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Abstract— Motivated by distributed sensor networks scenar- typically occurring in the two contexts. Indeed, while @fte
ios, we consider a problem of state estimation under com- the presence of sensible delays can be tolerated in the
munication constraints, in which a real-valued random vecor communication performance evaluation, this typically has

needs to be reliably transmitted through a digital noisy chanel. disast ffects i trol. wh the i tant i
Estimations are sequentially updated by the receiver, as me ~ 4!S@SIFOUS €llects in control, where the important quastio

and more channel outputs are observed. Assuming that no is not Only where information is available, but rather where
channel feedback is available at the transmitter, we studylte —and when information is available. For this reason, thergheo
rates at which the mean squared error of the estimation can be of digital communication for control cannot be completely
made to converge to zero with time. First, simple low-complety  oq,ced to the classical theory of digital communication. |

schemes are considered, and trade-offs between performanc fact. while the latt b th bl f efficient
and encoder/decoder complexity are found. Then, informatin- act, while the latter can be seen as the probiem ot efficien

theoretic bounds on the best achievable error exponent are joint source and channel coding, in the former the time
obtained. ingredient has to be considered with more attention.
More precisely, in the standard digital communication

I. INTRODUCTION g . X
The reliable t . finf i th d framework, data is requested to be available at the receiver
€ refiable fransmission of information among fthe no .egnly at the end of the transmission, after the completion
of a network is well known to be a relevant problem in

inf . . ina. It is indeed fund | both mh of the decoding process. In contrast, for control we need a
Information engineering. tisin eed fun amenta ot T ecoding and decoding procedure able to produce a reasonable
the network is designed for pure information transmissio

rf:)artial information transmission also in case we stop the

as well as In scenarios in W.h'.Ch Fhe netvyork is deputed rocess before the end. In other words, while in commu-
accomplish some tasks requiring information exchange. Im-

tant les include wirel works. infwhi ication the performance is influenced only by the steady
portant examples INCIUde WIFEIess SEnsor NEWOrkS, INWNIG-0 panavior of the communication system, both the steady

the f_|naI goal is estimation from distributed measurementgtate behavior and the transient behavior play an important
or W_|reless sensor and_ actuqtors networks (sugh as mObllLﬁe in the control system performance. For all these regson
m_ult|_-agent netw_orks, in which the final goal_ IS _Cor_'trOI'in control we need a procedure which provides an estimate
Distributed algorithms to accomplish synchronizatiortj-es with increasing precision while the time passes by.

mation or localization tasks necessarily need to exchangeOn the other hand, in control there is sometimes the

guantities among the agents which are often real valueg

Assuming that transmission links are digital, one basi

prolblem lI)S thus to tr%rllsmn a ::ontlpuotl;]s quint'%/i Utﬁ“e'y% some cases naturally available to the encoder. In other
real number or, possibly, a real vector, through a digitéyno ., q6q this feedback information is difficult to be used or,
channel up to a certain degree of precision. An importary,

f ch | which will be th " ' s for instance in the wireless network scenario, there are
.Case. or ¢ an.ne which wi e. € one mostly CONSIOered:, ~tions in which the transmitter broadcasts his infatoma
in this paper is the so-called binary erasure channel (BE

N X 10 many different receivers and hence feedback strategies
where a bit is either transmitted correctly or erased W|tl{|0

o . o acknowledge the receipt of past transmissions could be
some probabilitye. This channel well models the situation g P b

£ mobil ts which. d di thei i unfeasible. For these reasons in the present paper we will
ot mopile agents which, depending on their position, May o, qiger the problem of estimation under communication
may not be in the range of transmission of the other age

n R . . .
As especially pointed out in the papers by Sahai an§ nstraints without feedback information.

Mitter [4], [5], [6], there is a specific feature distinguisl  A. Problem formulation
the problem of information transmission for control and

timation f th bl f i tion t .~ We now give the formal description of the problem we
estimation from the problem of pure information ransmisg, ., study. LetZ” C RY be an open subset where the
sion. This is related to the different sensitivity to delay

Yector to be transmitted is known to be confined, equipped
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transmitted through the channel, and, moreover, that the Consider now a sequence of positive integeisny, ...,
channel is memoryless, namely, the output values of regeatand two families of encoders and decoders
transmissions are independent among each other. In the case 5 ‘ ~ |
of the BEC, we have tha? = {0,1,?} where ? stays for GV, AL =T (3)
the erasure event, and From &, % we can define the encodef:= & o.%n and
the decoders .= .%~1o %. The overall sequence of maps
PO =p(A) =¢, p(00)=pl)=1-¢. (1) g yescribed by the following scheme

a) Coding schemeQOur transmission scheme consists I P ch 5 -1
of an encoder x = oy Dot = ot 2 ™ TRy
& — N X = (W) = (Ys) = () — (W) - (ﬁ)
and of a decoder More specifically, in this scheme we first use a quantizer
9N _, N mappingx into a string ofk-ary symbols(wy,wo, ..., Wn,)

and then we use a block encoder. The received data are
More precisely the decoder is defined by a family of mapsiecoded by a block decoder providing an estimated version
G P (Wl(t),wzl(t),...,wm(t)) of (Wl,Wz,....,-Wn.«t) (whose com-
: ponents in general depend thwhich is in turn translated
so that, for any(z)°, € ZV, the value at timet of t0an estimate "of x. Notice that, since from the way we
P((z5)2.,) is Z((zs)._,). The overall sequence of maps isdefinedét we have thatig_j o & = &1, then we need to
described by the following scheme impose that

9

7N — ni*lg?((WS)?:l) = g?—l((ws)iil)

In other words, the family of encode& forms in a natural
In other words, ifrg : N — %' is the projection of a way a map
sequence i into its firstt symbols, then, for any e 2, &N - N
the string7g (&£ (X)) = (ys),, € #" is transmitted along the _ .
channel and the outplits)._, € 2" is then received by the which is causal in the sense that the value a tiroé& (Wy’)

& N Channel

X N

decoder which provides an estimate afat timet depends only omv’lT‘, namely there exists a family of maps
AL TN
% 1= Ah). AR
This is described by the following scheme such that the value of the sequer€@\y) at timet is given
by E¢(wWy").
7 & t Channel ot 2R 7 b) Performance evaluationin order to evaluate the
performance of a scheme, we define the mean squared error
mean with respect to both the randomnes an
) ith both th d ef 2 and
X A (z5)\ 4 R with respect to the possible randomness of the communica-
where& = /o &. tion channel) at time¢ by
A possible particular case of the previous scheme is given D = (B[|x—%|?)Y2. (5)

below. Let# be a finite alphabet and consider a family of

surjectivemaps In this paper we want to understand how fastdecreases

ast tends to infinity. We will consider this problem first

. g t
AL oW without imposing complexity constraints on the encoder and
such that.% = 1§ 0.%.1. In other words we assume that,decoder algorithms, and then investigating how algorithmi
if A 1(X) = (Wi,...,W,W,1), then we have that’;(x) = implementability influences this error performance.
(Wi,...,w). The family of these maps forms a map B. State estimation under communication constraints
Sy —yN The problem proposed above is related to the state esti-

mation problem under communication constraints. Assume
in a natural way. A simple example of this map is given byye have a discrete time stochastic linear system
choosing2” =[0,1], # ={0,1,...,k— 1}, and by assuming
that.# is the map which associates theary expansion to Xt+1) = AXt)+v(t)  x(0) =X (6)

a real number belonging to the interyal 1]. Let wherexo € R" is a random vector with zero mear(t) € R"

gLyt L o is a zero mean white noisg(t) € R" is the state sequence
! andA € R™N,
be a left inverse of4. Notice thatQ; ;= y(loyt mapsZ We have to design a family of encodéfsand of decoders

into 2". Since this function maps a continuous space into &. Each encodelE; has x(0),...,x(t) as input and the
finite set, it is called a quantizer. symboly(t) € # as output, where? is a finite alphabet.



Assume thaty(t) is transmitted through a channel, whichthe errorE[(x(0) —X(0|t))?] is proportional tog? so that we
provides the decoder; with the symbols(0),...,z(t) from are allowed to write
which the decoder has to obtain an estimatg of the . 2 5
current state. We distinguish to cases E[(x(0) =x(0))"] = £ (t) o
1) In case the variance oft) is big with respect to the where( (t) will be a function converging to zero whose speed
variance ofx(0) or in case we are interested in theof convergence will depend on the communication channel

steady state performance, then the parameter characteristics and on the coding strategy. Since & then
. 112 2
im SUpE(JIX(t) = X()]| Ele(t)] ~ o [z<t>ox2+ 7 1]

Pherefore, in case?2 >> 02, there will be an initial time
regime in which the error will be not influenced by the model
noise.

is the most relevant parameter to be considered
designing the encodei and the decoder$;.

2) In case the variance of(t) is small with respect to
the variance ofx(0) and if we are interested in the
transient behavior, then the prominent role is taken by In the previous example we have seen that, if the model
the speed of convergence Bf||x(t) — X(t)||2. In this noise is lower than the initial state uncertainty and if we ar
case it makes sense to assume simply #igt= 0. interested in the transient behavior and so in the behavior

In this paper the second case will be considered and &b the first time steps, the problem consists in finding an

we will assume that/(t) = 0. In this case, the only source efficient coding of the initial condition. On the other hand,
of uncertainty is due to the initial conditioxy and so the if we are interested in the steady state performance (or in
encoders/decoders task reduces to give a good estimationP8th transient and steady state), then it will be more efficie
Xo. On the other hand, the decoder, in order to obtain a god@r the encoder to code all the state sequex(€®,...,x(t),
estimatex(t) of x(t), has to obtain the best possible estimat@eca_u_se in it there will be_mformatpn both on the initial
(0[t) of the initial conditionx(0) from the received data conditionx(0) and on the noise evolutior(0), ..., v(t), both
y(0),...,y(t) and then it can defing(t) := A'R(O[t). In this affectingx(t).
case we have that C. Related literature

X(t) — R(t) = A'(x(0) — X(O]t)) In [4] the notion of anytime reliability of a communi-
cation channel was introduced, motivated by the problem
. X ) S stabilizing of an unstable linear scalar plant with noisy
X(O)’.“"X(t) is such a way that expansion of is wel observations. In [5] upper bounds on the anytime religbilit
dominated by th‘? contractlor) af0) — X(O[t). . function were obtained both with and without feedback.

In order to clarify further this concept we present a SImlo'ﬁ'echniques similar to those providing lower bounds to the

example. anytime reliability without feedback, based on the funda-
Example 1. Consider the following scalar discrete time mental works on infinite convolutional codes [7], [2], will
linear system be employed in Sect.IV.
The paper [6] considers the problem of encoding an
Xt+1) = axt)+v(t) x(0)=x unstable scalar Markov process through a DMC at the
where a> 0 and \t) is an i.i.d. sequences of random Minimum possible rate, with an asymptotic constraint on
variables with zero mean and varianog?. Assume we the average squared-distortion reconstruction level.v@uk
don't know the initial condition §0) which is assumed differs from [6] in that, as explained in Sect.I-B, we concen
to be a random variable with known mean equal to zer§yate on the transient behavior of the estimation errorerath
and variancea? which is independent of(t). Assume we than on the asymptotic one. Moreover, the most original
run a state estimation algorithm based on the noiseleg@ntribution of the present paper consists in analyzing the
model Xt 4+ 1) = ax(t) by estimating the initial condition tradeoffs between performance and encoding complexity,
x(0) from data transmitted till time t. As before we will Which had not been previously considered.
call this estimatex(0[t). From X(0[t) we form the estimate Organization

K(t) ;= ax(0ft) of x(t). The estimation error at time t will . . :
b(e) (Oft) (t) The rest of this paper is organized as follows. In Sect.ll

1 we present some prelimin_ary considera.tions:.first we addres
(t) = a' (x(0) — K(O[t)) + %atflfiv(i) the case of nmsgles; digital channels, in which our problem

£ reduces to quantization; then we prove an upper bound on the
achievable error exponent on the BEC; finally, we analyze
some simple schemes. In Sect.lll we prove a lower bound
on the error probability, showing that no exponential error
1-a? rates can be hoped for using finite-window encoders. Finally
This error both depends on the wrong estimate of the initiah Sect.IV, we prove a lower bound on the achievable error
condition, and on the wrong model we used. As we will seexponent by using a random convolutional coding argument.

and the problem reduces to finding the best way of codi

o)
—~
—
N~—
I
x
—
—
N~—
I
x>

so that

Efe(t)?] = aE[(x(0) — X(0[t))? + 0Z— a



[I. SOME PRELIMINARY CONSIDERATIONS The previous theorem and the previous example show that

. o . . <K
We start with some preliminary considerations on th(l)]lm Q| <Kk and
errors introduced by the quantization stage. Even if in the  Cm(k™ Y9! < (E[jx— Q(X)||>)Y? < (Cuk Y9t (9)
scheme (4) the channel is noiseless, so that it is pOSSi%ereCm Cw > O are positive constants
AR I — m ; ’ ’
for the decoder to obtaif\s(t))s_; = (Ws)s>;, SOme erroris — pq previous result implies in particular that in the scheme
nevertheless introduced hy;. Indeed, in this case we have (4) with noiseless channel, sinégis injective, ther{ 7 |™ <

that |2|t, and then

% = Fmto Sm(¥) )
1 : o E[|[x— %[22 = (E|lx— ST o Sm|AY2 = Cj2r | ).
Let Qi :=.% ~o.#. This mapsZ’ into itself and moreover (10)
its range has#/|' elements. In the literature, such maps are |n this paper we are not interested in estimating the
called quantizers and the error (5) is called quantizatioore optimal constant which in general will be smaller that/2.
and can be rewritten as Our interest here is for the asymptotic behaviol/2 which
(EIIX—Qt(X)IIZ)l/Z. @) we have now shown tq be ach_levgble. We will refer to all
such schemes as dyadic quantization schemes.

We refer to [3] for a comprehensive introduction to vector Dyadic quantization schemes have an important property
quantization theory. In the following we repost some basigelated to the fact that there is a natural hierarchy in the bi
asymptotic results which will be needed in the sequel. Fromxpansion, which is captured by the following definitioneTh
[3, Th.6.2, pag.78] we can deduce the following result.  scheme consisting of the encodérand decoder; is said
Theorem 1. Suppose tha1E||x||2+’7 < ++oo for somen > 0. to be an uncoded scheme if there exists a consfantO

Let Q: 2 — 2 be such thaflm Q| < K for all t € N, such that, for everx € .2,
where ke N. Then there exists£> 0 such that E[|[x—X]|| &£(X); # &(X)] > C271/4. (11)

(E|jx— Qu(x)|[?)2 > Cpk /4 (8) Dyadic schemes are always uncoded.

The asymptotic behavide /¢ can indeed be achieved asB- A lower bound for the BEC
the following example shows. For simplicity we limit to the Clearly, for noisy channels a degradation in performance
casek = 2. is expected. We shall now propose a lower bound for the
Example 2. Assume that?”’ = [-1,1]%. Let ¢: [-1,1] — R BEC.

. : ) . Consider the general scheme (2). Giveg)t_, € 2, the
S s=1
be the uniform quantizer op-1,1] with 2° levels, defined associated error pattern is given by a sequefeg. ,

by {c,?}! defined componentwise by mappingl0into ¢ and
2k+1 . - - ? into ?. Conditioning on an infinite error pattef@)2 ; €
X)=—1+ if xe[-1+2k2S —1+42(k+1)2°g ¢ MO = 9 ror patter®)s_,
Gs(x) 25 | ( 121 {c,?}, the channel becomes a deterministic map, so that the
for 0 < k < 2. Moreover, given a vectorS (s;,...,s5) € Nd  composition of all the maps in (2) is a quantizer frat to
we define @: [-1,1]9 - RY as itself. Notice that this quantizer has range with cardigali
|2 | wherely is the number of components (&)L, equal
Qs(X1; .- Xa) = (Gs; (X2); - - - Oy (X)) to c. From this fact and from Theorem 1, we can deduce that
Notice that x- Qs(x) € D~1.2” where D:=diag{2%,...,2%} E [||x— %Ilzl(es);ﬂ > Cﬁq|@|*2'l/d
d
and so , 4 Define E = {(e5),_; €{c,?}': lt =1} and observe that
[Ix—Qs(X)[|* < _Z\Z* 3 P[E] = (j)e"'(1—¢)". Then, we have that
i=
E[lx—%|[?] = E [|[x—%|[?|(es)] P
Let St) = (s1(t),...,sq(t)) € N9 be any sequence such that [Ix=%F°] Z(ejelent B [IX—%l*I(es) Pl(es)]
yis(t) =t andmaxs(t) — minjs(t) < 1. This implies that > Y03 (eer CAlZ | 2/P (ey)]
S(t) = [t/d]1 + B(t) = Chyi_olZ| ?/P[E]
whereB(t) € {0,1}9. It is clear the in order to encode the = ChylolZ[21()e ! (1-¢)
output of this quantizer &(x) we need t bits. Moreover, — C2(s+ (1_£)|@|72/d)t
notice that m (12)
d d Hence, we have proved the following result.
= Qs (9P < 5 270 < 5 272 A < S5 " ’
= = 4/ Proposition 2. Assume transmission over the BEC with

erasure probabilitye € [0,1]. Then, the estimation error of
any coding scheme as in (2) satisfies

Dy > Cr2 tBlde) (13)

This implies that
(Bl Qs (0)][%)*/2 < (2a*/%) 274



for all t > 0, where construct the dgcode@t :{0,1,2}! — {0,1}™ as follows.
If (Wi (1)1 = Z((z)5.1), then

Wit) = Zs if 3s<t such thatj(s) = andzs #?
it)= 0 otherwise

1 —2/d
B(d,g) ._—zlogz(e—l—(l—s)z )
and G, is a positive constant depending erand f only.

Remark 1. The Shannon capacity of the BEC (measured in Let us estimate the performance of this scheme. Assume
bits per channel use) is well known to eqdat €, which is  for simplicity thatt = m(m+1)/2 for someme N. For any
the average number of non-erased bits per channel use. jl€ {1,2,...,m} the number of times thaw; is transmitted

can be directly verified that ism—j+1and so
— A ] eM=j+1
B(d,e) < %(1—5), Ve €]0,1]. (14) PIW;(t) # wj] = ¢

. . . For 0< 1 < m, consider the event
The inequality (14), together with (13) and (9), shows that t =t ! v

estimation error of any coding scheme after t uses of a digita A} = {Wy (t) = wa, ..., Wr(t) = Wr, W 1 (t) #Wr i1},
noisy channel is expongnua_llly larger than _that ofa quaentlz_ and letAl, ‘= {Wa(t) = Wi, .., Wn(t) = Wi} Notice that, for
whose image has cardinality equal to t times the capacn)((j.[" 0< T < m we have that
In other words, (14) shows that the Shannon capacity isnot ~— —

sufficient in order to characterize the achievable expoiaént — P[A] M1 PIW) (t) = W] P[Wr o1 (t) # Wepa]
rates of the estimation error on a noisy channel. Indeed, a ﬂf:l(l—e)mﬂ*lem” (15)
closer look at (12) shows that the reason for this is due emT,

to the fact that the exponential rate is dominated by error
events Iimt{— = o <& of asymptotically zero

&
. +(1-¢)
probability.

IA

Notice moreover that ifws){ ; = (Ws){_;, thenQ¢(x) =
Qr(%). Hence

2C527% > E[[[x—Qe(x)|[P|AT] +E[||Qr (%) — %[[*AY]

Remark 2. It is not hard to see that (13) continues to > EH|X_;Q||2|At]
sl T

hold true even if the encoder has access to noiseless causal T
feedback, namely if, at each time'0, & : 2" x 21 - % From this it follows that

is allowed to depend on the past channel outputs as well , X o 1121 At t 2 < .m-1o-21/d
as on the observed vector x. A fortiori, (13) holds in the A = T;E[HX_X‘H |AT] PlA] §4C'V'T;£ 2
case of partial or noisy feedback, which is a typical sitaati B B

occurring in sensor networks. If £2%/9 > 1, then

m 2
Re_mark 3._ In the case of perfect causal output f_eedback_, Atz < %gm (8,12,2/d)r < 4Cy £m
using dyadic schemes, the bound (13) can be achieved using e 1 (g22/d)-1

the coding scheme of repeating the transmission of a bit _

until it is correctly received. However, it is not clear a ObServe now that, sinde=m(m-+1)/2, we have tham>
priori whether (13) with noisy feedback, or without feedhac V2t -1 and so

In Sect.ll-C we will propose some simple schemes which A Scs,de\/t/_z (16)

however are not capable of reaching exponential error decaVvhereCE‘d is a positive constant depending ernd ond. In

C. Some simple coding schemes for the BEC a similar way we can prove that in the regimes#2/9 < 1,

. . . we obtain
Consider the scheme (4) in which we take a#y and A, SC;’d(zfz/d)\/t/_z (17)

%1 such that the bound (9) holds. If we would simply use
this on a BEC, decoding erasures in an arbitrary way, wi& both cases we obtain a sub-exponential asymptotics of
would not even have the guarantee of an error converging tgpe, far away from the exponential lower bounds proved
0 whent — +oo: this because of (11) considering the factabove. The first point to be discussed is if this estimation is
that with probabilitye we would have lost the first symbol asymptotically tight. The answer is on the positive and this
of the expansion given by#. The standard technique to can be seen going back to the expression (15), noticing that
overcome such problems is to introduce redundancy in order T _ m .
to cope with packet drop phenomena. Consider the encoder I'L(l— smﬂ“) > I'L(l— e,
& :{0,1}N — {0,1}" informally described by )= =

5 w \ This last product converges to a non zero valuerfes oo

& ((Ws)sg) = (W, Wa, Wa, W, Wa, Ws, Wy, Wo, Ws, Wa- ). for everye < 1. Hence, there exists a constdht > 0 such
More precisely, notice that for artyc N there exists unique that, for everyn € N, it holds |‘|’J-“:1(1— )l > D¢. Hence,
me N and j € {1,2,...,m} such thatt = (m—1)m/2+ P(A}) > D.e™ T. Repeating the same steps than above, we
j. Denote these numbers by(t) and j(t), respectively. thus obtain that the estimation in (16) and (17) are tight in
If (ys)og = €((Ws)g-y), thenyr = wjy). Notice that this the sense that
encoder fits in the scheme (4) by takimg = m(t). We A =< exp[—Bvi]



where Notice thatt = T, < mn(n+ 1)/2, hencen > % —-1. We
\/%In el if 2291 thus obtain the estimation

(1-a/2)In2Ing-1
\/id|r12 if £22/d -1 A <Ceexp l_ \/t d

Notice finally thate does not even show up in the og pefore, it is not difficult to prove that this estimation is
asymptotic behavior whea2%/9 < 1 and in particular there asymptotically tight which means that, for oo
is no improvement foe — 0. Is it possible to improve our

scheme? Is it possible to achieve exponential decays? Atz ~ exp [_ \/t (1- a/2)|n2|ngl]

B

. . . o 18
In this section we present a slight variation of the scheme (18)

described above which improves performance for sraall

while remaining sub-exponential. The question of exponen- | the next section we will see that, using repetition en-
tial decay will be considered later on. coding schemes as the one above where bits are transmitted

Fix a positive real numbem and consider the sequencethe way they are, such a performance can not be beated.

of nonnegative integers [1l. PERFORMANCE OF FINITE WINDOW CODING

To=0, T¢=|m|+|2m|+--+|km| fork>0. SCHEMES

- In this section we consider a more general class of en-
Consider now the mapping : {0,1}" — {0,1}" defined by  coders encompassing previous examples but still mainigini
5 . . a bounded complexity in their implementation which means
(6@ = @g it Tia]. that the number of computations that the encoder has to
Our encoder will be in this cas€ = & o.#. Define now perform at every time instant remains bounded in time.
Z  {0,1,?2}t — {0,1}! by putting [% (w)]s = ws if there For the rest of this section, we assume we have fixed a
existk e N and j € Jtc_1, %] N[L,t] such thatj —1x 1 =S dyadic quantization scheme fot™ consisting of the encoder

and wj £?, and[% (w)]s = 0 otherwise. Moreover, lets = 2 and of the sequence of decodéts
Yo %. Notice that, ifm= 1, then& and % coincide with We will focus on encoders : [0,1] — {0,1}" transmitting
the one above. at each time an input symbok’(x): which is a function of
Define nowul = {1 < j <n| [mj] > s}|, and notice that, ¢ bits of 2(x). More formally, we consider encoders of the
if s<nm form
N &M = fi(1m 2(¥) (19)

s+1 S
n+1-——<ul<n+1-=
+ m - Hs =N+ m where/; is a finite subset oN of cardinality |A| = di, and

At time t = T, we have thata has been repeated exactly ~ ft : {0,1}* — {0,1}. These encoders will be called finite
times in the first bits of .7 (w). window encoders. Clearly each encoder of the form (19) is
We can now estimate the error as we have done before(s.?()aCified by s SUszt Seq]tle;](@@% and (61 fL)mction Sequslnce

. To each encoder of the form (19) it is possible to
2 _ _ 2 t
& = SE[IX - AnEX)|?|As PIA] associate, for every,t € N, the quantity

nm-1 0
< c? gHsr1p 28/ 2-2/d zj(t) == ) 1al(])
< - go + S;an ] j 2
- 2 “ngnﬂ,s%lz,zS/d_F l o-25/d counting the number of channel inputs which have been
= S;) gﬂm affected by thej-th bit of the dyadic expansio®?(X) up
_ e €n+1,%1—(£1/m22/d)’“m+ o-2nm/d to timet. Notice that
1— (81/m22/d)71 1—2-2/d Hi = Z z (t) = zds_
jeN s<t

Now we fix a €]0,2[ and we fixm in such a way that

(4/m22/d\-1 _ p-a/d This is equivalent to put The quantityH; can be considered as a measure of the

complexity of the encodef’. This is our main result.

-1
- L Theorem 3. For any transmission scheme for the BEC, with
In2(2-a)/d erasure probabilitye, consisting of a finite window encoder
Notice that, for such value ah, of the form (19) and with complexity function,Ht holds
In2%/d In2Ing-1
—2nmy/d _ _ -1 <N > _
2 expl nine noEad <eg A > Cexp . He |, (20)
Hence, we can estimate for some constant S 0 only depending on d and f.

Proof Assume that at time all the zj(t) channel inputs

1 -1
A= Ce exp{—énlne } ' affected by thej-th bit 2(x); have been erased. Then, there



is clearly no way to reconstruc®(x); from the output of

the channel. Using (11), this gives the following lower bdun
to the squared estimation error, independent on the way the

decoders are chosen:

Atz > Clsuq272j/dezj (t)] ,
jeN

for some constant; > 0 only depending od and f. It will
be convenient to consider the looser bounds, for ayN,

A? > Cysud2 2 g%l > Cp fs(z(t))

j<s

where

fs: (RT)S— R,

Hence, for every possiblg
o> Clzien'\;S fs(2)

where
Ms:={ze (R")%,| 5 zj = Hi}.
]

Since the functiorfs(z) is strictly convex, it admits a unique
minimum on the convex compact skt;. Using Lagrange
multipliers we can characterize the stationary pointfgi)
on the hyperplang ;zj = H

Z}J!( =a-— BJ }
where = —d'?(?gt >0, anda = " 4+ BS51 We have that
Z* € Mg if and only if zZ; > 0 which is equivalent to

1+/14 8¢
<V =

2

Vj<s,

S

A possibility consists in choosing = i, /%J We get

fs (Z') =Cene.

N? chzé?,.‘; fs (2) = (21)

We can estimate as follows

imi +1

2

| V2B
(where last equality follows from straightforward algeibra

computation). Inserting this last estimation inside (2hg
thesis follows. ]

+B

<B (\/2Ht/B+1) :

IV. A CASUAL LINEAR CODING THEOREM

In this section, we shall prove a lower bound to the
eStimation error exponent on the BEC. We shall use random
coding arguments employing anytime linear codes over the
binary field Z,. These arguments date back to the early
literature on convolutional codes [7], [2], and have been
recently applied in [6] in order to lower bound the anytime
reliability function without feedback.

For a rate 0k R< 1, we consider a random, doubly infi-
nite, causal, binary matrip € Z,>N distributed as follows:
@; =0 for all j > Ri, while {@;|1 <] <Ri} is a family of
independent r.v.s identically distributed uniformly ovés.
Furthermore, we shall assungeto be independent both form
the source vectox and from the channel, and known both
at the transmitting and receiving ends. We shall naturally
identify the matrix@ with the corresponding linear operator
from Z) to ZY, and, fort € N, consider the truncated version

Z”ﬁ —7b,

As in Sect.ll-B, for a channel output sequen@)scn,
consider the error patterfes)scn, defined by puttinges =7
if zz="?, andes=c if zz#£?. Also, forte N, let|; := {1 <
i<t:z #£?}={1<i<t: g #7?} be the set of non-erased
positions up to time, and letrs, : Z}, —>Z'2‘ be the canonical
projection. An obvious class of decoders fpris given by
those % : 2t — ZJR" satisfying % (z) € (15, o @)~(2). In
fact, observe that the preimagd, o @)~ 1(z) is never empty.
Notice that, the decoding ((zs )L_;) is uniquely defined,
and correct, whenever, o @ .ZiR] — 2" is injective.

Now, let. : 2" — ZN be a dyadic quantizer, and define
the encoding schemé& : 2" — ZN as the composmoﬁ =
@o ., and the sequence of decod@ts (TEo )~ o.Qt
The following result characterizes the average mean sduare
error of the schemé#’, %) over the BEC. Here the average
has to be considered with respect to the randomness of the
vectorx, the channel, as well as the matigx

Proposition 4. Assume transmission over the BEC. Then, for
all 0 < R< 1, the average estimation error of the random
coding scheme described above satisfies

E[||x— %|?] < Kt?22-2B(deR) 22)
for all t € N, where
. . l l . B B
B(d,e,R) = mln{dRazogyng(nHl g)+|R-nl.},
(23)

D(xly) := xlog, ¥ + (1 — X)log, 1= denotes the binary
Kullback-Leiber distance and K 0 is a constant depending
on the erasure probabilitg and the density function f only.

Remark 4. Notice that, in the case of the repetition encodind®roof Let {di}1<i<[ry be the canonical basis @‘[Rﬂ For
schemes treated in Sect.ll-C, we have that=H. If we < j < [Rt], consider the subspad€ of ZiRﬂ generated
compare (20) with (18), considering the fact thmtcan be py the elementsyj,1,...,dry, and define the everj ;=
picked arbitrarily close to0, we have thus established that{ker(mt o@) C Kj}. It is not difficult to verify that if A
among the repetition schemes (Ht), the example treated in occurs, thanZ successfully decodes the firgt bits, i.e.
Sect. lI-C is optimal from the point of view of the asymptotiqn@t(( )L ;) = M7 (x), so that (9) implies thai% —x|| <
performance. Cm27 /9, Notice that the event&; are nested, i.éA] D A1,



and thatAg coincides with the whole sample space. Then, N ---B(1,€)
by definingB; := Aj_1NA|, we have —p(1,¢)
o 2 IR o 2 o 2 ~
BIR X7 = 3 B[k —XI1e ][k ~xILan
Rt
< (E]IP(BJ-)CszZ(ifl)/d_FcszZfRﬂ
=1

(24)
In order to estimate the probability of the eveyt first
we claim thatBj |mplles that the]_th column ni‘qqaj IS Fig. 1. Upper and lower bounds on the error exponent achewat the

linear combination of the following oneﬁmtq}d}jdqu. BEC ford — 1.

Indeed,Aj_; implies that, ifrj, @w = 0 for somew € ZZRt :

than necessarilw; = 0 for all i < j, while * A; implies that

M, @w = 0 for somew € ZLRﬂ such thatw; # 0. _ V. CONCLUSION _ _
Then, observe that the subspaceZéf generated by the ~We have considered the problem of anytime reliable

columns {75,@3 }i<rq has cardinality at most Bt}-j  transmission of a real-valued random vector through aaligit

Since@d; is uniformly distributed over the subspace Noisy channel. Upper and lower bounds on the highest expo-

generated by &} |j/rj<s<t. and independent from the error Nential rate achievable for the mean squared error have been

sequencdes)._,, it follows that?2 obtained assuming transmission over t_he BEC. Moreover,
_ R a lower bound on the performance achievable by bounded-
P(Bj|E}) < 27 [THk-TRtl)+ complexity coding schemes have been derived, showing that

in this case the mean squared error cannot decrease faster

Bei= (8- jmy - 1S & =2 =K} than exponentially in the square root of the number of

Since]p(Eii) = (t*LIJ'(/RJ)gHJ/RJfk(l_g)k, we get channel uses. Finally, simulation results for low-comjfijex
coding/decoding schemes have been presented.
P(B) = [;ﬂ P(B; [E))P(E)) Current work includes extensions of the results to general
) k=Tr1 I K discrete memoryless channels, and analysis and design of
[Rf] . . , practical coding schemes. We also plan to extend the theory
—Li+k=TRE )+ (t=Li/RIy gt—[j/R]-k k ) o S
= k:JZ+12 IR (TR R L —e) to deal with the case of distributed estimation over network
: of agents communicating over noisy digital channels.

o 1§ ok R /R g ) g g yda
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Corollary 5. Assume transmission over the BEC with era-
sure probabilitye. Then, there exists a coding scheme as in
(2) such that

Iimtinf _t} log, A > B(d,€).

In Fig.1, the upper and lower bounds to the error exponent,
i.e.8(d,e) andf(d,¢), are plotted as functions of the erasure
probability €, in the cased = 1.

1For an even®, A denotes its complement.
2We use the notationx| := max{0,x}



