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dDEI, Università di Padova, Italy

Abstract

Iterative distributed algorithms are studied for computing arithmetic averages over networks of agents connected through
digital noisy broadcast channels. These algorithms do not require the agents to have global knowledge of the network structure
or size. Almost sure convergence to state agreement is proved, and the communication and computational complexities of the
algorithms are analyzed. Both the number of transmissions and computations performed by each agent of the network are
shown to grow poly-logarithmically in the desired precision. The impact of the graph topology on the algorithms’ performance
is analyzed as well. Moreover, it is shown how, in the presence of noiseless communication feedback, one can modify the
algorithms, significantly improving their performance vs complexity tradeoff. Finally, simulations are presented confirming
the theoretical results and suggesting that the presented algorithms may outperform algorithms based on decreasing gains
recently proposed in the literature.

Key words: Distributed computation; distributed control; digital communications; control with communication constraints;
average consensus; graphs.

1 Introduction

As large-scale networks have emerged –characterized by the lack of centralized access to information, and possibly
time-varying topologies–, the last few years have witnessed an increasing research interest in problems of distributed
computation. In many scenarios of current applicative interest, large collections of identical anonymous agents –
each having access to some partial information– aim at computing an application-specific function of the global
information [31,26,18]. As the network has to be reconfigurable and scalable, the computation must be completely
distributed, i.e. each agent can rely only on local observations, while iteratively processing the available information
and communicating with the other agents. The main challenge in the design of such distributed computation systems
is posed by the scarce energetic autonomy of the agents, which severely constrains both their computational and
communication capabilities.

A special instance, which has been the object of recent extensive work, is the average consensus problem, in which
a large number of agents aims at computing –in a distributed fashion– a value coinciding with the arithmetic
average of some initial scalar measurements. While most of the literature on consensus algorithms has modeled
communication constraints in the average consensus algorithm by a communication graph in which a link between
two nodes is assumed to support the noise-free transmission of a real value, there is a clear demand for more realistic
communication models. In fact, some recent work has addressed the cases of quantized data or computations [22,27,5],
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quantized communication, [3,20,15], packet losses [14], or transmission affected by additive noise [19,28,21]. However,
to the best of our knowledge, there is no contribution yet toward the design of consensus algorithms on networks
in which the communication links are modeled as digital noisy channels. The latter models of communication are
particularly significant as in practice bandwidth limitations imply that the channels have finite capacity. For such
digital noisy networks, information-theoretic bounds on the performance of distributed computation algorithms have
been established in [2,11]. More general problems of distributed computation have been considered, for instance, in
[16,33,1,18].

In the present paper, we study iterative distributed averaging algorithms for networks whose nodes can communicate
through digital noisy broadcast channels. In order to compare the performance of different algorithms, we define
suitable complexity measures, which account for the number of channel transmissions (communication complexity),
and, respectively, of in-node computations (computational complexity) required to achieve a desired precision. 1

These performance measures are particularly relevant, as they allow to directly estimate the energy consumption of
such distributed computation systems, as well as their time-complexity.

The algorithms proposed in this paper combine the classical iterative linear consensus algorithm with coding schemes
for the reliable transmission of real numbers on noisy channels, recently proposed in [12]. They involve a sequence of
transmission phases, of increasing duration, in which the agents attempt to broadcast their state, i.e. their current
estimate of the global average, to their neighbors, alternated to averaging steps, in which the agents’ states are
updated. These algorithms are fully distributed, and they do not require the agents to have any global knowledge
of the network structure or size. Our main main result –stated in Theorem 4– shows that such algorithms drive
the agents to state agreement –or consensus– which can be made arbitrarily close to the true average. The number
of channel transmissions and in-node computations is shown to grow at most poly-logarithmically in the desired
precision.

We also show how communication feedback, when available, allows one to modify the algorithms, achieving asymp-
totic average consensus (i.e. state agreement on the average of the initial observations), and reducing the compu-
tational and communication complexities –see Theorem 5. Scaling properties as the number of agents grows are
investigated as well, and the computational and communication complexities are related to spectral properties of
the underlying communication graph. Moreover, simulations are presented, suggesting that the performance of our
algorithms may in practice be better than that guaranteed by their theoretical analysis.

General results on coding for interacting communication [30,29] may suggest logarithmic communication complexity
to possibly be achievable by embedding an efficient quantized consensus algorithm [8,24] in a global error correcting
coding scheme. However, as it has also been argued in [17], the tree-code constructions proposed in [30,29] suffer
from high computational complexity which likely prevents their practical implementation. Moreover, their global
design requires each agent to have knowledge of the whole network topology, an assumption which contrasts the
reconfigurability requirements. In contrast, the algorithms we shall present in this paper do not require the agents
to have any knowledge of the network topology, and both their communication and computational complexity can
be kept tractable.

Finally, it is worth comparing the performance of our algorithms with that of the decreasing gain strategy studied in
[19,28,21] for networks whose links support the transmission of a real number, affected by additive noise. Indeed the
effect of errors in digital communications can be thought of as noise. Compared to ours, the results in [19,28,21] show
almost sure convergence to average consensus, with mean square error decreasing as the inverse of time, under slightly
more stringent assumptions on the noise (mainly, independence of the additive noise). This guarantees communication
and computation complexities growing polinomially in the desired precision, as opposed to the polylogarithmic
dependence of our algorithms. This is confirmed by simulation results for the two families of algorithms, presented
in Sect. 6.

The remainder of this paper is organized as follows. In Sect. 2 we formally state the problem, introduce the relevant
performance measures, and revise some results on the transmission of continuous information through digital noisy
channels. In Sect. 3 we present our algorithms and present the main convergence results, as well as bounds on
their performance. In Sect. 4, we discuss how to efficiently modify our algorithms in the presence of communication
feedback. Sect. 5 analyzes the scaling properties of our algorithms in the network size, for some network families of
interest. Simulations are presented in Sect. 6, comparing our algorithm with the decreasing gains strategy.

1 Related measures to evaluate distributed algorithms have been proposed in various settings: see, for instance, [23,25,13].
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Before proceeding, let us establish some notational conventions to be used throughout the paper. We shall denote
by N, Z

+, and R, respectively, the sets of naturals, nonnegative integers, and real numbers. The set of the smallest
t naturals will be denoted by [t] := {1, 2, . . . , t}. The transposes of a vector v ∈ R

n and a matrix M ∈ R
n×n, will

be denoted by v∗ and M∗, respectively. With the symbol 1 we denote the n-dimensional vector all of whose entries
equal 1. Given a set V of finite cardinality, |V| = n, we denote by R

V and R
V×V the vector spaces, isomorphic to R

n

and R
n×n respectively, where entries of the vectors and matrices are labeled by elements of V instead of numbers

1, . . . , n. A (directed) graph G = (V , E) is the pair of a finite vertex set V and of a set E ⊆ V × V of directed edges.
For a vertex v ∈ V , we shall denote by N+

v := {w ∈ V : (v, w) ∈ E}, and N−
v := {w ∈ V : (w, v) ∈ E}, respectively,

the sets of its out- and in-neighbors. Given a matrix M ∈ R
n×n, we define the induced graph GM by taking a set V

of n nodes, identifying R
n×n with R

V×V and putting an edge (j, i) in E if i 6= j and Mij > 0. A matrix M is adapted
to a graph G if GM is a subgraph of G.

2 Problem setting

In this section, we present a formal statement of the problem, introduce the main performance measures, and gather
some recently appeared results on the reliable point-to-point transmission of continuous information though digital
noisy channels.

2.1 Problem statement

We shall consider a finite set V of |V| = n agents, identified with the vertices of a communication graph Gε := (V , E),
parametrized by ε ∈ [0, 1]. Each agent v ∈ V has access to some partial information consisting in the observation of
a scalar value θv. The full vector of observations will be indicated by θ = (θv)v∈V . We shall consider the case when
all θv’s take values in some bounded interval Θ ⊆ R, with some a priori joint probability distribution. With no loss
of generality, the interval Θ will be assumed to have unitary length. The goal is for the network to compute the
arithmetic average of such values,

y := f(θ) = n−1
∑

v∈V
θv

through repeated exchanges of information among the agents and without a centralized computing or scheduling
system.

Communication among the agents takes place as follows. At each time instant t = 1, 2, . . ., every agent v broadcasts
a binary signal av(t) ∈ {0, 1} to its out-neighbourhood N+

v . Every agent w ∈ N+
v receives a possibly erased

version bv→w(t) ∈ {0, 1, ?} of av(t). Here, the symbol ? represents a lost binary signal. We shall denote by bv(t) =
(bw→v(t))w∈N−

v
, and b′v(t) = (bv→w(t))w∈N+

v
the vector of signals received by agent v at time t, and, respectively,

the vector of signals received from agent v by its out-neighbours. At time t, each agent v ∈ V makes an estimate
ŷv(t) of y. The compact notation a(t) = (av(t))v∈V , b(t) = (bv(t))v∈V , and ŷ(t) = (ŷv(t))v∈V , will be used for the
full vectors of transmitted signals, received signals, and estimates at time t, respectively.

We shall assume the communication network to be memoryless, i.e., that b(t) is conditionally independent from the
initial observations θ and the previous transmissions {a(s), b(s) : 1 ≤ s < t}, given the currently broadcasted signals
a(t). Further, we shall assume that, given a(t), for every v ∈ V and w ∈ N+

v ,

bv→w(t) =

{

? w.p. ε

av(t) w.p. 1− ε .

Here ε is some erasure probability which –for the sake of simplicity– is assumed to remain constant in t, v and w. 2

Distributedness of the computation algorithm is then modeled by the constraining the transmitted signal av(t) to
be a function of the local information available to agent v at the end of the (t − 1)-th round of communication,
and that the estimate ŷv(t) to be a function of the information available to agent v at the end of the t-th round of
communication. We shall consider two different local information structures, corresponding to the cases when there

2 It is not necessary, for the validity of our results, to assume mutual independence of the received signals {bv→w(t)}w given
av(t). On the other hand, the assumption that the channel is memoryless remains crucial.
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is no communication feedback, and when there is causal communication feedback, respectively. When there is no
communication feedback, the local information available to agent v at the end of the t-th round of communication,
consists of its initial observation, as well as of the signals received by v up to time t:

iv(t) := {θv, bv(s) : 1 ≤ s ≤ t} . (1)

On the other hand, when there is causal communication feedback, the local information available to agent v at the
end of the t-th round of communication includes also all the signals received insofar from v by its out-neighbours:

i′v(t) := {θv, bv(s), b
′
v(s) : 1 ≤ s ≤ t} . (2)

Throughout the paper, we shall assume that the graph Gε is strongly connected, i.e. that there exists a directed path
connecting any pair of its vertices.

2.2 Performance measures

In order to analyze the performance of different distributed computation algorithms, we shall study the distance of
the estimates ŷv(t) from the average of the initial values y:

e(t) = ŷ(t)− y1 .

The communication complexity of a distributed algorithm A on a communication graph Gε will be measured in
terms of the function

τ(δ) := inf
{

t ∈ N : n−1
E

[

||e(s)||2
]

≤ δ, ∀s ≥ t
}

, δ ∈]0, 1] .

In other words, for δ ≥ 0, τ(δ) denotes the minimum number of binary transmissions each agent has to perform in
order to guarantee that the average mean squared estimation error does not exceed δ.

Another performance figure, measuring the computational complexity of an algorithm A on a communication graph
Gε, is defined as follows. For every t ∈ N, and v ∈ V , we shall denote by κv(t) the minimum number of binary

operations required by agent v to evaluate the functions φ
(t)
v (·) and ψ

(t)
v (·). Then, we shall define

κ(δ) := max







∑

1≤t≤τ(δ)

κv(t) : v ∈ V







, δ ∈]0, 1] .

Hence, for any δ ≥ 0, κ(δ) denotes the maximum, over all agents v ∈ V , of the total number of binary operations
required to be performed, in order to achieve an average mean squared estimation error not exceeding δ.

2.3 Reliable transmission of continuous information through digital noisy channels

When the communication graph is complete, with all the agents connected through binary erasure broadcast channels,
the problem reduces to that of reliable transmission of continuous information through digital noisy channels, which
has been recently addressed in [12]. While referring to [12] for general information-theoretical limits and complexity
vs performance tradeoffs, we shall revise here some results which will be used in the sequel.

Let θ be a random variable taking values in a bounded interval Θ ⊆ R, according to some a-priori probability
law. Consider a memoryless binary erasure channel with erasure probability ε ∈ (0, 1) (briefly BEC(ε)). At each
time t ∈ N, the channel has input at ∈ {0, 1}, output bt ∈ {0, 1, ?}, with bt conditionally independent from x,
{as, bs : 1 ≤ s ≤ t − 1}, given at, and such that bt = at with probability 1 − ε, and bt =? with probability ε. The
goal is to design a sequence of encoders Υ = (Υt : Θ→ {0, 1})t∈N

, and of decoders Λ = (Λt : {0, 1, ?}t→ Θ)t∈N
,

such that, if at = Υt(x), bt is the corresponding channel output, and θ̂t := Λt(b1, . . . , bt) the current estimate, the

mean squared error E[(θ− θ̂t)
2] is minimized. The computational complexity of the sequential coding scheme (Υ,Λ)

is measured, for every time horizon ℓ ∈ N, in terms of the total number kℓ of binary operations required to compute
Υt(x) and Λt(b1, . . . , bt) for all 1 ≤ t ≤ ℓ.
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Here, in particular, we shall consider two specific classes of sequential transmission schemes described and analyzed in
[12]. The first class is that of random linear tree codes, referred to by the superscript L. These codes have exponential
converge rates with respect to the number of channel uses, and computational complexity proportional to the the
cube of the number of channel uses. The second class is that of irregular repetition codes (superscript R). Such codes
have linear computational complexity, but subexponential converge rates. Their performance is summarized in the
following:

Lemma 1 ([12], Coroll. 6.2) There exist a sequence of linear encoders ΥL, and a sequence of decoders ΛL, such

that, if θ̂ℓ = ΛL
ℓ (b1, . . . , bℓ), then, for all ℓ ≥ 0,

E

[

(θ − θ̂ℓ)
2
]

≤ β2ℓ
L , kL

ℓ ≤ Bℓ
3 , (3)

where βL ∈ (0, 1), and B > 0 are constants depending on the erasure probability ε only.

Lemma 2 ([12], Prop. 5.1) There exist a sequence of linear encoders ΥR, and a sequence of decoders ΛR, such

that, if θ̂ℓ = ΛR
ℓ (b1, . . . , bℓ), then, for all l ≥ 0,

E

[

(θ − θ̂ℓ)
2
]

≤ β2
√

ℓ
R , kR

ℓ ≤ 2ℓ , (4)

where βR ∈ (0, 1) is a constant depending on the erasure probability ε only.

In the next sections we shall use the results above as building blocks for our iterative distributed averaging algorithms.

3 Distributed averaging without communication feedback

In this section, we present some iterative distributed averaging algorithms, working on a strongly connected commu-
nication graph Gε, without explicit communication feedback. Our algorithms involve a sequence of communication
phases, alternated to averaging steps. During each communication phase, agents broadcast an encoded version of
their current state –a scalar value coinciding with their current estimate of the state of the world y– to their out-
neighbors. At the end of each phase, each agent estimates the states of its in-neighbors from the signals received
from them, and it updates its state to a convex combination of these estimates and its own current state; the process
is then iterated. In the absence of communication feedback it is not clear how to guarantee that these algorithms
preserve the average of the initial observations. To cope with this, we allow the length of each communication phase
to increase with the phase index. For proper choices of the length of the subsequent phases, we are able to prove
that state agreement is asymptotically achieved with probability one, as well as to estimate the communication and
computational complexities of the algorithms. Sect. 3.1 introduces the algorithms in further detail, while the main
results on their performance are stated in Sect. 3.2.

3.1 Description of the algorithms

We shall present two iterative distributed averaging algorithms on a communication graph Gε. Both algorithms are
based on a sequence of transmission phases, indexed by j ≥ 1, alternated to averaging steps. Each agent v ∈ V
maintains a scalar state xv(j), j ≥ 0, which is initialized to equal the original observation θv. The state xv(j) has
to be thought as v’s estimate of y at the beginning of the (j + 1)-th phase. During the j-th transmission phase,
each agent broadcasts ℓj binary signals to its out-neighbors. These binary signals represent an encoding of the state
xv(j−1). At the end of the j-th phase, each agent estimates each of its in-neighbors’ states from the signals received
from it, and it updates its state to a convex combination of these estimates and its own current state.

More specifically, let P be a doubly-stochastic, irreducible matrix adapted to Gε, with non-zero diagonal entries.
Let (ℓj)j∈N be a sequence of positive integers, each ℓj representing the length of the j-th transmission phase, and
define hj :=

∑

i≤j ℓi, for all j ∈ N and h0 = 0. Further, let Υ and Λ be sequences of encoders and decoders as
introduced in Section 2.3. Then, the proposed distributed algorithms consist of the following steps. First of all, each
agent initializes its state setting:

xv(0) = θv , ∀v ∈ V . (5)

Then, for all j ∈ N and v ∈ V :
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Communication phase: v broadcasts an encoded version of its state xv(j − 1) to its out-neighbours, namely,
∀hj−1 < t ≤ hj , it transmits the binary signal

at = Υk (xv(j − 1)) , k = t− hj−1 , (6)

State update: at the end of the j-th communication phase, v estimates the state of all its in-neighbours, based

on the received signals {bv(t)}
hj

t=hj−1+1; let x̂
(v)
w (j − 1) be the estimate of xw(j − 1) built by agent v, then

x̂(v)
w (j − 1) = Λℓj (bw→v(hj−1 + 1), . . . , bw→v(hj)) , ∀w ∈ N−

v . (7)

Then, v updates its own state according to the following consensus-like step:

xv(j) =
∑

w∈N−

v

Pvwx̂
(v)
w (j − 1) + Pvvxv(j − 1) . (8)

In what follows, we shall consider two implementations of the algorithm. In the first implementation, referred to as
algorithm AL, we use linear tree codes Υ = ΥL, Λ = ΛL, and phase-lengths lLj = SLj for some SL ∈ N. In the

second implementation, referred to as algorithm AR, we use repetition codes Υ = ΥR, Λ = ΛR, and phase-lengths
lRj = SRj

2, for some SR ∈ N. Observe that, thanks to (3), one has, for the algorithm AL,

E

[

(

x̂(v)
w (j − 1)− xw(j − 1)

)2
]

≤ α2j
L , (9)

for every j ∈ N, v ∈ V , and w ∈ N−
v , where αL := βSL

L . Similarly, for the algorithms AR, Equation (4) guarantees
that

E

[

(

x̂(v)
w (j − 1)− xw(j − 1)

)2
]

≤ α2j
R , (10)

for every j ∈ N, v ∈ V , and w ∈ N−
v , where αR := β

√
SR

R .

It should be mentioned that many other choices could have been made for the communication phase lengths, as
well as for the coding schemes used during each of them. For instance, block codes of different lengths could have
been used during each phase. Our choice of using the same anytime transmission scheme for every agent during each
communication phase, has the advantage of fewer memory requirements (only one transmission scheme has to be
memorized by each agent), anonymity (each agent uses the same transmission scheme, and the state updating rules
only depend on its position in the graph), and adaptiveness with respect to the erasure probability ε. In fact, it is
not required to know the actual value of ε in order to design Υ and Λ, see Remarks 3 and 5 in [12].

3.2 Performance analysis

We shall now present results characterizing the performance of the algorithms AL, AR introduced in Sect. 3.1.
Throughout, we shall assume that Gε is a strongly connected communication directed graph, and P is a doubly
stochastic, irreducible matrix which is adapted to Gε, and has positive diagonal entries. Notice that this implies that
P ∗P is doubly-stochastic and irreducible. It then follows from Perron-Frobenius theorem that P ∗P has the eigenvalue
1 with multiplicity one and corresponding eigenvector 1, and all its other eigenvalues have modulus strictly smaller
than 1. Hence, P has largest singular value equal to 1 and all other singular values strictly smaller than 1. We shall
denote by ρ := ρ(P ) < 1 the second largest singular value of P , and assume that ρ ≥ ρ, where ρ > 0 is some a priori

constant. 3

3 This may be guaranteed without any global knowledge, for instance by assuming Pvv ≥ (1 + ρ)/2. See also the Metropolis
weights definition in Sect. 6.
Note that this assumption is for analysis’ purpose only, and the agents do not need to know ρ to run the algorithms. The
assumption entails a minimal loss of generality in that it rules out the case ρ = 0: however, a version of Proposition 3 and of
subsequent results can be stated, which cover this case as well [9].
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Observe that, the vector of the estimation errors on y made by the different agents, e(t) = ŷ(t) − y1 is constant
during each transmission phase, i.e., for any j ≥ 0 we have that

e(t) = e(hj) , ∀hj ≤ t < hj+1 . (11)

To analyze the performance of our algorithms, it is useful to introduce a suitable decomposition of e; for all j ≥ 0,
we can write that

e(hj) = z(j) + ζ(j)1 , (12)

where
z(j) = x(j)−

(

n−11∗x(j)
)

1 (13)

represents the difference between the current estimates and the average of the current states, whereas

ζ(j) = n−11∗x(j)− y = n−11∗ (x(j)− x(0)) (14)

accounts for the distance between the current average of the estimates and the average of the initial conditions.

Now, observe that the initialization (5) and the state dynamics (8) may be rewritten in the following compact form











x(0) = θ

x(j + 1) = Px(j) + (P ⊙∆(j + 1))1 , j ≥ 0 ,

(15)

where ∆(j) = (∆vw(j))v,w∈V is defined, for all j ∈ N, by

∆vw(j) :=

{

x̂
(v)
w (j − 1)− xw(j − 1) if w ∈ N−

v

0 if w /∈ N−
v .

(16)

Notice that, in general, ∆vw(j) has non-zero mean, and it is not independent from xw(j), and therefore from the
errors introduced by the previous transmission phases {∆(i) : 1 ≤ i < j}. We have the following result.

Proposition 3 Consider the stochastic system (15), driven by a noise process {∆(j) : j ≥ 1} satisfying

E[∆vw(j)2] ≤ α2j , j ≥ 1 . (17)

for some 0 < α < ρ. Then, for all j ≥ 0,

E[ζ2(j)] ≤
α2

(1− α)2
, (18)

n−1
E[‖z(j)‖2] ≤ ρ2j

(

1−
α

ρ

)−2

. (19)

Proof: See Section A.1.

The following result characterizes the performance of both algorithms AL and AR.

Theorem 4 (Performance without communication feedback, increasing phase lengths) For any choice of
the initial phase’s length SL (respectively, SR), there exists a real-valued random variable ŷ such that

E
[

(y − ŷ)2
]

≤
α2

(1− α)2
, (20)

where α = βSL (respectively, α = β
√

SR

R ) and that the estimates of algorithm AL (respectively, AR) satisfy, with
probability one,

lim
t→∞

ŷv(t) = ŷ , ∀v ∈ V . (21)
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Moreover, it is possible to choose the initial phase length SL (respectively, SR) in such a way that the algorithm AL

(respectively, AR) has communication and computational complexities satisfying

τL(δ) ≤ C1 + C2
log3 δ−1

log2 ρ−1
, κL(δ) ≤ C3 + C4

log7 δ−1

log4 ρ−1
, (22)

and, respectively,

τR(δ) ≤ C5 + C6
log5 δ−1

log3 ρ−1
, κR(δ) ≤ C7 + C8

log5 δ−1

log3 ρ−1
, (23)

for all δ ∈]0, 1], where {Ci : i = 1, . . . , 8} are positive constants depending on ε only.

Proof: See Section A.2.

It is worth observing that, by (20), the mean squared distance between the asymptotic estimate ŷ and the actual
value y, is upper bounded by a constant which, quite remarkably, is independent of either the size of the network
or the consensus matrix P , and depends only on the length of the first transmission phase. Hence, the asymptotic
estimation error in both the algorithms AL and AR is independent of the size and topology of the network.

Theorem 4 shows that both the algorithms AL and AR have communication and computational complexities growing
at most poly-logarithmically in the desired precision. It is interesting to observe that the bounds on the communi-
cation complexities suggest that the agents have to use fewer channel transmissions in order to achieve a desired
precision when running the algorithm AL than when running AR. On the other hand, the bounds on the computa-
tional complexities suggest that algorithm AR requires the agents to perform fewer binary computations than AL

in order to achieve the same estimate precision.

Furthermore, both complexities are shown to grow not faster than some negative power of ρ, the second largest
singular value of the matrix P . As the matrix P is adapted to the communication graph Gε, the dependence of
the bounds on ρ captures the effect of the network topology. As ρ approaches 1 –as it occurs for the families of
graphs of increasing size described in Sect. 5– the bounds of Theorem 4 again suggest that algorithm AL has lower
communication complexity but higher computational complexity than the algorithm AR.

4 Distributed averaging with communication feedback

In this section we discuss how to efficiently modify the algorithms of Sect. 3 when there is communication feedback.
The key point is that, in the presence of noiseless communication feedback, it is possible to modify the algorithms AL

and AR and make them average-preserving: this is explained in Sect. 4.1. In Sect. 4.2, the modified algorithms will be
shown to converge to average consensus with probability one, and to have lower communication and computational
complexities than their feedbackless counterpart.

4.1 Average-preserving state update

We shall consider distributed averaging algorithms with the same iterative structure described in Sect. 3. We shall
use the same communication phase rule (6) of Sect. 3.1, and modify the state update step as follows. Observe that,
at the end of the j-th communication phase, not only can agent v estimate the state of all its in-neighbours as in (7),

but it can as well use its knowledge of the signals {bv→w(t)}
hj

t=hj−1+1 received by its out-neighbors w ∈ N+
v in order

to compute their estimates x̂
(w)
v (j − 1) of its own current state. Then, in the presence of communication feedback,

the state update step (8) can be replaced by the following one

xv(j + 1) = xv(j)−
∑

w∈N+
v

Pwvx̂
(w)
v (j) +

∑

w∈N−

v

Pvwx̂
(v)
w (j) . (24)

Notice that the state update (24) requires every agent v to know not only the entries of the v-th row of the matrix
P , but also those of the v-th column of P . However, no global knowledge of the communication graph topology is
required.
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The state update equation (24) may be written in the compact form

x(j + 1) = Px(j) +
[

(P ⊙∆(j + 1))− (P ⊙∆(j + 1))∗
]

1. (25)

Observe that 1∗ [

(P ⊙∆(j))− (P ⊙∆(j))
∗]

1 = 0, so that, since P is a doubly stochastic matrix, one has 1∗x(j +

1) = 1∗Px(j) = 1∗x(j). It follows that n−11∗x(j) = n−11∗x(0) = y for any j. Hence,

ζ(j) = 0 , e(hj) = z(j) , ∀j ≥ 0 . (26)

4.2 Feedback algorithms with increasing phase lengths

We shall now consider two implementations of the above described algorithms. Such implementations have increasing
communication phase lengths, analogously to those introduced in Sect. 3. In the first implementation, referred to as
algorithm A′

L linear codes are used in the communication phase, and the length of the j-th phase is lj = SLj
2 for

some SL ∈ N. The second implementation, named A′
R, uses repetition codes in the communication phase, and the

length of the j-th phase is lj = SRj
3 for some SR ∈ N.

The following result characterizes the performance of the algorithms A′
L and A′

R, showing that with probability one,
the estimates of all the agents converge to the actual value y, and estimating the communication and computational
complexities.

Theorem 5 (Performance with communication feedback, increasing phase lengths) For any choice of the
initial phases length SL (respectively, SR), the estimates of the algorithm A′

L and A′
R satisfy, with probability one,

lim
t→∞

ŷv(t) = y , ∀v ∈ V .

Moreover, it is possible to choose the initial phase length SL (SR, respectively) in such a way that the algorithm A′
L

(respectively, A′
R) has communication and computational complexities satisfying

τ ′L(δ) ≤ C′
1 + C′

2

log2 δ−1

log2 ρ−1
, κ′L(δ) ≤ C′

3 + C′
4

log4 δ−1

log4 ρ−1
, (27)

and, respectively,

τ ′R(δ) ≤ C′
5 + C′

6

log3 δ−1

log3 ρ−1
, κ′R(δ) ≤ C′

7 + C′
8

log3 δ−1

log3 ρ−1
, (28)

for all δ ∈]0, 1], where {C′
i : i = 1, . . . , 8} are positive constants depending on ε only.

Proof: See Section A.3.

Theorem 5 shows that the communication and computational complexities of the algorithms A′
L and A′

R have a
better dependence on the desired precision δ with respect to their feedback-less analogous AL and AR. On the
other hand, the dependence on ρ is the same. The reason for such an improvement in performance relies on the
average-preserving property which is possible to guarantee when communication feedback is available. Thanks to
this property, as shown by Theorem 5, it is not necessary to increment the initial phase’s length as a function of final
desired precision, since the estimates produced by both A′

L and A′
R converge to y with probability one. In contrast,

when communication feedback is not available, it is not clear how to guarantee that the average of the agents’
estimates is preserved. This is the reason why, in Sect. 3, we had to adjust the initial phase’s length as a function
of the desired precision δ, inducing a worse dependence on δ of the bounds on communication and computational
complexities of the algorithms AL and AR shown in Theorem 4.
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4.3 Feedback algorithms with constant phase lengths

In many practical circumstances it proves convenient to use distributed averaging algorithms with constant phase
length. For instance, this is a desirable property in cases when the algorithm is expected to operate in slowly varying
environment, and it is important that the timescale of the algorithm remains faster than the timescale on which the
environment is changing, for otherwise it would never adapt. In the absence of communication feedback, it may be
expected that algorithms with constant phase lengths would not work very well, for the noise keeps accumulating
on the linear space generated by the vector 1, and the error ζ(j) tends to increase: see simulations in Sect. 6. On
the other hand, the average-preserving state update (25) prevents this to happen when communication feedback
is available. One may therefore consider two versions of the algorithm, A′′

L and A′′
R, with state update (25), and

communication phases using linear and repetition codes, respectively, and constant lengths lj = SL, and lj = SR.
Using such algorithms, the agents’ estimates don’t converge to consensus, but their estimation error remains bounded
by a constant which depends on the phase length, as shown in the following:

Theorem 6 (Performance with communication feedback, constant phase lengths) For any choice of the
initial phase length SL (resp. SR), the estimation error in the algorithm AL (resp. AR) satisfies

n−1
E[||e(t)||2] ≤ ρ2j + (1− ρ)−2α2 ,

where α = βSL

L (resp. α = β
√

SR

R ).

5 Complexity scaling with network size

In this section we gather some considerations on how the complexity of our algorithms may vary with respect to the
size of the network. As the matrix P is adapted to the communication graph Gε, the second largest singular value ρ
of P depends on the network topology: hence, so do the complexities of our algorithms. A precise characterization of
the these tradeoffs can be led for some interesting families of graphs. In what follows we start analyzing two simple
examples: the ring and the 2-dimensional torus, and then we describe the more general family of grids on toruses
and grids on cubes of any dimension.

In all the examples we will introduce here, P is a normal matrix; in this case, the second largest singular value ρ is
simply the second largest in modulus of the eigenvalues of P .

Example 7 (Ring) Consider the graph G = (V , E) where V = [n] and where E is described by the arcs (1, n) and
(i+ 1, i) for 1 ≤ i ≤ n − 1. Assume that P is such that Pi,i = Pi,i+1 = 1/2. Such a matrix P is a circulant matrix
and in particular is normal. In this case, it is easy to explicitly compute the eigenvalues of P and see that

ρ = 1− C
n2 +O

(

1
n4

)

n→∞,

for some positive constant C. Observe that, when n→∞, then ρ→ 1, and this implies that the convergence time of
the standard linear consensus algorithm diverges as n diverges. The consequence of such result on the performance
of our algorithms is the following: when n → ∞, τL(δ) = O(n4), and κL(δ) = O(n8), whereas τR(δ) and κR(δ) are
both O(n6).

Example 8 (2-dimensional torus) Consider the graph G = (V , E) where V = [m] × [m], so that n = m2, and
where E contains the edges (i, j)← (i, j + 1), (i, j)← (i+ 1, j) and all the self-loops ((i, j), (i, j)); all the sums are
meant component-wise mod m. Assume that the matrix P is such that P(i,j),(i,j+1) = P(i,j),(i+1,j) = P(i,j),(i,j) = 1/3.
Such a matrix P is a block-circulant matrix and is normal; in this case we have

ρ = 1− C
n +O

(

1
n2

)

n→∞

This implies that, when n→∞, τL(δ) = O(n2), and κL(δ) = O(n4), whereas τR(δ) and κR(δ) are both O(n3).

A natural generalization of the two examples above is a grid with n = md nodes on a d-dimensional torus and with
edges to more neighbors than one per direction. This class of graphs is known as Cayley graphs on the Abelian
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group Z
d
m (i.e., the set {0, 1, . . . ,m−1}d, where the sum is componentwise mod m). Cayley matrices are matrices P

adapted to such graphs and with labels which respect the graph symmetry, in the sense that the coefficient associated
with an edge (u, v) depends only on the difference (in Z

d
n) u − v. Such matrices are normal and it is possible to

write explicitly their eigenvalues and eigenvectors, exploiting a notion of Fourier transform over Abelian groups (see
e.g. [4]). When there is a family of Cayley graphs of increasing size with bounded neighborhoods (each node has a
number of neighbors which does not grow with n) and where the coefficients used for weighting neighbors do not
vary with n either, then the asymptotic behavior of the second largest singular value is:

ρ = 1− C
n2/d +O

(

1
n4/d

)

n→∞

where C is a positive constant, depending only on d and on the coefficients assigned to neighbors. This implies that
the complexities of our algorithms, for n → ∞, satisfy: τL(δ) = O(n4/d), and κL(δ) = O(n8/d), whereas τR(δ) and
κR(δ) are both O(n6/d).

It is worth to notice that the above results do not strictly rely on the group structure of Z
d
m, as shown in the following

example. A related family of graphs consists in grids on a cube in R
d instead of on a torus (e.g., for d = 1, a line

of points, instead of a circle). A technique introduced in [6] allows to find the eigenvalues of matrices associated
with d-dimensional grids on cubes, provided that coefficients satisfy some assumptions of symmetry, and that the
coefficients on the self-loops at the borders are suitably arranged. The important result is that, asymptotically with
n, ρ has the same behavior for a d-dimensional grid on a torus and on the cube, and thus also the performance
bounds for our algorithms are the same as in the Cayley case. The interested reader can find in [10] more formal
definitions and a summary of the relevant properties concerning the eigenvalues of Cayley matrices and grids.

6 Simulation results and comparison with decreasing gains strategy

This section is devoted to some examples illustrating the averaging algorithms proposed in this paper, their imple-
mentation, and their comparison with other sensible algorithms, inspired by the consensus literature.

Example 9 (AR algorithms) We start by providing a practical implementation of the algorithms AR described
in Section 3.1, and commenting on its performance. To do so we need to specify a coding/ decoding scheme and
a consensus matrix P . For coding/decoding scheme, we implement an instance of the low-complexity repetition
transmission schemes described in [12, Section 5.1], whose performance are characterized in Lemma 2. For the sake
of the clarity we briefly describe them. Let x ∈ [0, 1] be a quantity to be transmitted and let

∑

i≥1 ci2
−i, ci ∈ {0, 1}

be its diadic expansion. The key idea underlying the scheme we adopt is based on the following observation: since the
different bits of the binary expansion of x require different levels of protection, it is sensible that they be repeated
with a frequency monotonically decreasing in their significance. Informally the sequence of transmitted symbols is
described as (c1, c1, c2, c1, c2, c3, c1, c2, c3, c4, . . .). The estimate x̂ =

∑

i≥1 ĉi2
−i is built as follows: ĉi = ci if at least

one of the repeated occurrences of ci in the transmitted word has been received un-erased, otherwise ĉi is set to 0
or 1 uniformly at random. In our simulations we assume that the erasure probability ε is equal to 0.5.

We describe now the communication graph and the consensus matrix P adopted. We consider n = 30 agents, and a
communication graph which is a strongly connected realization of a two-dimensional random geometric graph, where
vertices are 30 points uniformly distributed in the unit square, and there is a pair of edges (u, v) and (v, u) whenever
points u, v have a distance smaller than 0.4. The communication graph is bidirectional, in the sense that N−

v = N+
v

for all v ∈ V . The consensus matrix P is built according to the Metropolis weights, illustrated for instance in [32].
Such matrix can be constructed distributedly, using only information on neighbors, as follows:

Puv =















1
1+max{deg(u),deg(v)} if (u, v) ∈ E

1−
∑

w∈N−

u
Puw if u = v

0 otherwise

where deg(v) is the number of neighbors of node v. The initial condition θ of each experiment is randomly sampled
from a uniform distribution on [0, 1]n.
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when no communication feedback is available.
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Fig. 2. Behavior of n−1
E[‖e(t)‖2] when communication feedback is available.

The simulation results obtained are plotted in Figures 1 and 2: they are generated based on 1000 trials (a different
random geometric graph and a different initial condition are generated for each trial). In Figure 1 we depict the
behaviors of n−1

E
[

‖e(t)‖2
]

and n−1
E

[

‖z(t)‖2
]

for different values of SR (we recall that in algorithms of type AR the

length of the j-th generic phase is equal to SRj
2) under the assumption that no communication feedback is available.

Observe that the larger is the value of SR, the better is the attainable performance in terms of the variable e. On
the other hand, larger values of SR also imply a slower convergence to 0 of the variable z. In Figure 2 we provide a
comparison between the algorithm without communication feedback and the algorithm with communication feedback.
For these simulations we assume that SR = 21. As predicted in Theorem 5, the advantage of having feedback in the
communication is evident: the variable e(t) in presence of communication feedback converges to zero similarly to the
variable z when no communication feedback is available. In Figure 2 we also plot, in dashed black line, the value of

the bound in (20), which is α2

(1−α)2 : if we compute α using [12, Proposition 5.1], it turns out that α2

(1−α)2 = 0.0113.

Note that the achieved precision is two orders of magnitude better than predicted by the bound in (20).

Example 10 (Decreasing Gains) In this example we want to compare our algorithm with a different strategy
which was used in previous literature to compute approximate averages running a consensus algorithm in the presence
of noisy communications. We will refer to such family of algorithms as to ‘decreasing gain’ algorithms, because the
key idea is to have time-varying gains, which give decreasing weight to information coming from neighbors, so as to
avoid accumulating an amount of error growing to infinity with time. Algorithms exploiting this idea were presented
independently by various authors (see [19] , [28] and [21]). Such algorithms, after initialization x(0) = θ, consist of
consensus-like iterations with time-varying weights:

xv(j + 1) =
(

1− µ(j) + µ(j)Pvv

)

xv(j) + µ(j)
∑

w∈N−

v

Pvwx̃
(v)
w (j)

where x̃
(v)
w (j) = xw(j) + ηw→v(j) is the version of xw(j) received by v, affected by additive noise ηw→v(j), and the
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gains µ(j) ∈ (0, 1) are chosen to satisfy

∑

k≥0 µ(j) =∞ and
∑

j≥0 µ
2(j) <∞ .

Such algorithms were designed for (analog) channels, where real numbers can be transmitted and are affected by an
additive noise with zero-mean, bounded variance and independent from past history as well as from other channels in
the network. Under such assumptions, [19], [28] and [21] use techniques of stochastic approximation theory to prove
convergence to consensus. However, we can apply them also to the digital noisy networks considered in this paper, if

we replace x̃
(v)
w (j) with the value x̂

(v)
w (j) obtained after the process of encoding – transmitting over the channel from v

to w – decoding, by some suitable coding scheme. What we want to compare is the strategy of increasing transmission
lengths versus that of decreasing gains, where we plug into the decreasing gain algorithm a coding/encoding of
fixed length ℓ̄, not varying with j. Thus, we obtain the following algorithm. After initialization xv(0) = θv for
all v ∈ V , the algorithm has time phases of constant length ℓ̄, with µ(j) ∈ (0, 1) satisfying

∑

j≥0 µ(j) = ∞ and
∑

j≥0 µ
2(j) < ∞. In the j-th time phase, each agent v broadcasts an encoded version of its state xv(j − 1) to its

out-neighbours, namely it transmits the binary signal at = Υi (xv(j − 1)) , where i = t− ℓ̄(j − 1). At the end of the
transmission phase, v computes the state estimate of all its in-neighbours, based on the received signals, putting

x̂
(v)
w (j−1) = Λℓ̄j

(

bw→v(ℓ̄(j − 1) + 1), . . . , bw→v(ℓ̄j)
)

for all w ∈ N−
v . Then, it updates its own state, with a weighted

consensus-like iteration:

xv(j) = (1 − µ(j − 1) + µ(j − 1)Pvv)xv(j − 1) + µ(j − 1)
∑

w∈N−

v

Pvwx̂
(v)
w (j − 1) .

State xv(j − 1) represents the estimate that agent v has of y along all j-th phase, i.e., ŷv(t) = xv(j − 1) for
ℓ̄(j − 1) ≤ t < ℓ̄j.

Clearly, the fact that in the ‘decreasing gain’ algorithms the length of the phases is fixed has the advantage of
having an asymptotically shorter time within successive consensus-like updates, but prevents the variances of the
errors associated to the estimates x̂(k) to decrease to zero. The decreasing gains allow to overcome this problem, by
giving decreasing weight to the accumulating errors; however this comes at the price of a slower convergence of the
consensus-like steps. Moreover there is no guarantee of convergence to (or near to) the correct average in the case
of digital noise. It is not clear a priori which strategy can provide the best performance, and thus it is interesting to
compare the two of them by simulations. We consider the same coding/decoding scheme introduced in the previous
example where we set ℓ̄ = 75 and SR = 21 and where again ǫ = 0.5. Moreover, as far as the decreasing gains
algorithms are concerned, we assume that µ(j) = 1/j.

The results obtained are plotted in Figures 3 and 4: again they are generated based on 1000 trials where for each
trial the consensus matrix P is built as in Example 9. Both figures show that the proposed AR strategy is more
effective than the decreasing gains one. From Figure 4 we are confirmed about the effectiveness of the exploitation
of communication feedback, thanks to the average preservation.
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Example 11 (Fixed gains and phase lengths) In this example we consider a benchmark algorithm, using a
linear repetition code is used for communication, and with both the length of the communication phases and the
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Fig. 4. Behavior of n−1
E[‖e(t)‖2] when feedback-communication is available.

consensus gains are kept fixed along all the iterations of the algorithm. As argued in Sect.4.3, keeping both phase
lengths and consensus gains fixed is particularly useful when operating in slowly varying environment, where it
is important that the timescale of the algorithm remains faster than the timescale on which the environment is
changing.

Precisely, as in the decreasing gains algorithm, all the communication phases lengths are assumed to be equal to
a certain value ℓ̄, and, as in AR, the update rule (8). Our results are reported in Figures 5 (left) and 6; they are
generated based on 1000 trials adopting the coding/ decoding scheme used in the previous Example with ℓ̄ = 75 and
ǫ = 0.5 and where, for each trial, the consensus matrix P is constructed as explained in Example 9. It is clear that
in this fixed gains-fixed phases algorithm there is no compensation to smooth out the communication errors. This
implies, for instance, that the average is not preserved: this results (Figure 5) in a poor performance with respect to
the variable e. In particular, the variable e drifts, and there is no convergence; a similar phenomenon was observed
in [7] in the case of communications affected by white noise.

On the other hand, when communication feedback is available, one can consider the average-preserving algorithmA′′
R

considered in Sect.4.3. In this case, reported in Figures 5(right) and 7, the mean square error n−1
E[||e(t)2||] decreases

exponentially fast, and then remains remains bounded, though oscillating. This is coherent with the statement of
Theorem 6.

Figures 6 and 7 display the comparison between the AR algorithm proposed in this paper and the fixed gains-fixed
phases algorithms (with and without feedback). It is worth to notice that the latter can be effective in the transient,
while their asymptotic behaviors are qualitatively different from the AR algorithm.
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communication feedback case and the communication feedback case when both length of communication phases and gains are
fixed. (right).
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E[‖z(t)‖2] (right panel) between and AR and the fixed
length communication phases and fixed gains when no communication feedback is available.
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when communication feedback is available.

7 Conclusion

In this paper, we have for the first time considered the averaging problem on networks of digital links, and established
suitable performance figures to evaluate its algorithmic solutions, in terms of communication and computation
complexities. On this ground, the main contribution of the paper has consisted in proposing a family of average
consensus algorithms designed for digital networks, based on encoding/decoding schemes with precision increasing
with time. Estimates of the communication and computation complexities to achieve a prescribed precision have been
given: we showed that both the number of transmissions and of the number of computations are poly-logarithmic in
the prescribed precision. Also, we have investigated how to make use of communication feedback, when available, in
order to make the algorithms average-preserving, and improving their performance. The question is open whether a
logarithmic algorithm can be designed for average consensus on digital networks, and how much global information
it would require to be run by the agents.
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A Proofs

A.1 Proof of Proposition 3

Let us first consider ζ(j) defined in (14). It is straightforward to verify that the recursion

ζ(0) = 0; ζ(j + 1) = ζ(j) + ξ(j + 1) , j ≥ 0 ,

is satisfied, with ξ(j) := n−11∗(P ⊙∆(j))1. For every j ≥ 0, ξ(j) is a random variable whose second moment can
be upper bounded using the Cauchy-Schwarz inequality:

E
[

ξ(j)2
]

= n−2
E

[

(

∑

v,w Pvw∆vw(j)
)2

]

= n−2
∑

v′,w′

∑

v,w
∆v′w′∆vwE [∆v′w′(j)∆vw(j)]

≤ n−2
∑

v′,w′

∑

v,w
Pv′w′Pvw

√

E
[

∆v′w′(j)2
]

E
[

∆vw(j)2
]

≤ n−2
(

∑

v,w Pvwα
j
)2

= α2j .

(A.1)

It follows again from the Cauchy-Schwarz inequality that, for all 1 ≤ s, r ≤ j,

E [ξ(s)ξ(r)] ≤ E
[

ξ(s)2
]1/2

E
[

ξ(r)2
]1/2
≤ αs+r .

Therefore,

E[ζ2(j)] =
∑

1≤s,r≤j

E [ξ(s)ξ(r)] ≤
∑

1≤s,r≤j

αr+s =
(

∑

1≤s≤j

αs
)2

≤
α2

(1 − α)2
.

Now, let us focus on z(j) defined in (13). Observe that the recursion

z(0) = u(0) , z(j + 1) = Pz(j) + u(j + 1) , j ≥ 0 ,

is satisfied with
u(0) := x(0)− n−11T x(0)1, u(j) := (P ⊙∆(j))1 − ξ(j)1 .

Notice that ||Px|| ≤ ρ||x|| for all x ∈ R
V such that 1∗x = 0. Since 1∗u(j) = 0, we have

‖Pu(j)‖ ≤ ρ‖u(j)‖ . (A.2)

On the other hand, again from the Cauchy-Schwarz inequality, for all v, w ∈ V , we have that

E [∆vw(j)∆vw′(j)] ≤ E
[

∆vw(j)2
]1/2

E
[

∆vw′(j)2
]1/2
≤ α2j ,

so that the random vector u(j), for j ≥ 1, satisfies the following bound

E
[

‖u(j)‖2
]

= E
[

‖(P ⊙∆(j))1‖2
]

− nE
[

ξ(j)2
]

≤
∑

v
E

[

(
∑

w Pvw∆vw(j))
2
]

=
∑

v

∑

w,w′

PvwPvw′E [∆vw(j)∆vw′(j)]

≤ nα2j .

(A.3)
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Moreover, recall that θv ∈ Θ for any v ∈ V , where Θ is an interval of unitary length. Consequently, |θv − y| ≤ 1 for
any v ∈ V , so that

E
[

‖u(0)‖2
]

= E
[

‖z(0)‖2
]

=
∑

v

E[(θv − y)
2] ≤ n . (A.4)

Consider now E[‖z(j)‖2] = E

[

‖
∑

0≤s≤j P
j−su(s)‖2

]

. By successively applying the Cauchy-Schwarz inequality,

(A.2), (A.3) and (A.4), we get

E[‖z(j)‖2] ≤
∑

0≤s,r≤j

√

E [‖P j−su(s)‖2] E [‖P j−ru(r)‖2]

≤
(

∑

0≤s≤j ρ
(j−s)

√

E [‖u(s)‖2]
)2

≤ n
(

∑

0≤s≤j ρ
(j−s)αs

)2

≤ n
(

ρj
∑

s≥0

(

α
ρ

)s)2

= nρ2j
(

1− α
ρ

)−2

which completes the proof.

A.2 Proof of Theorem 4

We begin by estimating the difference x(j + 1) − x(j), for j ≥ 0. Toward this goal, let ξ(j) := n−11∗(P ⊙∆(j))1.
Then, we may rewrite

x(j + 1)− x(j) = x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j + 1)1− x(j)

= x(j + 1)− n−11∗x(j + 1)1 + n−11∗x(j)1 + ξ(j)1− x(j)

= z(j + 1)− z(j) + ξ(j)1 .

By successively applying the triangle inequality, Proposition 3, and (A.1), we get

E
[

‖x(j + 1)− x(j)‖2
]

≤ E

[

(‖z(j + 1)‖+ ‖z(j)‖ + ‖ξ(j)1‖)2
]

≤ 3
(

E
[

‖z(j + 1)‖2
]

+ E
[

‖z(j)‖2
]

+ nE
[

ξ(j)2
])

≤ 3n
(

ρ2(j+1) + ρ2j
)

(

1− α
ρ

)−2

+ 3nα2j

≤ 9n
(

1− α
ρ

)−2

(max {ρ, α})2j

= 9n
(

1− α
ρ

)−2

ρ2j .

Hence, the probability of the event Ej :=
{

‖x(j + 1)− x(j)‖2 ≥ ρ2j
}

can be estimated by Markov’s inequality,
obtaining

P (Ej) ≤ 9n

(

1−
α

ρ

)−2

ρ2j .

Therefore,
∑

j≥0 P (Ej) is finite, and the Borel-Cantelli lemma implies that, with probability one, the event Ej

occurs for finitely many j ∈ Z
+. This, in turn, implies that, with probability one, the sequence {x(j)} is Cauchy,

and henceforth convergent. Therefore, there exists a R
V -valued random variable x∞ such that limj x(j) = x∞ with

probability one.
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On the other hand, define g : R
V → R

V by g(x) = x − n−11∗x1. Then, it can be deduced from (19), again using
Markov’s inequality and the Borel-Cantelli lemma in an analogous fashion, that g(x(j)) = z(j) converges to 0 with
probability one. Then, from the continuity of g, it immediately follows that g(x∞) = 0, i.e. x∞ = ŷ1 for some scalar
random variable ŷ. In order to verify that (20) holds, it is sufficient to observe that ζ(j) = n−11∗x(j)− y is bounded
and convergent to ŷ−y with probability one. Hence, in particular, limj E[ζ(j)2] = E

[

(ŷ − y)2
]

. Then, it follows from
(19) that

α2

(1 − α)2
≥ lim

j
E[ζ(j)2] = E

[

(ŷ − y)2
]

.

Therefore, (21) follows by simply recalling that ŷv(t) = xv(j), for hj < t ≤ hj+1.

In order to prove the second part of the claim, first recall that αL = βSL

L , with βL depending on ε only. Hence,

αL ≤ ρ/2 for all SL ≥
log ρ−1+log 2

log β−1

L

. Then, for δ ∈]0, 1], let u :=
√

δ/2. It follows from (11), (9), and Proposition 3,

that, for
n−1||e(t)||2 ≤ δ , ∀t ≥ hj (A.5)

to hold, it is sufficient that
αL

(1− αL)
≤ u , ρj ≤ u/2 . (A.6)

The left inequality in (A.6) is satisfied if SL ≥
log(2u−1)

log(β−1

L
)
. On the other hand, the right inequality in (A.6) is satisfied

if j ≥ log(2u−1)
log(ρ−1) . Now, recall that hj =

∑

1≤i≤j li = SL

∑

1≤i≤j i ≤ SLj
2. It follows that

hj ≥ SL
log2 u

log2 ρ
≥

1

log βL

log3 u

log2 ρ
,

implies (A.5). Then, the upper bound on τL(δ) displayed in (22) easily follows. In order to prove the bound on κL(δ),
observe that (3) implies that, for every v ∈ V ,

∑

1≤t≤hj

κv(t) ≤
∑

1≤i≤j

Bl3i = BS3
L

∑

1≤i≤j

i3 ≤ BS3
Lj

4 .

Finally, (23) follows from analogous arguments.

A.3 Proof of Theorem 5

From (26) one has ζ(j) = 0 for all j. On the other hand, in the same way as in the proof of Theorem 4, one can
argue that limj z(j) = 0 with probability one. Hence limt e(t) = 0 with probability one, which is equivalent to the
first part of the claim.

Now, let us consider algorithm A′
L. Recall that one has αL ≤ ρ/2 for all SL ≥

log ρ−1+log 2

log β−1

L

. Once fixed any such SL,

(26) and (19) imply that

n−1
E[||e(t)||] = n−1

E[||z(j)||] ≤ ρ2j (1− α/ρ)−2 ≤ δ

for all t ≥ hj, if j ≥ log δ−1+log 4
2 log ρ−1 . The upper bound on τ ′L(δ) displayed in (27) then follows upon recalling that

lj ≤ SLj
2. The upper bound on κ′L(δ) displayed in (27) follows using (3). The bounds displayed in (28) follow from

similar arguments.

A.4 Proof of Theorem 6

From the fact that ζ(j) = 0, and following the same arguments as in the proof of Prop. 3, one gets

E[||e(hj)||
2] = E[||z(j)||2] ≤ n



ρj +
∑

0≤s<j

ρj−sα





2

≤ n
(

ρ2j + α2(1− ρ)−2
)

.
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