in the proof 0<ip <idg <--r <y < My — Sild/dl],
of Proposit_ion 2, bu.t hgre we considgr pairs of codewerts 0=ho<hy<hy< < hyp< d/dIJ}
More precisely, forj;, jo € J, we define
U from which it is clear that
31 Jz g1, 32 i i
(be)eB |B| _ My — 6\_d/deJ Ld/deJ )
dg dg
a a Thus we have the following explicit formula:

Ej, j»(b,e) := {HN(C;)—ZD“, HN(cf;-z)—ZDet}, By — (My—3ld/di]\ (1d/di]) (dg)>(My —2dp)!
t=1 t=1 ( Ja7( ))_ de de Mpy!
f f
b=(b1,...,ba), €= (e1,...,eq), and (42)
Then we considerA;. We use a similar proof as for
Lemma 5, i.e., we condition on the everHs, ;, (b, e).
If ji,j2, 43, ja are all distinct, then

where

B:= {(b,e) S.t.OSbl<€1<---<bd?<€d?§]\/f]v,

0 = by + Lt S 1, < Ld/dgj}. A= Y BB ()] By (b, €)B(E;, 1 (b.e))
(b,e)eB
Now, let x;, j, be the indicator of the event; . (d), and (deN)?(My — 4dP)!
define the random variable e < > |B| (My — 200! P(Ej, i, (b, e))

(be)eB

Z = X gz - My — 4d2)1(My)!
s — B (5, h<d>>P<E;;,J4<d>>( et @

Clearly 9
so thatA; <P(E; ;. (d)) (1+O(1/N)) asN grows large.

J1,J2

P(dy™ < d) > IP’( U £ (d)) =1-P(Z=0). When one of the indexes is repeated, gay= js;, we have

J1,J2
J1,92€J, j1#J2 that

A standard argument, which follows from Chebyshev’s in- , = _ P(E* . (d b,e be
equality [2, Thm. 4.3.1], gives J Z (B, s (D52 (b, €)) P (Ej s (b €)

(b,e)eB
_ E(Z%) [d/di ]\ dpU(My — 3dR)! .
P(Z =0) < E(Z)P 1, g(b%:e6< 0 > (M —239)! P(Ej, ;,(b, e))
so that d/di ]\ dol(My — 3d9)!
S = p(E;,.(0) () R )

d) 9 E(ZQ) —9 J1#J2,J3Fj4 (41)

PR <022 Rz =

and the same bound holds true whgn= j,.



Finally, it's clear thatA; = P(E7,
such thatjs = j; andj, = jo .

The above bounds allow one to prove that the right—hari1n
side of Eqg. (41) tends to one. In fact, we can split the

summation into the following terms:
Py <d)>2— 84— 53— S,

(d)) for all j € J*

where
A A
S N N S
J1=jsFi2=js J1.d2,03.04 (1]
distinct
A A [2]
— ' '
S-y Moy b ’
Je#J1=33 J1#J2=ja
JaFJaFj2 J1#JaFja

Remember thatJ| and My grow linearly with N, and that [4]
d/N? grows unbounded by assumption. On the other hand,
without loss of generality one may assume thayv vanishes, 5]
since the deterministic upper bound guarantees diét <
CNPlog N for any choice of the interleavers sequence. Then,
using (42), (43), (44), and the bound (23) for the binomialﬁ]
coefficients, it is easy to conclude that, Asgrows large,

<&
- N
for some positive constants,, Cs, Cs, Cy.

C C _ o
Sy <1+ Wl Ss Sy < ﬁ + Cy(NP g1y [7]

Similarly to Section V, we will now show how the above
results on the minimum distance imply results on the worc[ig]
error probability. We will use here the same notation

Ey = {d¥" > N7}, F{ := {P(e|lly) > exp(—=N""%)}. 1]

A first result is that Proposition 3 holds true also when
Assumption 5 replaces Assumption 1: the only modificatiomi)
in the proof is that nowP(E%,) converges tol thanks to
Proposition 4 instead of Theorem 1. [12]

The following theorem is the analogous of Theorem 3 for
odd dg. [13]

Theorem 5. Let Assumptions 5 and 2 be satisfied. Then, thena]
exists some finitp, > 0 such that, if the signal-to-noise ratio

p satisfiesp > po, then for alle € (0, 8 — ) there exist some g
finite Ny > 0 and C > 0 such that, for allN > Ny,

P(exp(_Nﬁ+€) < P(e|IIy) gexp(_zvﬁff)) >1 - CN—e,

[8

-

[16]

Proof: Similarly to the proof of Theorem 3, the upper
bound follows from Proposition 3 and from Proposition 417]
(which is the analogous for oddP of Proposition 1): [18]

P(Fy) < 1—IP(E§V)+P(E§V‘F§,) <

4
——+C —~ NP
Nsd?+ > exp( ) [19]

The lower bound is obtained again using
> dEin
P(ellly) > p 201
with p the equivocation probability of the channel, but here
the role of Theorem 2 is replaced by Theorem 4:

+e i
e N) = = N = + 2
]P)(P( |H ) > pNﬁ ) > P(dmm > Nﬁ 8) [22]

C1 Co
g
- 1 N Nad‘f)
Finally, notice that, foe € (0,8 — k), 1/N = o (1/N°¥) as
N grows large. |

(23]
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