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Abstract—Information-theoretic lower bounds on the estima- the quantities of interest are very often continuous- mathe
tion error are derived for problems of distributed computation. than discrete-valued. As an example, one can consider the
These bounds hold for a network attempting to computé a 4yerage consensus problem, which has been the object of

real-vector-valued function of the global information, when the { extensi h h h node of th twerk h
nodes have access to partial information and can communicat recent extensive research. nere, each noce of the netwerk ha

through noisy transmission channels. The presented bounds 8CCess to a real number —or possibly a vector— representing a
are algorithm-independent, and improve on recent results ¥ noisy measurement of the same physical quantity, and thle goa
Ayaso et al., where the exponential decay rate of the meanis to evaluate the arithmetic mean of all the measurements.
square error was upper-bounded by the minimum normalized = g yacent literature on distributed control and estinmatio
cut-set capacity. We show that, if the transmission channsl - S . S
are stochastic, the highest achievable exponential decayate problems with communication constraints has hlghllght&dt
of the mean square error is in general strictly smaller than centrality of delay. In fact, large delays can be detrimkfuta
the minimum normalized cut-set capacity of the network. Ths the overall system performance. For this reason, one of the
is due to atypical channel realizations, which, despite the main performance measures of distributed computation-algo
asymptotically vanishing probability, affect the error exponent.  1iinms is the speed of convergence to zero of the estimation
error, i.e. of the distance between the value of the fundiion
be evaluated and the estimate each node of the network has of
As large-scale networks have emerged —characterized ibyin the recent work [2], which considers a framework very
the lack of centralized access to information, and possitdymilar to the one studied here, it was shown that the mean
time-varying topologies—, problems of distributed congtiain  square error of the nodes’ estimates of the global function
have received an increasing amount of attention by the mmnnot decrease to zero at an exponential rate faster tean th
search community in the last few years. In these scenariosrmalized capacity of the worst cut-set of the network.
large collections of agents —each having access to somén the present paper, upper bounds will be proved for the ex-
partial information— aim at computing an application-sfiec ponential decay rate of the tails of the probability disttibn
function of the global information. The computation mustf the error made by any node in the network in estimating
be completely distributed, i.e. each agent can rely only @nfunction of the global information. As a corollary, upper
local observations, while iteratively processing the kdé bounds on the exponential decay rate of arbitrary moments
information and communicating with the other agents. Thef the estimation error will be obtained. In particular, iillw
main challenge in the design of such distributed computatibe shown that, for non-deterministic channels, the exptaen
systems is posed by the scarce energetic autonomy of tlezay rate of any moment of the error is bounded away from
agents, which severely constrains both their computateomé& worst normalized cut-set capacity. The insufficiency of the
communication capabilities. In the present paper we sball fShannon capacity as a measure of the achievable performance
cus on the latter and investigate the fundamental perfocmarstems from the atypical channel realizations which, despit
limitations of distributed computation algorithms on netks their asymptotically vanishing probability, strongly ieugt the
with noisy communication channels. error rate. This observation is coherent with some of the
Different models for problems of distributed computatiomavailable results in the literature on control and estiorati
over networks have been proposed in the information-thigorenith communication constraints [3], [4].
literature: the reader is referred to [1] for an overview of Our approach draws on techniques developed for upper
the main research lines which have been developed. In thisunds on the error exponent of fixed-length block-codes
paper, we shall study the case of a network attempting o discrete memoryless channels with feedback [5], [6],
evaluate a real-vector-valued function of the global infar combined with a novel inequality playing the role of Fano’s
tion with increasing precision. The motivations for corsidg inequality in Euclidean spaces. Our arguments involveethre
such a model mainly come from applications to distributethain steps. First, an upper bound on the probability that
inference and control, as well as to opinion dynamics, whetwo real-vector-valued random variables are within a derta
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distance is derived in terms of their conditional entropyased on the local informatidWU,Y[Ef)) available at the end
Second, using network-information-theoretic technigqubs of the ¢-th round of communication. The performance of the
conditional entropy between a function of the global infarm distributed computation algorithm is measured in termshef t
tion and the estimate any node of the network can have ofdiécay rate of the estimation errors of the nodes
is bounded in terms (_)f the mutual information across a cut- Agu) — HZt(u) . ZHv vev, 1
set of the network. Finally, a change of probability measure
argument is used in order to capture the large deviationswhere||z|| denotes the Euclidean norm of a vector
the channel behaviour. More formally, we shall assume that the r.v. observed by
The remainder of this paper is organized as follows. Iodev, W, , takes values in some measurable spe¢e’
Sect. Il a the problem is formally stated and the main resuff§i¢ a priori distribution of the complete observation vecto
of the paper are presented. Sect. Il contains two of theeafofV is described by an arbitrary probability measurg on
mentioned technical results: Sect. 1ll-A presents a Fake-| the product spack® := [, ., W,. The measurgy need not
inequality in Euclidean spaces, while Sect. 11I-B we discud1ave a product structure, so that the proposed model is able
bounds for the conditional entropy across a cut-set. A wan@ handle the case of correlated observations. The function
of probability measure argument is developed in Sect. IV-A, fiWw—R?

and subsequently applied in Sect. IV-B and Sect. IV-C in orde _ )
to prove the main results. is assumed to be measurable. The transmitted (respectively

received) signals?(t(”) (Yt(”)) take values in a finite alphabet
denoted byX' := [, oy, &y (V := [,y Vo). The distributed

In this section, we shall present a formal statement of ﬂ%{‘f‘gorithm consists of a sequence of encoders ( (v)) and
problem and anticipate the main results of the paper, to Qesequence of decodets— (¢(v)) where t
proved in the following sections. L

We start by introducing a few notational conventions. The S W, x Y - &, W, x Y- RY,
set of the first: naturals will be denoted by.] :={1,...,n}. re measurable functions, such that
For subscript-indexed (respectively superscript-indgxector
o= (W)ier (0 = (1);c7), and a subset of indices € 7, X."=o{"(Wo, ("), ZP=u(W. ). @
vs = (vi)ies (S = (v );es) will denote the restriction of

- - Observe that the a priori measyrg,, the encoders’ sequence
v to §. For two finite-valued random variables (r.Ww) W,

= - ® and the channelP naturally define a joint probability
the entropy ofl/, the conditional entropy oV’ given W and 1 aasureP on the space) := W x YV, equipped with its

their mutual information will be denoted B(V'), H(VIW)  gtandard product sigma-field. Al the r.v.s of interest can be
andI(V;; W), respectively. The same notation will be used fof,ogh of as defined ovéf, .4, P). Throughout the paper the
continuous-valued random variables to denote their difftal symbolE will denote the expectation operator with respect to

entropy, conditional entropy and mutual information. Weth i hropability space. We shall make the following asstiampt
common abuse of notation, for a probability measuien R¢ on uy and f.

H(p) will denote its differential entropy (whenever it exists);
for z € [0, 1], H(z) will denote the binary entropy of. Assumption 1. (a) H(Z|Ws) < +oo for all S CV;

We shall consider a network consisting of a finite set of (b)  m:=E[|Z|]’] < +o0.
nodes). Each nodes has access to some local information, |n the rest of the paper bounds on the estimation error
by observing a r.viV,; the complete vector of observationsyjl| pe derived, which depend on the chaniel the a priori
will be denoted by = (W,)vey. The goal of the net- measureuy,, as well as the functiory, and hold for any
work is to evaluate a functioz = f(W) of the global jstributed algorithm{®, ¥). Although some of the arguments
information in a distributed way, through successive raungyhich will be presented hold true for general memoryless
of computation/communication. At each tiniec N, every channelsP(-|-), we shall confine our discussion to channels
nodev € V transmits a signal;"’, and receives a signalwhich are adapted to some graph topology. More precisely,
V% X, = (X()yey and V; = (V"),cy will denote we shall consider a directed graph = (V,€), where
the complete vectors of transmitted and received signals,C V2 \ {(v,v)lv € V} is a set of directed edges. To
respectively. The communication channel is represented byach edge € £ a discrete memoryless channel is associated,
stochastic kerneP(y|«) describing the probability thaf, =y  having finite inputX., output),, and transition probabilities
is received given thatX; = x has been transmitted. Thep,(y|x). Transmission is assumed to be independent among
channel is assumed to be memoryless,Yeis conditionally the different edges, so that
mdepender.\t fro.nW7 Xpe—1), Ye—1) given Xt D|str|E>utedness X=X, Y=T]Y, Ple)=T]Plylz.).
of the algorithm is then ensured by requiring tIXafi” depends e€E e€E ecE
only on the local information(W,,Y (*));,_;;) available at " t e read et B 1 oy
nodewv at the beginning of the-th round of Commumcat'on' thougrz (t:r?igcsraisl?riﬁioneisrenét)ter:ene]ggdéslzgtrenp?ng this abs:;lt?t?gr;nzﬁloWs fo
Finally, at timet, each noder makes an estimatZt(”) of Z treat many different cases of relevant interest at once.



The bounds presented in this paper involve cut-set arggrough information in order to compute = f(W). On the
ments. Given a proper subset of nodéds# S C V, we other end, Assumption 1(b) is more of a technical nature: for
imagine to have cut the grapgh by an hypothetic boundary instance it guarantees thHi(Z) exists and is bounded from
leaving nodes irS on left-hand side and nodes &f on the above by some finite constant (see Lemma 1).
right-hand side. Consider the cut-sg¢ := S x S¢ N & of Second, observe thﬁ(f) < éCpS, as can be easily seen
edges crossing this boundary from left to right, and the-ass§ choosingQ) = Ps in (7). In particular,ﬁf,s) - %C'PS
ciated memoryless channel, having input, output and tiansi \wheneverPs is a deterministic channel, i.e. when, for ale
probabilities respectively given by Xs, Ps(-|z) = 4, for somey, € Vs. Indeed, in this case, the

.: .: _ only stochastic kernel) € Qs such thatD(Q||Ps) < 4o is
s enge, s egsye’ Fs(ylv) egspe(yem)' Ps itself. Hence, for deterministic channels, Corollary ttesa
that the exponential rate of the mean square error is upper-
bonded byl /d times the capacity of the worst cut-set in the
network. However, for channels that are not deterministic,
Cqo :=maxI (Xs,Ys) can be shown thﬁ,(f) < 1Cs, i.e. the achievable exponential
decay rate of the mean square error is strictly smaller than t
normalized capacity of the worst cut-set in the network. In

Let Qs be the class of all stochastic kernels with inpdg
and outputys. For Q € Qs, we shall denote by

its Shannon capacity, and by

D (Q||Ps) := max D (Q(-|z)||Ps(-|x)) particular, for any non-deterministic chanri#, it is not hard
ves to see that
the maximal Kullback-Leiber divergence between the output lim B =o0. 9)
distributions ofQ and Ps. n—too "

The main result of this paper consists in an upper bound &guation (9) has to be interpreted as follows: the higher
the exponential error decay of the estimation error. Define the more detrimental atypical channel realizations aretfer

Es(R) = min{D (Q||Ps)|Q € Qs : Co < R}; (3) System performance.

The quantity Es(R) coincides with the Dobrushin- o o _
Haroutunian’s bound on the error exponent of rRte-A A Fano-likeinequality in Euclidean spaces

IIl. A FIRST BOUND BASED ON THE CUTSET CAPACITY

fixed-length block-codes with feedback on the chanRgl We shall obtain a result which may be interpreted as
[6]. Let a geometric analogous of Fano’s inequality for real-vector
) 1 @) valued r.v.s. .
[0 =—glogAy”,  veVteN. (4)  Recall that Fano’s inequality states that for two rg.s2,

taking values in a finite seE, the probabilityp that Z = Z

The following statement is proved in Sect. IV-B. : . " ;
g P can be estimated in terms of the conditional entrbffy|2)

Theorem 1. If Assumption 1 holds, as follows:
! fe? ' The proof of (10) relies on two basic properties of the diszre
for every node v € V. entropy function: its grouping property, and the fact the t

o ) entropy of a probability measure over a finite set is upper-
As a corollary of Theorem 1, it is possible to get, for alhq,nded by that of a uniform measure on that set.

n > 0, an upper bound on the exponential decay rate of the|y the what follows, we wish to prove a similar result for

averagen-moment of the error: two r.v.s W, W taking values in thel-dimensional Euclidean
n\ 1/n spaceR?. Rather than estimating the probability ti&t and
A = (%I > [Aﬁ“} ) : (6) W coincide,2 we shall look at the probability that the distance
vev betweenlV andW does not exceed some positive constant
Define We shall estimate this probability in terms of the logaritbm

(S) . 1 1 . (S) the volume of a ball of radius in R¢, and of the conditional
= =C, =D P = . RN

fn Qe0s {d o+ 3D@ll S)}’ & @%EV{B" } entropy associated to the joint law &f and Z. Beside the

() grouping property of the entropy functional, our proofeslon

The following result is proved in Sect. IV-C. some variational properties of the entropy which are redall
Corollary 1. If Assumption 1 holds, in the following lemma.
1 . ] ), ;
Jim sup — - logAg”) <3, (®) Lemma 1 ansder e P(R ). Then )
t t (@) if p is supported in some compact subset A C R,

A few comments are in order. First, observe_thgt Assumption H(p) < log \a(A),
1(a) captures a fundamental feature of the distributed eemp
tation problem, namely that no proper subset of the nodes hadHowever, see the remark following Lemma 2.



with equality if and only if 1 is the uniform measure  Now, observe that
over A.

(b) if [gallz]]*dp(z) < md for some m > 0, qg/ ||z||2d"yz(z>:/ 12][2dpag) 2 (2]2)
R4 B¢
d z
H(p) < 5 log (2mem) / 12[Pdpy z(212) =t ms.
R4

By combining formula (12) with the inequalities (13), (14)
and (15), and using the fact that

(15)
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with equality if and only if 1 is a homogeneous, zero-
mean, d-dimensional Gaussian measure.

Lemma 2. Let Z and Z be two Re-valued r.v.s, with joint

probability law 1, 5, and such that —zlogx < H(z) <log2, vo<z <1,
o 2
m:=E[||Z]]*] < +oo. we get thaty ;-almost surely,
Forany r >0, let A, :={(z,2) : ||z — || <r} C R4 x R, A
o =) lle=2l=r) e Hl1i,5(-12)) = B(v5) + 45 Hvz) + Hipy)

2wem 5

§p210g(Kdrd)+q2%10g 1z + log 2

d .
A)logr® + = log (Jym) > H (Z|Z) . 11
#(Ar)logr T3 og (Jam) 2 H (212) 1D <pylogr? + $log (Jamy) .

. 4me i 2 i . - .
where Jg := 45¢(2K4)* ¢, with K g := iz denotingthe  Hence, Jensen’s inequality implies that
volume of a unitary ball in R¢. 3

Remark: Notice that the assumption < +oo implies that H(2|2) =E [H (“Z\Z( ' |Z))}
H(Z) < +o0, and, a fortiori,H(Z|Z) < +oc. Observe that <E [py]logr? + 4E [log (Jam )]
(11) holds true also for = 0: in this case, it implies that
eitheru(A,) =0 or H(Z|Z) = —oc.
Proof: Let s, and i, ;(-|Z) be the marginal law of  and the claim follows. m
and the conditional law of given Z, respectively* Since
H(Z|Z) < 400, necessarily

< u(A,)logrd + %1og (Jam) ,

B. Bounding the conditional entropy through a cut-set

Hizz(:12)) < +o0, pz —as Consider a non-trivial cut-sefs. For an arbitrary node on

For 2 € RY, let us denote by3: := {z : ||z — 2|| <r} c R? the right-hand sidey € S¢, Lemma 2 can be applied in order
the closed ball centered inof radiusr, and letB¢ := R?\ B;. to upper bound the left tails of the estimation ermfv) in
For 2 € RY, let terms of the conditional entrod;I(Z|Zt(”)). The next natural
step consists in deriving a lower bound HrQZ|Zt(”)), a task
which is accomplished below. The key idea, borrowed from
and define the probability measures v, € P(R%) by standard cut-set arguments in network information the@ry [

1 1 pagg. 587-594], consists in relaxing the problem, by assgmi
vi(A):= _NZ\Z(A NB:|2), 7:(A):= _'LLZ|Z(AQBS|2)7 that all the nodes on the left-hand side of the cut can share

pz qz instantaneous information among themselves in order &best
for all Borel setA C R<. By the grouping property of lish communication in the most efficient way with the nodes

Pz = gz (B:l2) Qs = g 5 (BEZ) =1 —pz,

differential entropy, we have that on the right-hand side, which in turn are able to distribute
the received information instantaneously among themselve
H(pz) + pz H(vz) + ¢z H(vz) - (12)  These arguments lead to the proof of the following result.

Sincev; is supported onB;, Lemma 1 (a) allows one t0 | amyma 3. Let &s be non-trivial cut-set. Then
estimate its entropy by that of a uniform measurei®n '

5 (v) (8) V(S5 (59
H(v:) < log Vol(B:) = log (Kar?) . (13) H(Z|Zt ) >H(Z[Wse)— Y I(Xj V77X ) ,
1<5<¢
On the other hand, Lemma 1 (b) allows one to estimate the (16)
entropy ofv; with that of a zero-mean homogeneous Gaussi#@ every node v € S¢, and all ¢ € N.

measure with the same second moment, obataining Proof: It is an immediate consequence of the assumption

d 2me 9 (2) that the vectorXt(SC) of the signals transmitted by all the
Hiy:) = g log (7 /Rd ] d%(z)) ' (4" hodes on the left-hand side of the cut, is a function of the tot
information available to thenfWs., Y[if)ll) Again from (2),
SHereI'(-) denotes Euler's Gamma function.

. . LA () .
“Recall thatuZ‘ZA(~ |Z) is a random probability measure &, which is !t fOIIOWS. that the e(SStICI;natlor.Zt IS a func-tlon of the .tOtaI
well definedy. ,-almost surely. information (WSC,YM ) available at the right-hand side of



the cut. As a consequence, we have the following chain where K := —H(Z|Ws:) + 4 log(Jym). Then, observe that,

(in)equalities: since yj(.sc) is conditionally independent fronXJ(.Sc) given
R (8
H (Z|Z§”>) X0
(a) . e e c
2o (2120, ws.) (X, 90x87) = 1 (x{9,9%7) < cs,
= H(Z|Wse) -1 (Z- Z§U)|WSC) the last inequality above following from the definition ofteu
(b) (SC) set capacity as maximal mutual information between thetinpu
> H(Z|Wse) -1 (W; W3c |WSC) and output of the channels crossing the cut. [
= H(Z|Ws:)—1(Ws:Y |Wse)
(0) (89 759 V. UPPER BOUNDS ON THE ERROR EXPONENT
9 HZWs) - I (W Y | Wse, ¥ 71])
1<5<t A. A change of measure argument

17)
where: inequality(a) follows since conditioning does not e shall now develop some arguments based on a change
increase entropy; inequalitih) is a consequence of the datf measure. Recall that, a memoryless channel with ifput
processing inequality and the fact that— f (1) ande”) i output), and tr(g)na_uon probabll|t|e$_3_ and a sequence of
a function of Ws. and Y[E]S) equality (¢) follows from the encodersb = {¢; * } induce a probability measufé on {2 =

N 1 1 . . 1
chain rule for mutual information. Now, for all < j < ¢, we ny_ - Now consider a stochastic kerr_@( |-), having the
same inputY’ and outpuf). The stochastic kern€), together

have that with the encoder sequence of encodésinduces another
I (X(S)- Y.(SC)|X(SC)) probability measure of2, to be denoted by).
() (S%). +(S) (S9) (89 The core idea consists in finding a relationship between the
=1 (Y P X |W Y[J 1]7X ) probability of an eventd measured by and that measured by
- H (Y-(SC)]WSC y (89 X(S )) ( _(S“)’W Y(.SC) X») Q, by proving a large deviations bound on the channel behav-
J =1 J 7=/ or, In doing that, the stochastic kerr@lshould be interpreted
(g H (Y ) (Y_(SC)‘W y (& )) as a conditional empirical distribution of the channel atp
- J =1 < J =1 sequencdY;) given (X;).
=17 (WS;Yj ’ |Wsc, [571)]) , Let us assume that, for all input symbals X, Q(- |z) is
(18) absolutely continuous with respect i - |x), so that
where: equality(d) follows from the fact that, due to the Qyle)
assumptions of causahty of the encoders and memorylessnes\g := max{ log ‘ ‘ P(y|z) > 0} < 400,
P(
of the channeIY )is conditionally independent fro” and (20)
Yl(___i) 1 glvenX ; inequality (e) follows form the fact that, and, a fortiori
as observedX ) is a function ofiWse and Y[( , Wwhereas Qly|z)
removing the cond|t|on|ng does not increase the entropy in  D(Q||P) := ma)}({ZQ(yLz:) log & < +o0
the second term. Therefore, by combining (17) with (18), the e (vle)

claim (16) follows. B cmma 4. Fort € N, let A € A be an event measurable

Observe that Lemma 3 holds for every memoryless chan¥éfh_respect to (W,YY). Then, for all & > 1 and ¢ >
P(-|-). Imposing the further constraint that is adapted to /(a — 1)8)%, it holds

some graph topology allows one to bound the conditional

mutual information terms/ (XJ(.S);YJ.(SCHXJ(.SC)), as in the P(A) > 211 7Q(A)¥ exp (—t[D(Q||P) +¢]) ,

following statement. where @ is such that = + L = 1,

Proposition 1. Let (S,S¢) be a non-trivial cut, and v € S°.

Proof: Let ider the r.v.
Then, for everyteNandr>0, rool- et Us consider the v

Qyyyw (Y |W)

—P (A(v < r) log < th—i— log (Jym)—H(Z|Ws:), (19) Te:= Pysyw (Y W)
where Cp, := > C. is the capacity of the cut-set £s. From Holder’s inequality, it follows that
ecs
Proof: By applying Lemmas 2 and 3, one gets, for every QA) = Eglla]
nodev € 8¢, = E[14T 21)
c c % l/Ot o 1/a
(A <) logrt < 30 1(XS, 51X 4 < B[ E [13]
1<5<t = E[1g]VOP(A)VT



We now look for an upper bound oR [Y$]. To this end, B. Proof of Theorem 1

observe that We are now ready to prove the main result. Given a node
E[T] =Eq Y771, v € V, and a non-trivial cut-sefs such thaty € S¢, applying
. roposition 1 to some stochastic kerrgl leads to an
whereEg denotes the expectation operator on the probablllgi) P gle Qs
space(, A,Q). For all 1 < j < t, we consider ther-field per bound on the leff-tail of the estimation erroA
it -7 = Then, Lemma 4 allows one to recover an upper bound on the

Aj 1= o(W,¥];), and the r.v.s left P-tail of A", which is stated below.
Ej = D(@QC[X)IPC1X5)) Proposition 2. For a node v € V, consider a non-trivial cut-
oY |W j set s such that v € 8¢, and a stochastic kernel Q € Os.

M; := log ; = Then, for every 0 <7 < 1, a > 1and e > /(o —1)8)3,, it
PYTIW) = holds

Let us also definedy := (W), and M, = 0. Then,( P (A§”> > r) > 0! exp (—t[D(Q||P) +¢]) ,

J)J
is a martingale on the filtrated probability spaée (A ), @) wh
Indeed, it is easily verified that, for al > 0, M; is A;- ere -
measurable, and that (@) . oris <1 _tCq — H(Z|Wse) + %1og (Jdm)>
AT o —log rd
Eq[Mjy1]A;]—M; = Eq {IOg W‘A } —Ej41=0. s

We can now prove Theorem 1. For a givéh > 0, fix
Moreover, since the channel transition probabilitis |z) are § > 0 and choose a stochastic kerr@l € Qs such that
absolutely continuous with respect (- |z) for all z € X, Cg < d(R — §). Clearly, for anya > 1,

we have that soris
o (@) T
hmtlnf{Ht }2 Cq 40 >0.

1%,
|Mj — Mj_1| < ’10g ;‘3( ],} 7_;

=, <2)\g,

so that(}M;) has uniformly bounded increments. Hence, wéhen, Proposition 2 implies that, for all> /(o — 1)A8,
can apply the Hoeffding-Azuma inequality [8] obtaining tha

, D(Q|IP)+e = D(QHP)—I—E—l—limsup{—%logé’go‘)}
19 t
QM =z et|W) =Q (M > My +¢et| W) < exp (—tw) : > limsup {—% log P (1",(5”) < R)} .
t
Now, observe that, since (23)
From the arbitrariness of the choice of the constantnde,
Z E; <tD(Q||P), and of the stochastic kerné) € Qg, it follows that

1<j<t

1
1imsup{—¥log]P’ (r§”) < R))} < Es(R-96).
t

Finally, (5) follows from the arbitrariness of > 0 and the

the Q-probability of the event

E = {T¢ 2 exp ({{D(Q|P) + ¢])} continuity of the exponenEs(R) as a function ofR.
can be estimated as follows: C. Proof of Corallary 1
&2 Let S and@ € Qs be, respectively, the minimizing cut-set
Q(F) <Q(M; > et) < exp v and stochastic kernel in (7). Fér> 0, we have that
Q

()" = b SB[

Hence, we obtain, foff := o — 1, ueV
B[ (48]

> P (rg“ < 1(Co+ 5)) exp(—t1(Cq +0)).
(24)

Y

E[Y7] = Eq [ 7]
= B [T{15) +Eq [T/15:]
< exp (BtAq) Q(E) + exp (Bt[D(Q||P) +¢]))Q(E®)  As in (23) one gets that

mQ]) +exp (BUD(QIIP) +))  limsup {~+1ogP (T{") < 4(C+9)) } < D(QIIP) +=.

8
Eﬁt[DE 17) [”exp( [Qiff@])} Then, (24) and (25) imply that )

BD(QIIP) +€]) 2, :

(22) hmtsup{_%logAg’”} 1(Co +8) + L (D@IIP) +e) -
the last inequality following smceg— > (Ag. Then, the
claim follows by substituting (22) mt% (22).

INA

]

4

o
/N

&

IA
@
]
T T

IN
o
o]

Finally, (8) follows from the arbitrariness of the choicek o
6>0,a>0,ande > ,/(a —1)A}8.



V. CONCLUSION

Upper bounds on the error exponent have been presented for
problems of distributed computation of a real-vector-ealu
function on a network with noisy communication channels.
It has been shown that, on non-deterministic channels, the
exponential decay rate of any moment of the estimation éror
strictly smaller than the capacity of the worst cut-set citga

Current research includes understanding how these bounds
affect scaling limits of large networks, and proving tighte
bounds for cases when the system dynamics cannot be fully
designed but rather it is partially given.
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