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Abstract— Motivated by distributed sensor networks scenar-
ios, we consider a problem of state estimation under com-
munication constraints, in which a real-valued random vector
needs to be reliably transmitted through a digital noisy channel.
Estimations are sequentially updated by the receiver, as more
and more channel outputs are observed. Assuming that no
channel feedback is available at the transmitter, we study the
rates at which the mean squared error of the estimation can be
made to converge to zero with time. First, simple low-complexity
schemes are considered, and trade-offs between performance
and encoder/decoder complexity are found. Then, information-
theoretic bounds on the best achievable error exponent are
obtained.

I. INTRODUCTION

The reliable transmission of information among the nodes
of a network is well known to be a relevant problem in
information engineering. It is indeed fundamental both when
the network is designed for pure information transmission,
as well as in scenarios in which the network is deputed to
accomplish some tasks requiring information exchange. Im-
portant examples include wireless sensor networks, in which
the final goal is estimation from distributed measurements,
or wireless sensor and actuators networks (such as mobile
multi-agent networks, in which the final goal is control.
Distributed algorithms to accomplish synchronization, esti-
mation or localization tasks necessarily need to exchange
quantities among the agents which are often real valued.
Assuming that transmission links are digital, one basic
problem is thus to transmit a continuous quantity, namely a
real number or, possibly, a real vector, through a digital noisy
channel up to a certain degree of precision. An important
case of channel which will be the one mostly considered
in this paper is the so-called binary erasure channel (BEC),
where a bit is either transmitted correctly or erased with
some probability ε . This channel well models the situation
of mobile agents which, depending on their position, may or
may not be in the range of transmission of the other agents.

As especially pointed out in the papers by Sahai and
Mitter [4], [5], [6], there is a specific feature distinguishing
the problem of information transmission for control and
estimation from the problem of pure information transmis-
sion. This is related to the different sensitivity to delays
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typically occurring in the two contexts. Indeed, while often
the presence of sensible delays can be tolerated in the
communication performance evaluation, this typically has
disastrous effects in control, where the important question
is not only where information is available, but rather where
and when information is available. For this reason, the theory
of digital communication for control cannot be completely
reduced to the classical theory of digital communication. In
fact, while the latter can be seen as the problem of efficient
joint source and channel coding, in the former the time
ingredient has to be considered with more attention.

More precisely, in the standard digital communication
framework, data is requested to be available at the receiver
only at the end of the transmission, after the completion
of the decoding process. In contrast, for control we need a
coding and decoding procedure able to produce a reasonable
partial information transmission also in case we stop the
process before the end. In other words, while in commu-
nication the performance is influenced only by the steady
state behavior of the communication system, both the steady
state behavior and the transient behavior play an important
role in the control system performance. For all these reasons,
in control we need a procedure which provides an estimate
with increasing precision while the time passes by.

On the other hand, in control there is sometimes the
possibility to take advantage of feedback for improving
the coding and the decoding, as feedback information is
in some cases naturally available to the encoder. In other
cases this feedback information is difficult to be used or,
as for instance in the wireless network scenario, there are
situations in which the transmitter broadcasts his information
to many different receivers and hence feedback strategies
to acknowledge the receipt of past transmissions could be
unfeasible. For these reasons in the present paper we will
consider the problem of estimation under communication
constraints without feedback information.

A. Problem formulation

We now give the formal description of the problem we
want to study. Let X ⊆ R

d be an open subset where the
vector to be transmitted is known to be confined, equipped
with an a-priori probability density f (x). The communication
channel is assumed to have a finite input alphabet Y and a
finite output alphabet Z , and to be described by a family
{p( · |y)}y∈Y of probability distributions over Z : p(z|y)
is the probability that z ∈ Z is received, conditioned on
the transmission of y ∈ Y . We assume, for the sake of
simplicity, that at every time instant t, one symbol can be
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transmitted through the channel, and, moreover, that the
channel is memoryless, namely, the output values of repeated
transmissions are independent among each other. In the case
of the BEC, we have that Z = {0,1,?} where ? stays for
the erasure event, and

p(?|0) = p(?|1) = ε , p(0|0) = p(1|1) = 1− ε . (1)

a) Coding scheme: Our transmission scheme consists
of an encoder

E : X → Y
N

and of a decoder
D : Z

N → X
N

More precisely the decoder is defined by a family of maps

Dt : Z
t → X

so that, for any (zs)
∞
s=1 ∈ Z N, the value at time t of

D((zs)
∞
s=1) is Dt((zs)

t
s=1). The overall sequence of maps is

described by the following scheme

X
E

� Y
N

Channel
� Z

N
D

� X
N

In other words, if πt : Y N → Y t is the projection of a
sequence in Y N into its first t symbols, then, for any x ∈X ,
the string πt(E (x)) = (ys)

t
s=1 ∈ Y t is transmitted along the

channel and the output (zs)
t
s=1 ∈ Z t is then received by the

decoder Dt which provides an estimate of x at time t

x̂t := Dt(y
t
1) .

This is described by the following scheme

X
Et

� Y
t Channel

� Z
t Dt

� X

x � (ys)
t
s=1

� (zs)
t
s=1

� x̂t

(2)

where Et := πt ◦E .
A possible particular case of the previous scheme is given

below. Let W be a finite alphabet and consider a family of
surjective maps

St : X → W
t

such that St = πt ◦St+1. In other words we assume that,
if St+1(x) = (w1, . . . ,wt ,wt+1), then we have that St(x) =
(w1, . . . ,wt ). The family of these maps forms a map

S : X → W
N

in a natural way. A simple example of this map is given by
choosing X = [0,1], W = {0,1, . . . ,k−1}, and by assuming
that S is the map which associates the k-ary expansion to
a real number belonging to the interval [0,1]. Let

S
−1

t : W
t → X

be a left inverse of St . Notice that Qt := S
−1

t ◦St maps X

into X . Since this function maps a continuous space into a
finite set, it is called a quantizer.

Consider now a sequence of positive integers m1,m2, . . .,
and two families of encoders and decoders

Ẽt : W It → Y t , D̃t : Z t → W It (3)

From Ẽt ,D̃t we can define the encoders Et := Ẽt ◦Smt and
the decoders Dt := S −1

mt
◦ D̃t . The overall sequence of maps

is described by the following scheme

X
Smt→ W mt

Ẽt→ Y t Ch.→ Z t D̃t→ W mt
S −1

mt→ X

x �→ (ws) �→ (ys) �→ (zs) �→ (ŵs(t)) �→ x̂t
(4)

More specifically, in this scheme we first use a quantizer
mapping x into a string of k-ary symbols (w1,w2, . . . ,wmt )
and then we use a block encoder. The received data are
decoded by a block decoder providing an estimated version
(ŵ1(t), ŵ2(t), . . . , ŵmt (t)) of (w1,w2, . . . ,wmt ) (whose com-
ponents in general depend on t) which is in turn translated
to an estimate x̂t of x. Notice that, since from the way we
defined Et we have that πt−1 ◦ Et = Et−1, then we need to
impose that

πt−1Ẽt((ws)
mt
s=1) = Ẽt−1((ws)

mt−1
s=1 )

In other words, the family of encoders Ẽt forms in a natural
way a map

Ẽ : W
N → Y

N

which is causal in the sense that the value a time t of Ẽ (w∞
1 )

depends only on wmt
1 , namely there exists a family of maps

Et : W
mt → Y

such that the value of the sequence Ẽ (w∞
1 ) at time t is given

by Et(w
mt
1 ).

b) Performance evaluation: In order to evaluate the
performance of a scheme, we define the mean squared error
(mean with respect to both the randomness of x ∈ X and
with respect to the possible randomness of the communica-
tion channel) at time t by

Δt := (E||x− x̂t ||2)1/2 . (5)

In this paper we want to understand how fast Δt decreases
as t tends to infinity. We will consider this problem first
without imposing complexity constraints on the encoder and
decoder algorithms, and then investigating how algorithmic
implementability influences this error performance.

B. State estimation under communication constraints

The problem proposed above is related to the state esti-
mation problem under communication constraints. Assume
we have a discrete time stochastic linear system

x(t + 1) = Ax(t)+ v(t) x(0) = x0 (6)

where x0 ∈R
n is a random vector with zero mean, v(t)∈ R

n

is a zero mean white noise, x(t) ∈ R
n is the state sequence

and A ∈ R
n×n.

We have to design a family of encoders Et and of decoders
Dt . Each encoder Et has x(0), . . . ,x(t) as input and the
symbol y(t) ∈ Y as output, where Y is a finite alphabet.
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Assume that y(t) is transmitted through a channel, which
provides the decoder Dt with the symbols z(0), . . . ,z(t) from
which the decoder has to obtain an estimate x̂(t) of the
current state. We distinguish to cases

1) In case the variance of v(t) is big with respect to the
variance of x(0) or in case we are interested in the
steady state performance, then the parameter

limsup
t→∞

E[||x(t)− x̂(t)||2

is the most relevant parameter to be considered in
designing the encoders Et and the decoders Dt .

2) In case the variance of v(t) is small with respect to
the variance of x(0) and if we are interested in the
transient behavior, then the prominent role is taken by
the speed of convergence of E[||x(t)− x̂(t)||2. In this
case it makes sense to assume simply that v(t) = 0.

In this paper the second case will be considered and so
we will assume that v(t) = 0. In this case, the only source
of uncertainty is due to the initial condition x0 and so the
encoders/decoders task reduces to give a good estimation of
x0. On the other hand, the decoder, in order to obtain a good
estimate x̂(t) of x(t), has to obtain the best possible estimate
x̂(0|t) of the initial condition x(0) from the received data
y(0), . . . ,y(t) and then it can define x̂(t) := At x̂(0|t). In this
case we have that

x(t)− x̂(t) = At(x(0)− x̂(0|t))
and the problem reduces to finding the best way of coding
x(0), . . . ,x(t) is such a way that expansion of At is well
dominated by the contraction of x(0)− x̂(0|t).

In order to clarify further this concept we present a simple
example.

Example 1. Consider the following scalar discrete time
linear system

x(t + 1) = ax(t)+ v(t) x(0) = x0

where a > 0 and v(t) is an i.i.d. sequences of random
variables with zero mean and variance σ2

v . Assume we
don’t know the initial condition x(0) which is assumed
to be a random variable with known mean equal to zero
and variance σ2

x which is independent of v(t). Assume we
run a state estimation algorithm based on the noiseless
model x(t + 1) = ax(t) by estimating the initial condition
x(0) from data transmitted till time t. As before we will
call this estimate x̂(0|t). From x̂(0|t) we form the estimate
x̂(t) := at x̂(0|t) of x(t). The estimation error at time t will
be

e(t) := x(t)− x̂(t) = at(x(0)− x̂(0|t))+
t−1

∑
i=0

at−1−iv(i)

so that

E[e(t)2] = a2t
E[(x(0)− x̂(0|t))2]+ σ2

v
1−a2t

1−a2

This error both depends on the wrong estimate of the initial
condition, and on the wrong model we used. As we will see,

the error E[(x(0)− x̂(0|t))2] is proportional to σ2
x so that we

are allowed to write

E[(x(0)− x̂(0|t))2] = ζ (t)σ2
x

where ζ (t) will be a function converging to zero whose speed
of convergence will depend on the communication channel
characteristics and on the coding strategy. Since a > 1, then

E[e(t)2] � a2t
[

ζ (t)σ2
x +

σ2
v

a2 −1

]

Therefore, in case σ2
x >> σ2

v , there will be an initial time
regime in which the error will be not influenced by the model
noise.

In the previous example we have seen that, if the model
noise is lower than the initial state uncertainty and if we are
interested in the transient behavior and so in the behavior
in the first time steps, the problem consists in finding an
efficient coding of the initial condition. On the other hand,
if we are interested in the steady state performance (or in
both transient and steady state), then it will be more efficient
for the encoder to code all the state sequence x(0), . . . ,x(t),
because in it there will be information both on the initial
condition x(0) and on the noise evolution v(0), . . . ,v(t), both
affecting x(t).

C. Related literature

In [4] the notion of anytime reliability of a communi-
cation channel was introduced, motivated by the problem
of stabilizing of an unstable linear scalar plant with noisy
observations. In [5] upper bounds on the anytime reliability
function were obtained both with and without feedback.
Techniques similar to those providing lower bounds to the
anytime reliability without feedback, based on the funda-
mental works on infinite convolutional codes [7], [2], will
be employed in Sect.IV.

The paper [6] considers the problem of encoding an
unstable scalar Markov process through a DMC at the
minimum possible rate, with an asymptotic constraint on
the average squared-distortion reconstruction level. Our work
differs from [6] in that, as explained in Sect.I-B, we concen-
trate on the transient behavior of the estimation error rather
than on the asymptotic one. Moreover, the most original
contribution of the present paper consists in analyzing the
tradeoffs between performance and encoding complexity,
which had not been previously considered.

D. Organization

The rest of this paper is organized as follows. In Sect.II
we present some preliminary considerations: first we address
the case of noiseless digital channels, in which our problem
reduces to quantization; then we prove an upper bound on the
achievable error exponent on the BEC; finally, we analyze
some simple schemes. In Sect.III we prove a lower bound
on the error probability, showing that no exponential error
rates can be hoped for using finite-window encoders. Finally,
in Sect.IV, we prove a lower bound on the achievable error
exponent by using a random convolutional coding argument.
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II. SOME PRELIMINARY CONSIDERATIONS

A. Performance of the quantizers

We start with some preliminary considerations on the
errors introduced by the quantization stage. Even if in the
scheme (4) the channel is noiseless, so that it is possible
for the decoder to obtain (ŵs(t))t

s=1 = (ws)
mt
s=1, some error is

nevertheless introduced by St . Indeed, in this case we have
that

x̂t = S
−1

mt
◦Smt (x)

Let Qt := S
−1

t ◦St . This maps X into itself and moreover
its range has |W |t elements. In the literature, such maps are
called quantizers and the error (5) is called quantization error
and can be rewritten as

(E||x−Qt(x)||2)1/2 . (7)

We refer to [3] for a comprehensive introduction to vector
quantization theory. In the following we repost some basic
asymptotic results which will be needed in the sequel. From
[3, Th.6.2, pag.78] we can deduce the following result.

Theorem 1. Suppose that E||x||2+η < +∞ for some η > 0.
Let Qt : X → X be such that |Im Qt | ≤ kt for all t ∈ N,
where k ∈ N. Then there exists Cm > 0 such that

(E||x−Qt(x)||2)1/2 ≥Cmk−t/d (8)

The asymptotic behavior k−t/d can indeed be achieved as
the following example shows. For simplicity we limit to the
case k = 2.

Example 2. Assume that X = [−1,1]d. Let qs : [−1,1]→ R

be the uniform quantizer on [−1,1] with 2s levels, defined
by

qs(x) := −1 +
2k + 1

2s if x ∈ [−1 + 2k2−s,−1 + 2(k + 1)2−s[

for 0≤ k < 2s. Moreover, given a vector S = (s1, . . . ,sd)∈N
d

we define QS : [−1,1]d → R
d as

QS(x1, . . . ,xd) := (qs1(x1), . . . ,qsd (xd))

Notice that x−QS(x)∈D−1X where D := diag{2s1 , . . . ,2sd}
and so

||x−QS(x)||2 ≤
d

∑
i=1

2−2si

Let S(t) = (s1(t), . . . ,sd(t)) ∈ N
d be any sequence such that

∑i si(t) = t and maxi si(t)−mini si(t) ≤ 1. This implies that

S(t) := 
t/d�1+ β (t)

where β (t) ∈ {0,1}d. It is clear the in order to encode the
output of this quantizer QS(t)(x) we need t bits. Moreover,
notice that

||x−QS(t)(x)||2 ≤
d

∑
i=1

2−2si(t) ≤
d

∑
i=1

2−2
t/d�−2βi(t) ≤ 4d

4t/d

This implies that

(E||x−QS(t)(x)||2)1/2 ≤
(

2d1/2
)

2−t/d

The previous theorem and the previous example show that
there exist families of quantizers Qt : X → X such that
|Im Qt | ≤ kt and

Cm(k−1/d)t ≤ (E||x−Qt(x)||2)1/2 ≤ (CMk−1/d)t (9)

where Cm,CM > 0 are positive constants.
The previous result implies in particular that in the scheme

(4) with noiseless channel, since Ẽt is injective, then |W |mt ≤
|Y |t , and then

E[||x− x̂t ||2]1/2 = (E||x−S
−1
mt

◦Smt ||2)1/2 ≥C(|Y |−1/d)t .
(10)

In this paper we are not interested in estimating the
optimal constant which in general will be smaller than 2d1/2.
Our interest here is for the asymptotic behavior 2−t/d which
we have now shown to be achievable. We will refer to all
such schemes as dyadic quantization schemes.

Dyadic quantization schemes have an important property
related to the fact that there is a natural hierarchy in the bits
expansion, which is captured by the following definition. The
scheme consisting of the encoder E and decoders Dt is said
to be an uncoded scheme if there exists a constant C > 0
such that, for every x̄ ∈ X ,

E[||x− x̄|| |E (x)t �= E (x̄)t ] ≥C2−t/d . (11)

Dyadic schemes are always uncoded.

B. A lower bound for the BEC

Clearly, for noisy channels a degradation in performance
is expected. We shall now propose a lower bound for the
BEC.

Consider the general scheme (2). Given (zs)
t
s=1 ∈ Z t , the

associated error pattern is given by a sequence (es)
t
s=1 ∈

{c,?}t defined componentwise by mapping 0,1 into c and
? into ?. Conditioning on an infinite error pattern (es)

∞
s=1 ∈

{c,?}N, the channel becomes a deterministic map, so that the
composition of all the maps in (2) is a quantizer from X to
itself. Notice that this quantizer has range with cardinality
|Y |lt where lt is the number of components of (es)

t
s=1 equal

to c. From this fact and from Theorem 1, we can deduce that

E
[||x− x̂t ||2|(es)

t
s=1

] ≥C2
m|Y |−2lt/d

Define El :=
{
(es)

t
s=1 ∈ {c,?}t : lt = l

}
and observe that

P[El] =
(t

l

)
εt−l(1− ε)l. Then, we have that

E
[||x− x̂t||2

]
= ∑(es)∈{c,?}t E

[||x− x̂t||2|(es)
]
P [(es)]

≥ ∑t
l=0 ∑(es)∈El

C2
m|Y |−2l/d

P [(es)]

= C2
m ∑t

l=0 |Y |−2l/d
P [Et ]

= C2
m ∑t

l=0 |Y |−2l/d
(t

l

)
εt−l(1− ε)l

= C2
m

(
ε +(1− ε)|Y |−2/d

)t

(12)
Hence, we have proved the following result.

Proposition 2. Assume transmission over the BEC with
erasure probability ε ∈ [0,1]. Then, the estimation error of
any coding scheme as in (2) satisfies

Δt ≥Cm2−tβ (d,ε) , (13)
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for all t ≥ 0, where

β (d,ε) := −1
2

log2

(
ε +(1− ε)2−2/d

)
and Cm is a positive constant depending on ε and f only.

Remark 1. The Shannon capacity of the BEC (measured in
bits per channel use) is well known to equal 1− ε , which is
the average number of non-erased bits per channel use. It
can be directly verified that

β (d,ε) <
1
d

(1− ε) , ∀ε ∈]0,1[ . (14)

The inequality (14), together with (13) and (9), shows that the
estimation error of any coding scheme after t uses of a digital
noisy channel is exponentially larger than that of a quantizer
whose image has cardinality equal to t times the capacity.
In other words, (14) shows that the Shannon capacity is not
sufficient in order to characterize the achievable exponential
rates of the estimation error on a noisy channel. Indeed, a
closer look at (12) shows that the reason for this is due
to the fact that the exponential rate is dominated by error
events El , limt

l
t = ε

ε+(1−ε)2−1/d < ε , of asymptotically zero
probability.

Remark 2. It is not hard to see that (13) continues to
hold true even if the encoder has access to noiseless causal
feedback, namely if, at each time t ≥ 0, Et : X ×Z t−1 →Y

is allowed to depend on the past channel outputs as well
as on the observed vector x. A fortiori, (13) holds in the
case of partial or noisy feedback, which is a typical situation
occurring in sensor networks.

Remark 3. In the case of perfect causal output feedback,
using dyadic schemes, the bound (13) can be achieved using
the coding scheme of repeating the transmission of a bit
until it is correctly received. However, it is not clear a
priori whether (13) with noisy feedback, or without feedback.
In Sect.II-C we will propose some simple schemes which
however are not capable of reaching exponential error decay.

C. Some simple coding schemes for the BEC

Consider the scheme (4) in which we take any St and
S

−1
t such that the bound (9) holds. If we would simply use

this on a BEC, decoding erasures in an arbitrary way, we
would not even have the guarantee of an error converging to
0 when t → +∞: this because of (11) considering the fact
that with probability ε we would have lost the first symbol
of the expansion given by St . The standard technique to
overcome such problems is to introduce redundancy in order
to cope with packet drop phenomena. Consider the encoder
Ẽ : {0,1}N → {0,1}N informally described by

Ẽ ((ws)
∞
s=1) = (w1,w1,w2,w1,w2,w3,w1,w2,w3,w4 · · · ) .

More precisely, notice that for any t ∈ N there exists unique
m ∈ N and j ∈ {1,2, . . . ,m} such that t = (m − 1)m/2 +
j. Denote these numbers by m(t) and j(t), respectively.
If (ys)

∞
s=1 = Ẽ ((ws)

∞
s=1), then yt = wj(t). Notice that this

encoder fits in the scheme (4) by taking mt = m(t). We

construct the decoders D̃t : {0,1,?}t → {0,1}mt as follows.
If (ŵ j(t))

mt
j=1 = D̃t((zs)

t
s=1), then

ŵ j(t) =

{
zs if ∃s ≤ t such that j(s) = j and zs �=?
0 otherwise

Let us estimate the performance of this scheme. Assume
for simplicity that t = m(m+1)/2 for some m ∈ N. For any
j ∈ {1,2, . . . ,m} the number of times that wj is transmitted
is m− j + 1 and so

P[ŵ j(t) �= wj] = εm− j+1

For 0 ≤ τ < m, consider the event

At
τ = {ŵ1(t) = w1, . . . , ŵτ (t) = wτ , ŵτ+1(t) �= wτ+1} ,

and let At
m := {ŵ1(t) = w1, . . . , ŵm(t) = wm}. Notice that, for

all 0 ≤ τ ≤ m, we have that

P[At
τ ] = ∏τ

j=1 P[ŵ j(t) = wj]P[ŵτ+1(t) �= wτ+1]

= ∏τ
j=1(1− ε)m− j+1εm−τ

≤ εm−τ .

(15)

Notice moreover that if (ws)
τ
s=1 = (ŵs)

τ
s=1, then Qτ(x) =

Qτ(x̂t). Hence

2C2
M2−τ/d ≥ E[||x−Qτ(x)||2|At

τ ]+E[||Qτ(x̂t)− x̂t||2|At
τ ]

≥ E[||x− x̂t ||2|At
τ ]

From this it follows that

Δ2
t =

m

∑
τ=0

E
[||x− x̂t ||2 |At

τ

]
P[At

τ ] ≤ 4C2
M

m

∑
τ=0

εm−τ 2−2τ/d

If ε22/d > 1, then

Δ2
t ≤ 4C2

Mεm

[
m

∑
τ=0

(ε−12−2/d)τ

]
≤ 4C2

M

1− (ε22/d)−1
εm

Observe now that, since t = m(m+ 1)/2, we have that m ≥√
2t −1 and so

Δt ≤Cε,dε
√

t/2 (16)

where Cε,d is a positive constant depending on ε and on d. In
a similar way we can prove that in the regime if ε22/d < 1,
we obtain

Δt ≤C′
ε,d(2

−2/d)
√

t/2 (17)

In both cases we obtain a sub-exponential asymptotics of
type, far away from the exponential lower bounds proved
above. The first point to be discussed is if this estimation is
asymptotically tight. The answer is on the positive and this
can be seen going back to the expression (15), noticing that

τ

∏
j=1

(1− εm− j+1) ≥
m

∏
j=1

(1− ε j) .

This last product converges to a non zero value for n → ∞
for every ε < 1. Hence, there exists a constant Dε > 0 such
that, for every n ∈ N, it holds ∏m

j=1(1− ε) j ≥ Dε . Hence,
P(At

τ) ≥ Dε εm−τ . Repeating the same steps than above, we
thus obtain that the estimation in (16) and (17) are tight in
the sense that

Δt � exp
[−β

√
t
]
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where

β =

⎧⎪⎨
⎪⎩

√
1
2 lnε−1 if ε22/d > 1

√
2 ln2
d if ε22/d < 1

Notice finally that ε does not even show up in the
asymptotic behavior when ε22/d < 1 and in particular there
is no improvement for ε → 0. Is it possible to improve our
scheme? Is it possible to achieve exponential decays?

In this section we present a slight variation of the scheme
described above which improves performance for small ε
while remaining sub-exponential. The question of exponen-
tial decay will be considered later on.

Fix a positive real number m and consider the sequence
of nonnegative integers

τ0 = 0, τk = 
m�+ 
2m�+ · · ·+ 
km� for k > 0 .

Consider now the mapping Ẽ : {0,1}N →{0,1}N defined by

[Ẽ (ω)]t = ωt−τk if t ∈]τk,τk+1] .

Our encoder will be in this case E = Ẽ ◦S . Define now
D̃t : {0,1,?}t → {0,1}t by putting [D̃t (ω)]s = ωs if there
exist k ∈ N and j ∈ ]τk−1,τk]∩ [1,t] such that j − τk−1 = s
and ω j �=?, and [D̃t(ω)]s = 0 otherwise. Moreover, let Dt =
S

−1
t ◦D̃t . Notice that, if m = 1, then E and Dt coincide with

the one above.
Define now μn

s = |{1≤ j ≤ n | 
m j� ≥ s}|, and notice that,
if s ≤ nm,

n + 1− s+ 1
m

≤ μn
s ≤ n + 1− s

m

At time t = τn we have that ωs has been repeated exactly μn
s

times in the first t bits of S (ω).
We can now estimate the error as we have done before:

Δ2
t = ∑s E

[||X −DtπtE (X)||2 |As
]
P[As]

≤ C2

[
nm−1

∑
s=0

εμn
s+1 2−2s/d +

∞

∑
s=nm

2−2s/d

]

≤ C2

[
nm−1

∑
s=0

εn+1− s+1
m 2−2s/d +

∞

∑
s=nm

2−2s/d

]

= C2

[
εn+1− 1

m
1− (ε1/m22/d)−nm

1− (ε1/m22/d)−1
+

2−2nm/d

1−2−2/d

]

Now we fix α ∈]0,2[ and we fix m in such a way that
(ε1/m22/d)−1 = 2−α/d . This is equivalent to put

m =
lnε−1

ln2(2−α)/d

Notice that, for such value of m,

2−2nm/d = exp

[
−n lnε−1 ln22/d

ln2(2−α)/d

]
≤ εn

Hence, we can estimate

Δt ≤Cε exp

[
−1

2
n lnε−1

]
.

Notice that t = τn ≤ mn(n + 1)/2, hence, n ≥
√

2t
m − 1. We

thus obtain the estimation

Δt ≤Cε exp

[
−

√
t
(1−α/2) ln2 lnε−1

d

]
.

As before, it is not difficult to prove that this estimation is
asymptotically tight which means that, for t → +∞,

Δ2
t � exp

[
−

√
t
(1−α/2) ln2 lnε−1

d

]
. (18)

In the next section we will see that, using repetition en-
coding schemes as the one above where bits are transmitted
the way they are, such a performance can not be beated.

III. PERFORMANCE OF FINITE WINDOW CODING

SCHEMES

In this section we consider a more general class of en-
coders encompassing previous examples but still maintaining
a bounded complexity in their implementation which means
that the number of computations that the encoder has to
perform at every time instant remains bounded in time.

For the rest of this section, we assume we have fixed a
dyadic quantization scheme for X consisting of the encoder
Q and of the sequence of decoders Gt .

We will focus on encoders E : [0,1]→{0,1}N transmitting
at each time t an input symbol E (x)t which is a function of
dt bits of Q(x). More formally, we consider encoders of the
form

E (x)t = ft(πAt Q(x)) (19)

where At is a finite subset of N of cardinality |At | = dt , and
ft : {0,1}At → {0,1}. These encoders will be called finite
window encoders. Clearly each encoder of the form (19) is
specified by a subset sequence (At) and a function sequence
( ft ). To each encoder of the form (19) it is possible to
associate, for every j,t ∈ N, the quantity

z j(t) := ∑
s≤t

1As( j)

counting the number of channel inputs which have been
affected by the j-th bit of the dyadic expansion Q(X) up
to time t. Notice that

Ht := ∑
j∈N

z j(t) = ∑
s≤t

ds .

The quantity Ht can be considered as a measure of the
complexity of the encoder E . This is our main result.

Theorem 3. For any transmission scheme for the BEC, with
erasure probability ε , consisting of a finite window encoder
of the form (19) and with complexity function Ht , it holds

Δt ≥C exp

[
−

√
ln2 lnε−1

d
Ht

]
, (20)

for some constant C > 0 only depending on d and f .

Proof Assume that at time t all the z j(t) channel inputs
affected by the j-th bit Q(x) j have been erased. Then, there
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is clearly no way to reconstruct Q(x) j from the output of
the channel. Using (11), this gives the following lower bound
to the squared estimation error, independent on the way the
decoders are chosen:

Δ2
t ≥C1 sup

j∈N

[2−2 j/dεz j(t)] ,

for some constant C1 > 0 only depending on d and f . It will
be convenient to consider the looser bounds, for any s ∈ N,

Δ2
t ≥C1 sup

j≤s
[2−2 jεz j(t)] ≥C1 fs(z(t))

where

fs : (R+)s → R , fs(z) :=
1
s

s

∑
j=1

exp

(
− j

ln4
d

+ z j lnε

)
.

Hence, for every possible s,

Δ2
t ≥C1 inf

z∈Ms
fs(z)

where

Ms := {z ∈ (R+)s , | ∑
j

z j = Ht} .

Since the function fs(z) is strictly convex, it admits a unique
minimum on the convex compact set Ms. Using Lagrange
multipliers we can characterize the stationary point of fs(z)
on the hyperplane ∑ j z j = Ht :

z∗j = α −β j , ∀ j ≤ s ,

where β := − log4
d logε > 0, and α = Ht

s + β s+1
2 . We have that

z∗ ∈ Ms if and only if z∗s ≥ 0 which is equivalent to

s ≤
1 +

√
1 + 8Ht

β

2
.

A possibility consists in choosing s∗ =
⌊√

2Ht
β

⌋
. We get

Δ2
t ≥C1 inf

z∈Ms∗
fs∗(z) = fs∗(z

∗) = Ceα lnε . (21)

We can estimate α as follows

α =
Ht⌊√

2Ht/β
⌋ + β

⌊√
2Ht/β

⌋
+ 1

2
≤ β

(√
2Ht/β + 1

)
,

(where last equality follows from straightforward algebraic
computation). Inserting this last estimation inside (21), the
thesis follows.

Remark 4. Notice that, in the case of the repetition encoding
schemes treated in Sect.II-C, we have that Ht = t. If we
compare (20) with (18), considering the fact that α can be
picked arbitrarily close to 0, we have thus established that
among the repetition schemes (Ht = t), the example treated in
Sect. II-C is optimal from the point of view of the asymptotic
performance.

IV. A CASUAL LINEAR CODING THEOREM

In this section, we shall prove a lower bound to the
estimation error exponent on the BEC. We shall use random
coding arguments employing anytime linear codes over the
binary field Z2. These arguments date back to the early
literature on convolutional codes [7], [2], and have been
recently applied in [6] in order to lower bound the anytime
reliability function without feedback.

For a rate 0 < R < 1, we consider a random, doubly infi-
nite, causal, binary matrix φ ∈ Z

N×N

2 distributed as follows:
φi j = 0 for all j > Ri, while {φi j|1 ≤ j ≤ Ri} is a family of
independent r.v.s identically distributed uniformly over Z2.
Furthermore, we shall assume φ to be independent both form
the source vector x and from the channel, and known both
at the transmitting and receiving ends. We shall naturally
identify the matrix φ with the corresponding linear operator
from Z

N
2 to Z

N
2 , and, for t ∈N, consider the truncated version

φt : Z
�Rt�
2 → Z

t
2.

As in Sect.II-B, for a channel output sequence (zs)s∈N,
consider the error pattern (es)s∈N, defined by putting es =?
if zs =?, and es = c if zs �=?. Also, for t ∈ N, let It := {1 ≤
i ≤ t : zi �=?} = {1 ≤ i ≤ t : ei �=?} be the set of non-erased
positions up to time t, and let πIt : Z

t
2 →Z

It
2 be the canonical

projection. An obvious class of decoders for φ is given by
those D̃t : Z t → Z

�Rt�
2 satisfying D̃t(z) ∈ (πIt ◦φt)

−1(z). In
fact, observe that the preimage (πIt ◦φt)

−1(z) is never empty.
Notice that, the decoding D̃t((zs)

t
s=1) is uniquely defined,

and correct, whenever πIt ◦φt : Z
�Rt�
2 → Z It is injective.

Now, let S : X → Z
N
2 be a dyadic quantizer, and define

the encoding scheme E : X → Z
N
2 as the composition E =

φ ◦S , and the sequence of decoders Dt := (πt ◦S )−1 ◦ D̃t .
The following result characterizes the average mean squared
error of the scheme (E ,Dt ) over the BEC. Here the average
has to be considered with respect to the randomness of the
vector x, the channel, as well as the matrix φ .

Proposition 4. Assume transmission over the BEC. Then, for
all 0 < R < 1, the average estimation error of the random
coding scheme described above satisfies

E[||x− x̂t||2] ≤ Kt22−2tβ (d,ε,R) (22)

for all t ∈ N, where

β (d,ε,R) := min{ 1
d R, 1

2 min
0≤η≤1

D(η ||1− ε)+ 
R−η�+} ,

(23)
D(x||y) := x log2

x
y + (1 − x) log2

1−x
1−y denotes the binary

Kullback-Leiber distance, and K > 0 is a constant depending
on the erasure probability ε and the density function f only.

Proof Let {δi}1≤i≤�Rt� be the canonical basis of Z
�Rt�
2 . For

0 ≤ j ≤ �Rt�, consider the subspace Kj of Z
�Rt�
2 generated

by the elements δ j+1, . . . ,δ�Rt�, and define the event A j :=
{ker(πIt ◦ φt ) ⊆ Kj}. It is not difficult to verify that if A j

occurs, than D̃t successfully decodes the first j bits, i.e.
π jD̃t((zs)

t
s=1) = π jS (x), so that (9) implies that ||x̂t − x|| ≤

CM2− j/d . Notice that the events A j are nested, i.e. A j ⊇A j+1,
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and that A0 coincides with the whole sample space. Then,
by defining B j := A j−1 ∩A j, we have

E
[||x̂t − x||2] =

�Rt�
∑
j=1

E
[||x̂t − x||21B j

]
+E

[
||x̂t − x||21A�Rt�

]

≤
�Rt�
∑
j=1

P(B j)CM2−2( j−1)/d +CM2−2�Rt�

(24)
In order to estimate the probability of the event B j, first

we claim that B j implies that the j-th column πIt φtδ j is
linear combination of the following ones {πIt φtδi} j<i≤�Rt�.
Indeed, A j−1 implies that, if πIt φtw = 0 for some w ∈ Z

�Rt�
2 ,

than necessarily wi = 0 for all i < j, while 1 A j implies that
πIt φtw = 0 for some w ∈ Z

�Rt�
2 such that wj �= 0.

Then, observe that the subspace of Z
It
2 generated by the

columns {πIt φtδi} j<i≤�Rt� has cardinality at most 2�Rt�− j.
Since φtδ j is uniformly distributed over the subspace of Z

t
2

generated by {δs}
 j/R�≤s≤t , and independent from the error
sequence (es)

t
s=1, it follows that 2

P(B j|E j
k ) ≤ 2−� j+k−�Rt��+ ,

E j
k := {(es)

t
s=
 j/R� : |{s : es =?}| = k} .

Since P(E j
k ) =

(t−
 j/R�
k

)
εt−
 j/R�−k(1− ε)k, we get

P(B j) =
�Rt�
∑

k= j+1
P(B j|E j

k )P(E j
k )

≤
�Rt�
∑

k= j+1
2−
 j+k−�Rt��+(t−
 j/R�

k

)
εt−
 j/R�−k(1− ε)k

≤
�Rt�
∑

k= j+1
2−
 j+k−�Rt��+2

−(t−
 j/R�)D( k
t−
 j/R� ||1−ε)

,

(25)
where the second inequality follows from standard estima-
tions of the binomial coefficient [1].

Therefore, by combining (24) and (25), setting j = Rλ t
and k = (1−λ )ηt for λ ,η ∈ [0,1], and observing that

β (d,ε,R)= min
0≤λ ,η≤1

λ 1
d R+(1−λ ) 1

2 (D(η ||1− ε)+ 
R−η�+)

we obtain the claim.

Let us now define

β (d,ε) :=
1
2

max
0≤R≤1

β (d,ε,R) .

The following corollary of Theorem 4 follows by standard
probabilistic arguments.

Corollary 5. Assume transmission over the BEC with era-
sure probability ε . Then, there exists a coding scheme as in
(2) such that

liminf
t

−1
t

log2 Δt ≥ β(d,ε) .

In Fig.1, the upper and lower bounds to the error exponent,
i.e. β (d,ε) and β (d,ε), are plotted as functions of the erasure
probability ε , in the case d = 1.

1For an event A, A denotes its complement.
2We use the notation 
x�+ := max{0,x}

0 1
0

0.5

1

ε

β(1, ε)
β(1, ε)

Fig. 1. Upper and lower bounds on the error exponent achievable on the
BEC for d = 1.

V. CONCLUSION

We have considered the problem of anytime reliable
transmission of a real-valued random vector through a digital
noisy channel. Upper and lower bounds on the highest expo-
nential rate achievable for the mean squared error have been
obtained assuming transmission over the BEC. Moreover,
a lower bound on the performance achievable by bounded-
complexity coding schemes have been derived, showing that
in this case the mean squared error cannot decrease faster
than exponentially in the square root of the number of
channel uses. Finally, simulation results for low-complexity
coding/decoding schemes have been presented.

Current work includes extensions of the results to general
discrete memoryless channels, and analysis and design of
practical coding schemes. We also plan to extend the theory
to deal with the case of distributed estimation over networks
of agents communicating over noisy digital channels.
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