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Abstract. Stability of Wardrop equilibria is analyzed for dynamical transportation networks
in which the drivers’ route choices are influenced by information at multiple temporal and spatial
scales. The considered model involves a continuum of nonatomic indistinguishable drivers commuting
between a common origin-destination pair in an acyclic transportation network. The drivers’ route
choices are affected by their relatively infrequent perturbed best responses to global information
about the current network congestion levels, as well as their instantaneous local observation of
the immediate surroundings as they transit through the network. A novel model is proposed for
driver route choice behavior, exhibiting local consistency with their preference toward globally less
congested paths as well as myopic decisions in favor of locally less congested paths. The simultaneous
evolution of the traffic congestion on the network and of the aggregate path preference is modeled
by a system of coupled ordinary differential equations. The main result shows that if the frequency
of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow
dynamics, then the state of the transportation network ultimately approaches a neighborhood of the
Wardrop equilibrium. The presented results may be read as further evidence in support of Wardrop’s
postulate of equilibrium, showing robustness of it with respect to nonpersistent perturbations. The
proposed analysis combines techniques from singular perturbation theory, evolutionary game theory,
and cooperative dynamical systems.
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dynamics, route choice behavior, multiscale decisions

AMS subject classifications. 93A15, 91A22, 90B20, 90B10, 37C65, 93C70

DOI. 10.1137/110820804

1. Introduction. As transportation demand is fast approaching its infrastruc-
ture capacity, a rigorous understanding of the relationship between the macroscopic
properties of transportation networks and realistic driver route choice behavior is
attracting renewed research interest. Such an analysis is essential for, among other
things, appropriate design of incentives influencing drivers’ behavior in order to induce
a desired socially optimal usage of the transportation infrastructure. A particularly
relevant issue is the impact of drivers’ en route responses to unexpected events on
the overall transportation network dynamics. This issue is particularly significant in
modern transportation network settings, where recent technological advancements in
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intelligent traveler information devices have enabled drivers to be much more flexible
in selecting their routes to destination even while en route. While there has been a sig-
nificant research effort to investigate the effect of such technologies on the route choice
behavior of drivers (e.g., see [26, 22]), the analytical study of the dynamical properties
of the whole network under such behavior has attracted very little attention.

This paper is focused on the stability analysis of transportation networks in a
setup where the drivers have access to traffic information at multiple temporal and
spatial scales and they have the flexibility to switch their route to the destination
at every intermediate traffic intersection. Specifically, we consider a model in which
the drivers choose their routes while having access to relatively infrequent global
information about the network congestion state and to real-time local information as
they transit through the network. Drivers route choice behavior is then influenced
by relatively slowly evolving path preferences as well as myopic responses to the
instantaneous observation of the local congestion levels at the intersections. This setup
captures many real-life scenarios where unexpected events observed en route might
cause drivers to take a temporary detour, but not necessarily to change their path
preferences. Such path preferences may instead be updated, e.g., on a daily, weekly,
or longer time basis in response to information about the global congestion state
of the different origin-destination paths collected from drivers’ personal experience,
opinion exchanges with peers, and information media. However, since traffic dynamics
is significantly influenced by drivers’ responses to real-time local information, such
responses can influence drivers’ path preferences, thereby modifying their global route
choice behavior in the long run. We propose and analyze a novel model for driver
route choice behavior that combines relatively infrequent information about the global
congestion status of the network with real-time local observations, as explained below.

In our model, the network is represented by a directed acyclic graph with one
origin and one destination. A continuous constant flow of nonatomic indistinguish-
able drivers enters from the origin and flows through the network until reaching the
destination node. Traffic parameters, such as average speed, traffic density, and flow,
are modeled as homogeneous quantities on every link, related to each other by func-
tional dependencies representative of the links’ congestion properties. The dynamics
of such traffic parameters is governed by the law of conservation of mass, as well as
driver route choice behavior. In turn, the driver route choice behavior is assumed to
be influenced by two factors: the aggregate path preference, measuring the relative
appeal of the different routes to the drivers, and local observations of the current con-
gestion levels. The path preference dynamics evolve at a slow time scale (as compared
to the traffic dynamics), following a perturbed best response to global information,
embodied by the current congestion levels on the whole network. When traversing
an intermediate node in the network, drivers behave according to their path prefer-
ence, if this is consistent with the current, locally observed, aggregate behavior of
the other drivers. On the other hand, when there is a discrepancy between the aggre-
gate path preference and the locally observed aggregate behavior, then drivers tend to
compensate by myopically preferring routes which appear to be locally less congested.

The model described above gives rise to a double feedback dynamics, governed by
a finite-dimensional system of coupled ordinary differential equations. Such a dynam-
ical system has two natural time scales, characterizing the dynamics of the drivers’
aggregate path preference and of the traffic parameters on the different links, respec-
tively. We study the long-time behavior of this dynamical system: our main result
shows that in the limit of a small update rate of the aggregate path preferences, a state
of approximate Wardrop equilibrium [27] is approached. The latter is a configuration
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in which the delay associated to any source-destination path chosen by a nonzero frac-
tion of drivers does not exceed the delay associated to any other path. Our results pro-
vide a stronger evidence in support of the significance of Wardrop’s postulate of equi-
librium for a transportation network. They may also be read as a sort of robustness of
such equilibrium notion with respect to nonpersistent perturbations of the network.

The analytical arguments we propose mainly rely on three ideas: adopting a
singular perturbation approach [16] by considering the aggregate path preference as
“quasi-static” when studying the fast-scale dynamics of the traffic parameters and the
traffic parameters as “almost equilibrated” when analyzing the slow-scale dynamics of
the aggregate path preference; exploiting the inherent cooperative1 dependence of the
route choice function on the local traffic parameters in order to establish exponential
stability of the fast-scale dynamics of the traffic parameters; and adapting results
from evolutionary population games [15, 24] in order to establish stability properties
of the slow-scale perturbed best response dynamics of the aggregate path preference.

Our work is naturally related to two streams of literature on transportation net-
works. On the one hand, traffic flows on networks have been widely analyzed with
fluid-dynamical and kinetic models: see, e.g., [11] and references therein. As com-
pared to these models (typically described by integro- or partial differential equations),
ours significantly simplifies the evolution of the traffic parameters (treating them as
homogeneous quantities on the links, representative of spatial averages), whereas it
highlights the role of driver route choice behavior with its double feedback dynamics,
which is typically neglected in that literature.

On the other hand, transportation networks have been studied from a decision-
theoretic perspective within the framework of congestion games [3, 23]. In these
models, drivers make sequential myopic route choice decisions in pursuit of minimizing
their personal travel times and in response to complete information about the whole
network. Congestion games are known to belong to the class of potential games [19], a
consequence of which is that best responses of the drivers are aligned with the gradient
of a common potential function and hence the system eventually converges to a critical
point of this potential function, which under appropriate monotonicity conditions
of the congestion properties of the links of the network corresponds to a Wardrop
equilibrium. Such an approach has been used, for example, in [18]. Dynamical systems
frameworks for stability analysis of transportation equilibria have also been developed
in [25, 5, 20]. The stability of Wardrop equilibrium in the context of communication
networks has been studied in [4]. It is important to note that the two salient features
of a typical congestion game setup are that information is available to the drivers at
a single temporal and spatial scale and that the dynamics of traffic parameters are
completely neglected by assuming that they are instantaneously equilibrated.

In contrast, we study the stability of Wardrop equilibrium in a setting where the
dynamics of the traffic parameters are not neglected and driver route choice decisions
are affected by relatively infrequent global information as well as real-time local in-
formation as they transit through the network. As a consequence, classic results of
evolutionary game theory and population dynamics [15, 24] are not directly applicable
to our framework, and novel analytical tools have to be developed, particularly for
the analysis of the fast-scale dynamics of the traffic parameters. For such dynamics,
the most novel technical feature of our approach consists in proving local contraction
properties which follow from the cooperative nature and other structural properties
of the system.

1Here, the adjective “cooperative” is intended in the sense of Hirsch [12, 13].
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The rest of the paper is organized as follows. In section 2, we formulate the model
and state the main result. Section 3 is a technical section that contains the proofs for
the main result, including intermediate results. In section 4, we report results from
illustrative numerical experiments. Finally, we conclude in section 5 and mention
potential future research directions.

Before proceeding, we establish some notation to be used throughout the paper.
Let R be the set of reals and R+ := {x ∈ R : x ≥ 0} be the set of nonnegative
reals, Let A and B be finite sets. Then, |A| will denote the cardinality of A, RA

(respectively, RA
+) the space of real-valued (nonnegative-real-valued) vectors whose

components are labeled by elements of A, and R
A×B the space of matrices whose

real entries are labeled by pairs of elements in A × B. The transpose of a matrix
M ∈ R

A×B will be denoted by M ′ ∈ R
B×A, while I will be an identity matrix and

1 the all-one vector, whose size will be clear from the context. We shall use the
notation Φ := I − |A|−111′ ∈ R

A×A to denote the projection matrix on the space
orthogonal to 1. The simplex of probability vectors over a finite set A will be denoted
by S(A) := {x ∈ R

A
+ : 1′x = 1}. If B ⊆ A, �B : A → {0, 1} will stand for the

indicator function of B with �B(a) = 1 if a ∈ B and �B(a) = 0 if a ∈ A \ B. For
p ∈ [1,∞], ‖ · ‖p is the p-norm. By default, let ‖ · ‖ := ‖ · ‖2 denote the Euclidean
norm. Let int(X ) be the interior of a set X ⊆ R

d, and let ∂X denote its boundary. Let
sgn : R → {−1, 0, 1} be the sign function, defined by sgn(x) = 1 if x > 0, sgn(x) = −1
if x < 0, and sgn(x) = 0 if x = 0. By convention, we shall assume the identity
d|x|/dx = sgn(x) to be valid for every x ∈ R, including x = 0. Finally, we shall adopt
the convention that the gradient ∇f of a function f : D → R, where D ⊆ R

A, is a
column vector in R

A, while ∇̃f := Φ∇f will stand for the projected gradient on S(A).

2. Model formulation and main result. In this section, we formulate the
problem and state the main result. In our formulation, we represent the dynamics of
the traffic and the route choice behavior on a transportation network as a system of
coupled ordinary differential equations with two time scales representative of route
choice behavior influenced by the two levels of information. The dynamics of the
physical variables, i.e., density and flow on each link, evolve at the fast time scale and
are driven by local information on the current physical state of the network, whereas
the aggregate path preferences evolve at the slow time scale in response to global
information on the current physical state of the network.

The key components of our model are network topology, congestion properties
of the links, path preference dynamics, and nodewise route choice decision. We next
describe each of these components in detail.

2.1. Network characteristics. Let the topology of the transportation network
be described by a directed graph (in short, di-graph) G = (V , E), where V is a finite
set of nodes and E ⊆ V × V is the set of (directed) links. For every node v ∈ V , we
shall denote by E−

v and E+
v the sets of its incoming and, respectively, outgoing links.

A length-l (directed) path from u ∈ V to v ∈ V is an l-tuple of consecutive links
{(vj−1, vj) ∈ E : 1 ≤ j ≤ l} with v0 = u and vl = v. A cycle is path of length l ≥ 1
from a node v to itself. Throughout this paper, we shall assume the following.

Assumption 1. The di-graph G contains no cycles, has a unique origin (i.e., some
v ∈ V such that E−

v = ∅), and has a unique destination (i.e., some v ∈ V such that
E+
v = ∅). Moreover, there exists a path to the destination node from every other node

in V , as well as from the origin node to any other node in V .
Assumption 1 implies that one can find a (not necessarily unique) topological

ordering of the node set V (see, e.g., [8]). We shall assume to have fixed one such
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ordering, identifying V with the integer set {0, 1, . . . , n}, where n := |V| − 1, in such
a way that

E−
v ⊆

⋃
0≤u<v

E+
u ∀v = 0, . . . , n .

We shall model the traffic parameters as time-varying quantities which are ho-
mogeneous over each link of the network. Specifically, for every link e ∈ E and time
instant t ≥ 0, we shall denote the current traffic density and flow by ρe(t) and fe(t),
respectively, while

ρ(t) := {ρe(t) : e ∈ E} , f(t) := {fe(t) : e ∈ E}

will stand for the vectors of all traffic densities and flows, respectively. Current traffic
flow and density on each link are related by a functional dependence

(2.1) fe = μe(ρe) , e ∈ E .

Such functional dependence models the drivers’ speed and lane adjustment behavior
in response to traffic density on a particular segment of a road. It will be assumed to
satisfy the following.

Assumption 2. For every link e ∈ E , the flow-density function μe : R+ → R+ is
continuously differentiable, strictly increasing, and strictly concave and is such that

μe(0) = 0 , lim
ρe↓0

d

dρe
μe(ρe) <∞ .

Remark 1. Flow-density functions commonly used in transportation theory typ-
ically are not globally increasing but rather have a ∩-shaped graph [11]: μe(ρe) in-
creases from μe(0) = 0 until achieving a maximum Ce = μe(ρ̃e) and then decreases
for ρe ≥ ρ̃e. Assumption 2 remains a good approximation of this setting, provided
that ρe stays in the interval [0, ρ̃e). It should be noted that the fact that the support
of the flow function is unbounded, i.e., that the density can grow as large as possible,
prevents the (fast time scale) dynamics (2.11) of the physical variables to take into
account backward propagation of perturbations.

For every link e ∈ E , let

Ce := sup{μe(ρe) : ρe ≥ 0} = lim
ρe→∞

μe(ρe)

be its maximum flow capacity. Moreover, let

Fv :=
∏
e∈E+

v

[0, Ce) , F :=
∏
e∈E

[0, Ce)

be the sets of local and, respectively, global feasible flow vectors. Observe that our
formulation allows for both the cases of bounded and unbounded maximum flow
capacities. As the flow fe is the product of speed and density, it is natural to introduce
the delay function

(2.2) T : RE
+ → [0,+∞]E , Te(fe) :=

⎧⎪⎪⎨
⎪⎪⎩

+∞ if fe ≥ Ce,

μ−1
e (fe)/fe if fe ∈ (0, Ce),

1/dμe

dρe
(0) if fe = 0 ,
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whose components measure the flow-dependent time taken to traverse the different
links.2

Example 1. A flow-density function that satisfies Assumption 2 is given by

(2.3) μe(ρe) = Ce

(
1− e−θeρe

)
∀e ∈ E ,

where Ce > 0 and θe > 0. The corresponding delay function is

Te(fe) =
1

θefe
log

Ce

Ce − fe
.

We shall denote by P the set of distinct paths in G from the origin node 0 to the
destination node n. Let

A ∈ R
E×P , Aep =

{
1 if e ∈ p,
0 if e /∈ p

be the link-path incidence matrix of G. The relative appeal of the different paths to
the drivers will be modeled by a time-varying probability vector over P , which will
be referred to as the current aggregate path preference and denoted by π(t). If one
assumes, as we shall do throughout this paper, a constant unit in-flow in the origin
node, it is natural to consider the vector

fπ := Aπ

of the flows associated to the current aggregate path preference. Indeed, the eth entry,
fπ
e =

∑
pAepπp, represents the total traffic flow that a link e ∈ E would sustain in a

static condition in which the fraction of drivers choosing any path p ∈ P is given by
πp. Now, let

Π := {π ∈ S(P) : fπ
e < Ce ∀e ∈ E}

be the set of feasible path preferences. Here, the term “feasible” refers to the fact that
the flow vector fπ associated to any π ∈ Π satisfies the capacity constraint fπ

e < Ce

for every e ∈ E . Observe that whenever Ce > 1 for every e ∈ E (or when link capacities
are infinite), the set of feasible path preferences Π coincides with the whole simplex
S(P). In contrast, when Ce ≤ 1 for some e ∈ E , Π ⊂ S(P) is a strict inclusion. On
the other hand, the following result shows that whether Π is empty depends solely on
the value of the min-cut capacity of the network [1, Ch. 4]. Let

C∗ := min
U⊆V:

0∈U ,n/∈U

CU , CU :=
∑
e∈E+

U

Ce ,

where E+
U := {e = (u, v) ∈ E : u ∈ U , v ∈ V \ U}.

Proposition 2.1. The set Π is nonempty if and only if C∗ > 1.
Proof. Fix a cut-set U ⊆ V such that 0 ∈ U and n /∈ U . Then, every path p ∈ P

contains exactly one link (u, v) ∈ p such that u ∈ U and v ∈ V \ U . Hence, for every
π ∈ Π, one has that

CU =
∑
e∈E+

U

Ce >
∑
p

∑
e∈E+

U

Aepπp =
∑
p

πp = 1 .

Minimizing over all cut-sets U shows that C∗ > 1 is necessary for Π to be nonempty.

2Here, it has implicitly been assumed without any loss of generality that all the links are of unit
length.
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For the inverse implication, consider a network with the same topology G and link
capacities ce = max{Ce − |E|−1(C∗ − 1), 0}. The min-cut capacity of this network
satisfies c∗ ≥ C∗ − (C∗ − 1) = 1. Note also that from our construction, Ce > ce ≥ 0.
Therefore, the max-flow min-cut theorem (see, e.g., [1, Thm. 4.1]) implies that there
exists some π ∈ Π, thus proving that Π is nonempty.

In the case when C∗ ≤ 1 it is not hard to show that the system will grow unstable,
i.e., ρe(t) is unbounded as t grows large, for some link e ∈ E . Therefore, through-
out this paper, we shall confine ourselves to transportation networks satisfying the
following.

Assumption 3. The min-cut capacity satisfies C∗ > 1.

2.2. Route choice behavior and traffic dynamics. We now describe driver
route choice behavior and traffic dynamics on the network. We envision a continuum
of indistinguishable drivers traveling through the network. Drivers enter the network
from the origin node 0 at a constant unit rate, travel through it, and leave the network
from the destination node n. While inside the network, drivers occupy some link e ∈ E .
The time required by the drivers to traverse link e and the current flow on such link are
governed by its congestion properties, as given by (2.2) and (2.1), respectively. When
entering the network from the origin node v = 0, as well as when reaching the head
node v ∈ {1, 2, . . . , n− 1} of some link e /∈ E−

n , the drivers instantaneously join some
link e ∈ E+

v . In this paper, we shall model the choice of such a new link to depend
on infrequently updated perturbed best responses of the drivers to global information
about the congestion status of the whole network as well as on their instantaneous
observation of the local congestion levels. We next describe these two aspects of the
model in detail.

Aggregate path preference dynamics. The drivers’ aggregate path prefer-
ence π(t), already introduced in section 2.1, models the relative appeal of the different
paths to the drivers’ population. It is updated as drivers access global information
about the current congestion status of the whole network. This occurs at some rate
η > 0, which could be thought of as being small with respect to the time scale of
the network flow dynamics. Information about the current status of the network is
embodied by the current traffic flow vector f(t). From f(t), drivers can evaluate the
vector A′T (f(t)), whose pth entry,

∑
eAepTe(fe(t)), coincides with the total delay a

driver expects to incur on path p assuming that the congestion levels on that path
won’t change during her journey.3 Drivers are modeled as reacting to such global
information by updating their path preferences independently at rate η according to
some feasible path preference Fh(f(t)) ∈ Π, so that the aggregate path preference
π(t) evolves as

(2.4)
d

dt
π(t) = η

(
Fh(f(t)) − π(t)

)
.

Here Fh : F → Π is a perturbed (or smoothed) best response function, as per
Assumption 4 formulated below. First, let us introduce the notion of admissible
perturbation.

3The delay that a driver would actually incur taking path p at time t would in fact possibly differ
from

∑
e AepTe(fe(t)), since by the time t′ ≥ t the driver reaches a certain link e ∈ p, the delay on

that link, Te(fe(t′)), might well have changed from its value Te(fe(t)) at time t, as a result of the
fast-scale dynamics of the physical variables ρe(t) and fe(t).
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Definition 2.2. An admissible perturbation is a function h : Πh → R, where
Πh ⊆ Π is a closed convex set, h( · ) is strictly convex, twice differentiable in int(Πh),
and is such that limπ→∂Πh

||∇̃h(π)|| = ∞.
Example 2. Let D := {e ∈ E : Ce ≤ 1} be the possibly empty set of links with

capacity not exceeding 1. For a ε ∈ (0,mineCe) and β > 0, let

Πh := {π ∈ Π : fπ
d ≤ Cd − ε ∀d ∈ D}

and define h : Πh → R by

h(π) := β−1
∑
p

πp log πp + β−1
∑
d

(Cd − ε− fπ
d ) log(Cd − ε− fπ

d ) ,

where the summation indices p and d run over the sets P and D, respectively, and the
standard convention 0 log 0 := 0 is adopted. It can be readily verified that Πh ⊆ Π is
a nonempty convex polytope, and limπ→∂Πh

||∇̃h(π)|| = ∞. Hence, h is an admissible
perturbation. Observe that if Ce > 1 for all e ∈ E , then D is empty, Πh = Π, and
h(π) = β−1

∑
p πp log πp reduces to the standard negative entropy function.

Observe that compactness and convexity of Πh, together with strict convexity of
h(ω), imply existence and uniqueness of a minimizer of ω′A′T (f) + h(ω) in Πh. This
supports the following.

Assumption 4. The function Fh : F → Π is a perturbed best response, i.e.,

(2.5) Fh(f) := argmin
ω∈Πh

{
ω′A′T (f) + h(ω)

}
, f ∈ F ,

where h : Πh → R is an admissible perturbation (as per Definition 2.2).
In fact, Assumption 4 and Definition 2.2 imply that Fh(f) ∈ int(Πh) and that

Fh(f) is continuously differentiable on F . The perturbed best response function
Fh(f) provides an idealized description of the behavior of drivers whose decisions are
based on inexact information about the state of the network. In particular, it can
be shown that the form of Fh(f) given in (2.5) is equivalent to the minimization,
over paths p ∈ P , of the expected delay

∑
eAepTe(fe) corrupted by some (admis-

sible) stochastic perturbation (see, e.g., [14]). Moreover, it is well known [24] that
as ‖h‖∞ ↓ 0 and Πh ↑ Π, the perturbed best response Fh(f) converges to the set
argmin{ω′A′T (f) : ω ∈ Π} of best responses.4

Example 3. Assume that Ce > 1 for all e ∈ E , and fix a noise parameter β > 0.
Define a perturbed best response by putting Πh = Π and h(π) = β−1

∑
p πp log πp for

all π ∈ Π, as in the special case of Example 2. Then, the corresponding perturbed
best response is the logit function

(2.6) Fh
p (f) =

exp(−β(A′T (f))p)∑
q∈P exp(−β(A′T (f))q)

, p ∈ P .

For any fixed f ∈ F , one has that limβ→∞ Fh(f), with Fh(f) as defined in (2.6), is a
uniform distribution over the set argmin{(A′T (f))p : p ∈ P}. We refer the reader to
[10, 15] for more on the connection between Fh characterized by Assumption 4 and
smoothed best response functions.

Remark 2. The microfoundations of the aggregate path dynamics in (2.4) can
be heuristically justified by looking at it as the mean-field limit of a stochastic finite

4Here, the convergences Πh ↑ Π and {Fh(f)} → argmin{ω′A′T (f) : ω ∈ Π} are intended to
hold in the Hausdorff metric (see, e.g., [2, Def. 4.4.11]).
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population model along the following lines. Consider a model with a large but fi-
nite driver population, with each driver updating her path preference at the clicking
of an independent Poisson clock of rate η by choosing a new preferred path p with
probability Fh

p (f(t)). Then one could show that the conditional average variation of
the aggregate path preference from time t to time t + ε, for small ε > 0, is given by
η(Fh(f(t))− π(t))ε+ o(ε). As the stochastic elements of the drivers’ updating mech-
anisms are idiosynchratic, one may expect such stochastic influences to be averaged
away as the population size grows large by appealing to some law of large numbers
in the spirit of Kurtz’s theorem [17], [9, Ch. 11]. We will not attempt to formally
justify the microfoundations of the model discussed in this paper but rather leave it
as a topic for future work.

Remark 3. In the evolutionary game theory literature, e.g., see [15, 24], the
domain of an admissible perturbation function h, as well as that of the minimization
in the right-hand side of (2.5), is typically assumed to be the whole simplex S(P),
instead of a closed polytope Πh ⊆ Π ⊆ S(P). Notice that, as already observed in
section 2.1, when Ce > 1 for every e ∈ E , Π = S(P) is a closed polytope, so that one
can choose Πh = Π. Therefore, in this case, Definition 2.2 does not introduce any
additional restriction with respect to such theory.

On the other hand, when Ce ≤ 1 for some e ∈ E , then the inclusions of Πh ⊂
Π ⊂ S(P) are both strict, so that Definition 2.2 does introduce additional restrictions
on the admissible perturbations. However, it is worth observing that, in a classic
evolutionary game theoretic framework, the dynamics of the aggregate path preference
would be autonomous rather than coupled to the one of the actual flow. In particular,
perturbed best response dynamics in that framework would read as

(2.7)
d

dt
π(t) = Fh(fπ(t))− π(t) ,

rather than as in (2.4). For such dynamics, the fact that Te(f
π
e ) = ∞ whenever

fπ
e ≥ Ce can be shown to imply that π(t) reaches a compact Πh ⊆ Π in some finite
time and never leaves it. In contrast, in the two-time-scale models of coupled dynamics
considered in this paper (see (2.13)), such a more restrictive assumption is needed in
order to ensure the same property for the trajectories of π(t) (see Lemma 3.4).

Local route decisions. We now describe the local route decisions, characteriz-
ing the fraction of drivers choosing each link e ∈ E+

v when traversing a nondestination
node v. Such a fraction will be assumed to be a continuously differentiable function
Gv

e(fE+
v
, π) of the local traffic flow fE+

v
:= {fe : e ∈ E+

v }, as well as of the current
aggregate path preference π. We shall refer to

(2.8) Gv : Fv ×Π → S(E+
v )

as the local decision function at node v ∈ {0, 1, . . . , n− 1} and assume that it satisfies
the following.

Assumption 5. For all 0 ≤ v < n and π ∈ Π,⎛
⎝∑

j∈E+
v

fπ
j

⎞
⎠Gv

e

(
fπ
E+
v
, π
)
= fπ

e ∀e ∈ E+
v .

Assumption 6. For all 0 ≤ v < n, π ∈ Π, and fE+
v
∈ Fv,

∂

∂fe
Gv

j (fE+
v
, π) ≥ 0 ∀j �= e ∈ E+

v .
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Assumption 5 is a consistency assumption. It postulates that when the locally
observed flow coincides with the one associated to the aggregate path preference π,
drivers choose to join link e ∈ E+

v with a frequency equal to the ratio between the
flow fπ

e and the total outgoing flow
∑

j∈E+
v
fπ
j .

Assumption 6 instead models the drivers’ myopic behavior in response to varia-
tions of the local congestion levels. It postulates that if the congestion on one link
increases while the congestion on the other links outgoing from the same node is kept
constant, the frequency with which each of the other outgoing links is chosen does not
decrease. It is worth observing that Assumption 6 is reminiscent of Hirsch’s notion of
a cooperative dynamical system [12, 13].

Example 4. An example of a local decision function Gv satisfying Assumptions 5
and 6 is the i-logit function. The i-logit route choice function with sensitivity γ ≥ 0
is given by

(2.9) Gv
e(fE+

v
, π) =

fπ
e exp(−γ(fe − fπ

e ))∑
j∈E+

v
fπ
j exp(−γ(fj − fπ

j ))

for every e ∈ E+
v , 0 ≤ v < n. Observe that in the extreme case γ = 0, (2.9) reduces to

(2.10) Gv
e(fE+

v
, π) =

fπ
e∑

j∈E+
v
fπ
j

which models a situation where the drivers do not take into account the local ob-
servation on the current flow and always act in a way that is consistent with their
aggregate path preference.

For every nondestination node v ∈ {0, 1, . . . , n − 1} and outgoing link e ∈ E+
v ,

conservation of mass implies that

(2.11)
d

dt
ρe(t) = He(f(t), π(t)) ,

where

(2.12) He(f, π) :=

{
Gv

e(fE+
v
, π)− fe if v = 0,

(
∑

j∈E−
v
fj)G

v
e(fE+

v
, π)− fe if 1 ≤ v < n

for all π ∈ Π and f ∈ F .

2.3. Objective of the paper and main result. The objective of this paper
is to study the evolution of the coupled dynamics

(2.13)

⎧⎪⎪⎨
⎪⎪⎩

d

dt
π(t) = η

(
Fh(f(t))− π(t)

)
,

d

dt
ρ(t) = H(f(t), π(t)) ,

where Fh is the perturbed best response function defined in (2.5); η > 0 is the rate
at which global information becomes available; H(f, π) = {He(f, π) : e ∈ E} with
He defined in (2.11); and f and ρ are related by the functional dependence (2.1). In
particular, our analysis will focus on the double limiting case of small η and small h.
We shall prove that in such a limiting regime, the long-time behavior of the system is
approximately at Wardrop equilibrium [27, 21]. The latter is a configuration in which
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the delay is the same on all the paths chosen by a nonzero fraction of drivers. More
formally, one has the following.

Definition 2.3 (Wardrop equilibrium). A feasible flow vector fW ∈ F is a
Wardrop equilibrium if fW = Aπ for some π ∈ Π such that for all p ∈ P,

(2.14) πp > 0 =⇒ (A′T (Aπ))p ≤ (A′T (Aπ))q ∀q ∈ P .

Existence and uniqueness of a Wardrop equilibrium are guaranteed by the follow-
ing standard result.

Proposition 2.4 (existence and uniqueness of Wardrop equilibrium). Let As-
sumptions 1–3 be satisfied. Then, there exists a unique Wardrop equilibrium fW ∈
F .

Proof. It follows from Assumption 2 that for every e ∈ E , the delay function
Te(fe) is continuous, strictly increasing, and such that Te(0) > 0. The proposition
then follows by applying Theorems 2.4 and 2.5 from [21].

The following is the main result of this paper. It will be proved in section 3 using
a singular perturbation approach.

Theorem 2.5. Let Assumptions 1–6 be satisfied. Then, for every initial condition
π(0) ∈ int(S(P)), ρ(0) ∈ (0,+∞)E , there exists a unique solution of (2.13). Moreover,
there exists a perturbed equilibrium flow f (h) ∈ F such that for all η > 0,

(2.15) lim sup
t→∞

||f(t)− f (h)|| ≤ δ(η) ,

where δ(η) is a nonnegative real-valued, nondecreasing function of η > 0 such that
limη↓0 δ(η) = 0. Moreover, for every sequence of admissible perturbations {hk} such
that limk ||hk||∞ = 0 and limk Πhk

= Π, one has

(2.16) lim
k
f (hk) = fW .

Theorem 2.5 states that in the large time limit, the flow vector f(t) approaches a
neighborhood of the Wardrop equilibrium, whose size vanishes as both the time-scale
ratio η and the perturbation norm ||h||∞ vanish. While a qualitatively similar result is
known to hold [24] in a classic evolutionary game theoretic framework (i.e., neglecting
the traffic dynamics and assuming it is instantaneously equilibrated, as in the ODE
system (2.7)), the significance of the above is to show that an approximate Wardrop
equilibrium configuration is expected to emerge also in our more realistic model of
two-time-scale dynamics. Therefore, our results provide stronger evidence in support
of the significance of Wardrop’s postulate of equilibrium for a transportation network.
In fact, they may be read as a sort of robustness of such an equilibrium notion with
respect to nonpersistent perturbations.

3. Proofs. In this section, Theorem 2.5 is proved. First, observe that, thanks to
the continuous differentiability of Fh, Gv, and μ, standard analytical arguments imply
the existence and uniqueness of a solution of the initial value problem associated to
the system (2.13) with initial condition ρ(0) ∈ (0,+∞)E , π(0) ∈ int(S(P)).

In order to prove the rest of the statement, we shall adopt a singular perturbation
approach (e.g., see [16]), viewing the traffic density ρ (or, equivalently, the traffic flow
f) as a fast transient and the aggregate path preference π as a slow component. Hence,
we shall first think of π as quasi-static (i.e., “almost a constant”) while analyzing the
fast-scale dynamics (2.11), and then assume that f is “almost equilibrated,” i.e., close
to fπ and study the slow-scale dynamics (2.4) as a perturbation of (2.7). We shall
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proceed by proving a series of intermediate technical results, gathered in the following
subsections.

Before proceeding, we introduce some notation to be used throughout the section.
Let

ρπe := μ−1
e (fπ

e ) , σe := sgn (ρe − ρπe ) = sgn (fe − fπ
e )

denote, respectively, the density corresponding to the flow associated to the path
preference π and the sign of the difference between it and the actual density ρe.
Finally, fix some α ∈ (0, 1) and define

(3.1) V (f, π) :=

n−1∑
v=0

αv
∑
e∈E+

v

|fe − fπ
e | , W (ρ, π) :=

n−1∑
v=0

αv
∑
e∈E+

v

|ρe − ρπe |.

3.1. Stability of the fast-scale dynamics. We gather here a few properties of
the fast-scale dynamics. Our results will essentially amount to showing that V (f, π)
andW (ρ, π) are Lyapunov functions for the fast-scale dynamics (2.11) with stationary
path preference π.

The following result is a consequence of Assumptions 5 and 6 on the drivers’ local
decision function.

Lemma 3.1. For all π ∈ Π, v ∈ {0, . . . , n− 1} and fE+
v
∈ Fv,

∑
e∈E+

v

σe

(
λπvG

v
e(fE+

v
, π)− fπ

e

)
≤ 0 ,

where λπv :=
∑

e∈E+
v
fπ
e .

Proof. Throughout this proof, the explicit dependence of Gv
e on π will be dropped.

Define J := {e ∈ E+
v : fe > fπ

e }, K := {e ∈ E+
v : fe < fπ

e } and let GJ :=
∑

j∈J Gv
j ,

GK :=
∑

k∈KG
v
k, and GJ c :=

∑
e∈E+

v \J G
v
e . First, observe that since

∑
e∈E+

v
Gv

e = 1,
one has that ∇GJ = −∇GJ c . Now, we are going to show that

(3.2) GJ (fπ
E+
v
)−GJ (fE+

v
) ≥ 0

by writing the difference above as a path integral of ∇GJ ( · ) first along the segment

SJ from fE+
v

to the point f∗ ∈ R
E+
v

+ with f∗
j := fπ

j , for j ∈ J and f∗
e := fe for

e ∈ E+
v \ J , and then along the segment SK from f∗ to fπ. In this way, one gets

(3.3)

GJ (fπ
E+
v
)−GJ (fE+

v
) =

∫
SJ

∇GJ (f̃E+
v
) · df̃E+

v
+

∫
SK

∇GJ (f̃E+
v
) · df̃E+

v

= −
∫
SJ

∇GJ c(f̃E+
v
) · df̃E+

v
+

∫
SK

∇GJ (f̃E+
v
) · df̃E+

v
.

Assumption 6 implies that ∂GJ c/∂ρj ≥ 0 for all j ∈ J and ∂GJ /∂ρk ≥ 0 for all

k ∈ K. In turn, this implies that ∇GJ c · df̃E+
v

≤ 0 along SJ and ∇GJ · df̃E+
v

≥ 0
along SK. This and (3.3) prove (3.2). In a very similar fashion, one proves that

(3.4) GK(fE+
v
)−GK(f

π
E+
v
) ≥ 0 .
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Now, observe that Assumption 5 implies that λπvG
v
e(f

π
E+
v
, π) = fπ

e . From this, (3.2),

and (3.4), it follows that

0 ≥ λπv

(
GJ (fE+

v
)−GJ (fπ

E+
v
)
)
− λπv

(
GK(fE+

v
)−GK(f

π
E+
v
)
)

=
∑
e∈E+

v

σe

(
λπvG

v
e(fE+

v
)− λπvG

v
e(f

π
E+
v
)
)

=
∑
e∈E+

v

σe

(
λπvG

v
e(fE+

v
)− fπ

e

)
,

which proves the claim.
We now proceed to analyzing, for a fixed global decision π ∈ Π, the fast-scale

dynamics (2.11). Let

V +
v (f, π) :=

∑
e∈E+

v

|fπ
e − fe| , v = 0, 1, . . . , n− 1 ,

be the l1-distance between the current flows on the outgoing links of v and the flow
associated to the aggregate path preference π, and let

V −
v (f, π) :=

∣∣λπv − λ−v
∣∣ , v = 1, 2, . . . , n ,

with λπv :=
∑

e∈E−
v
fπ
e and λ−v :=

∑
e∈E−

v
fe, be the absolute difference between the

current flow incoming in node v and the one associated to the aggregate path prefer-
ence π. Also, let V −

0 (f, π) := 0.
Lemma 3.2. For all v = 0, 1, . . . , n− 1, π ∈ Π, and f ∈ F ,∑

e∈E+
v

σeHe(f, π) ≤ −V +
v (f, π) + V −

v (f, π) .

Proof. Writing Gv
e for Gv

e(fE+
v
, π) and using Lemma 3.1, one gets that∑

e∈E+
v

σeHe(f, π) =
∑
e∈E+

v

σe
(
λ−v G

v
e − fe

)
=
∑
e∈E+

v

σe(λ
−
v − λπv )G

v
e +

∑
e∈E+

v

σe (λ
π
vG

v
e − fπ

e ) +
∑
e∈E+

v

σe (f
π
e − fe)

≤ |λ−v − λπv | −
∑
e∈E+

v

|fπ
e − fe|

= −V +
v (f, π) + V −

v (f, π) ,

which proves the claim.
By combining Lemma 3.2 and Assumption 1, one gets the result below. Recall the

definition ofW (ρ, π) from (3.1) and that we are using the convention d|x|/dx = sgn(x)
for all x ∈ R.

Lemma 3.3. For every f = μ(ρ) ∈ F and π ∈ Π,

∇ρW (ρ, π)′H(f, π) ≤ −(1− α)V (f, π) .

Proof. Observe that thanks to the acyclicity of the graph as per Assumption 1,
if e ∈ E−

v ∩ E+
w for some nodes v and w, then necessarily v ≥ w + 1. Since α < 1, it

follows that

αv
�E−

v
(e)�E+

w
(e) ≤ αw+1

�E−
v
(e)�E+

w
(e)
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for every 1 ≤ v ≤ n and 0 ≤ w ≤ n− 1. Hence,∑
0≤v<n

αvV −
v (f, π) ≤

∑
0≤v<n

∑
e∈E−

v

αv |fe − fπ
e |

=
∑

1≤v<n

∑
0≤w<n

∑
e∈E

αv
�E−

v
(e)�E+

w
(e) |fe − fπ

e |

≤
∑

0≤w<n

αw+1
∑
e∈E

�E+
w
(e) |fe − fπ

e |
∑

1≤v<n

�E−
v
(e)

≤ α
∑

0≤w<n

αw
∑
e∈E+

w

|fe − fπ
e |

= αV (f, π) ,

where the last inequality follows from the fact that
∑n−1

v=1 �E−
v
(e) ≤

∑n
v=1 �E−

v
(e) = 1,

and we recall (3.1) for the definition of V (f, π). Thus, Lemma 3.2 implies that

∇ρW (ρ, π)′H(f, π) =
∑

0≤v<n

αv
∑
e∈E+

v

σeHe(f, π)

≤
∑

0≤v<n

αvV −
v (f, π)−

∑
0≤v<n

αvV +
v (f, π)

≤ αV (f, π) − V (f, π) ,

which proves the claim.

3.2. Boundedness of the traffic densities. We shall now prove a couple of
results guaranteeing that the traffic density on every link remains bounded in time.
We start with the following result, guaranteeing that on every link e ∈ E , the flow
associated to the current path preference, fπ

e (t), stays eventually bounded away from
the maximum flow capacity Ce. Its proof relies on Assumption 4. Recall that our
formulation allows for both cases of finite and infinite maximum flow capacity on a
link.

Lemma 3.4. For every admissible perturbation h, there exists t0 ∈ R+ and, for
every link e ∈ E, a positive finite constant Ce, dependent on h but not on η, such that
for every initial condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

fπ
e (t) ≤ Ce < Ce ∀t ≥ t0 ∀ e ∈ E .

Proof. The fact that fπ
e (t) ≤ 1 for all e ∈ E follows from the fact that the arrival

rate at the origin is unitary. Therefore, for all e ∈ E with Ce > 1 (and hence also
for Ce = ∞), the claim follows trivially with Ce = 1 and t0 = 0. We now prove the
lemma for all e ∈ E with Ce < 1. Recall that by Definition 2.2, the domain of the
admissible perturbation h is a closed set Πh ⊂ int(Π). This in particular implies that

κe := Ce − sup{(Aω)e : ω ∈ Πh} > 0 .

It follows from (2.5) that

(3.5)

Ce − κe = sup{(Aω)e : ω ∈ Πh}
≥ sup {(A argmin{ω′A′T (f) + h(ω) : ω ∈ Πh})e : f ∈ F}
= sup

{(
AFh(f)

)
e
: f ∈ F

}
.
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Hence, one has

d

dt
fπ
e (t) = η

(
A(Fh(f(t))− π(t))

)
e
≤ η (Ce − κe − fπ

e ) .

This implies that

(3.6) fπ
e (t)− Ce + κe ≤ (fπ

e (0)− Ce + κe)e
−ηt ≤ e−ηt , t ≥ 0 ,

where the last inequality follows from the fact that fπ
e (0) =

∑
pAepπp(0) ≤ 1 and

Ce ≥ κe. The lemma for e ∈ E with Ce < 1 now follows from (3.6) by choosing,
e.g., Ce := Ce − κ/2 with κ := min{κe : e ∈ E s.t. Ce < 1} and t0 := −η−1 log
(κ/2).

The following result shows that the actual flow fe(t) also stays bounded away
from the maximum flow capacity Ce.

Lemma 3.5. For every admissible perturbation h, there exists η∗ > 0 and a
positive finite constant C̃e for every e ∈ E, dependent on h but not on η, such that for
every η < η∗ and every initial condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

fe(t) ≤ C̃e < Ce

for all t ≥ 0 and e ∈ E.
Proof. For t ≥ 0, let us define

ζ(t) :=W (ρ(t), π(t)) , χ(t) := V (f(t), π(t)) .

Observe that thanks to Lemma 3.4, there exists t0 ≥ 0 and a positive constant Ce for
every e ∈ E , such that for every t ≥ t0,

(3.7) ρπe (t) ≤ ρ∗e , ρ∗e := μ−1
e (Ce) ∀e ∈ E .

Since ρπe (t) ≥ 0, the above implies that if |ρe(t) − ρπe (t)| ≥ 2ρ∗e for some t ≥ t0, then
necessarily ρe(t) ≥ 2ρ∗e for t ≥ t0. Hence, fe(t) − fπ

e (t) ≥ χ∗
e for all t ≥ t0, where

χ∗
e := μe(2ρ

∗
e)−Ce. Observe that since μe is strictly increasing by Assumption 2, one

has χ∗
e = μe(2ρ

∗
e)− Ce > μe(ρ

∗
e)− Ce = 0. Now, let

ζ∗ := 2|E|max{ρ∗e : e ∈ E} , χ∗ := αn−1 min{χ∗
e : e ∈ E} .

Notice that

W (ρ, π) ≤ |E|max{|ρe − ρπe )| : e ∈ E} , V (f, π) ≥ αn−1|fe − fπ
e | ∀e ∈ E .

Therefore, it follows that for any t ≥ t0, if ζ(t) ≥ ζ∗, then for some e′ ∈ E we have that
|ρe′(t) − ρπe′ | ≥ 2ρ∗e′ for t ≥ t0. This in turn implies that χ(t) ≥ χ∗

e′ ≥ χ∗. Therefore,
in summary,

(3.8) ζ(t) ≥ ζ∗ =⇒ χ(t) ≥ χ∗ > 0 ∀t ≥ t0.

On the other hand, observe that (3.7) implies that there exists some � > 0 such
that ∑

0≤v<n

αv
∑
e∈E+

v

1

μ′
e(ρ

π
e (t))

≤ � ∀t ≥ t0 .
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By combining the above with Lemma 3.3, one finds that for any u, t ≥ t0,

(3.9)

ζ(t)− ζ(u) =

∫ t

u

∑
0≤v<n

αv
∑
e∈E+

v

σe

(
d

ds
ρe −

d

ds
ρπe

)
ds

≤
∫ t

u

∇ρW (ρ, π)′H(f, π)ds

+

∫ t

u

∑
0≤v<n

αv
∑
e∈E+

v

η

μ′
e(ρ

π
e )

∣∣(AFh(fπ))e − (Aπ)e
∣∣ ds

≤
∫ t

u

(−(1− α)χ(s) + 2η�) ds .

Now, let us define η∗ := (1 − α)χ∗/(2�). By contradiction, let us assume that
lim supt→∞ fe(t) ≥ Ce for some e ∈ E . Since fe(t) = μe(ρe(t)) < Ce for every
t ≥ 0, this implies that lim supt→∞ ρe(t) = ∞. This together with (3.7) implies that
lim supt→∞ ζ(t) = ∞. Then, in particular, the set T := {t > 0 : ζ(t) > ζ(s) ∀s < t}
is an unbounded union of open intervals with limt∈T ,t→∞ ζ(t) = ∞. This and (3.8)
imply that there exists a nonnegative constant t∗ ≥ t0 such that

χ(t) ≥ χ∗ ∀t ∈ T ∩ [t∗,∞) .

For every η < η∗, (3.9) and the above give

ζ(t)− ζ(u) ≤
∫ t

u

(−(1− α)χ(s) + 2η�) ds ≤
∫ t

u

(−(1− α)χ∗ + 2η�) ds < 0

for every t > u ≥ t∗ such that t and u belong to the same connected component
of T . But this contradicts the definition of the set T . Hence, if η < η∗, then
lim supt→∞ fe(t) < Ce for every e ∈ E . Since on every compact time interval I ⊆
R+, one has supt∈I fe(t) = fe(t̂) < Ce for some t̂ ∈ I, the foregoing implies the
claim.

The result below is a consequence of Lemma 3.5 and will prove useful in what
follows.

Proposition 3.6. There exist K > 0 and t1 ≥ 0 such that for every initial
condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E , ||∇̃πh(π(t))|| ≤ K for all t ≥ t1.

Proof. First, observe that thanks to Lemma 3.5, there exists T ∗ > 0 such that
||T (f(t))|| ≤ T ∗ for all t ≥ 0. Thanks to this and Assumption 4, one has that
Fh(f(t)) ∈ int(Πh) and ∇̃πh(F

h(f(t))) = −ΦA′T (f(t)), where recall that Φ = I −
|P|−111′ is the projection matrix corresponding to the projected gradient with respect
to π on S(P). Hence, ||∇̃πh(F

h(f(t)))|| ≤ ||Φ||||A′||T ∗, which implies that there exists
a convex compact K ⊂ int(Πh) such that Fh(f(t)) ∈ K for all t ≥ 0. Define

Δ(t) :=
η

1− e−ηt

∫ t

0

e−η(t−s)Fh(f(s))ds .

As Δ(t) is an average of elements of the convex set K, necessarily Δ(t) ∈ K for all
t ≥ 0. Then, π(t) = e−ηtπ(0) + (1 − e−ηt)Δ(t) approaches K, which implies that
for large enough t, π(t) ∈ K1 ⊂ int(Πh), where K1 is a closed subset of int(Πh) that
contains K. Hence, after large enough t, say, t1, ∇̃πh(π(t)) stays bounded.
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3.3. Estimating the distance between the current density and the one
associated to the current path preference. We analyze here the behavior in
time of W (ρ(t), π(t)). First, we have the following result, characterizing the variation
of W (ρ, π) as a function of π. Recall that ∇̃π = Φ∇π denotes the projected gradient
with respect to π on S(P).

Lemma 3.7. There exist l > 0 and t0 ≥ 0 such that for every initial condition
π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

∇̃πW (ρ(t), π(t))′(Fh(f(t))− π(t)) ≤ 2l

1− α
∀t ≥ t0 .

Proof. First, observe that thanks to Lemma 3.4, one has that there exists t0 ≥ 0
such that le := sup{1/μ′

e(ρ
π
e (t)) : t ≥ t0} < +∞. Put l := max{le : e ∈ E}. Then,

for every path p ∈ P and every t ≥ t0, one has

(3.10)

∣∣∣∣∂W (ρ, π)

∂πp

∣∣∣∣ =
∣∣∣∣∣−

∑
0≤v<n

αv
∑
e∈E+

v

σe
∂

∂πp

ρπe

∣∣∣∣∣
=

∣∣∣∣∣
∑

0≤v<n

αv
∑
e∈E+

v

σe
∂

∂πq

μ−1
e

(∑
q

Aepπq

)∣∣∣∣∣
≤

∑
0≤v<n

αv
∑
e∈E+

v

Aep
1

μ′
e(ρ

π
e )

≤
∑

0≤v<n

αv
∑
e∈E+

v

Aeple

≤ l

1− α
,

where the third inequality follows from the fact that thanks to Assumption 1 on the
acyclicity of the network, each path p ∈ P passes through at most one link e ∈ E+

v .
Therefore,

2l

1− α
≥
∑
p

Fh
p (f)

∣∣∣∣ ∂∂πpW (ρ, π)

∣∣∣∣ +∑
p

πp

∣∣∣∣ ∂∂πpW (ρ, π)

∣∣∣∣
≥
∑
p

Fh
p (f)

∂

∂πp
W (ρ, π)−

∑
p

πp
∂

∂πp
W (ρ, π)

= ∇̃πW (ρ, π)′(Fh(f)− π) ,

where the first inequality follows upon recalling that both Fh(f) and π are probability
vectors over the path set P and by using (3.10).

We can now combine Lemmas 3.3 and 3.7 in order to get the following estimate
of the behavior in time of W (ρ(t), π(t)).

Lemma 3.8. There exist l > 0, L > 0, η∗ > 0, and t0 ≥ 0 such that for every
initial condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

W (ρ(t), π(t)) ≤ 2ηlL

(1− α)2
+

(
W (ρ(t0), π(t0))−

2ηlL

(1− α)2

)
e−(1−α)(t−t0)/L

for every t ≥ t0 and η < η∗.
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Proof. Define

ζ(t) :=W (ρ(t), π(t)) .

Notice that thanks to Lemmas 3.4 and 3.5, there exist L > 0, η∗ > 0, and t0 ≥ 0 such
that for any η < η∗,

|ρe(t)− ρπe (t)| ≤ L|fe(t)− fπ
e (t)| ∀e ∈ E , t ≥ t0 .

This in particular implies that

V (f(t), π(t)) ≥ 1

L
W (ρ(t), π(t)) =

1

L
ζ(t) ∀η < η∗ , t ≥ t0 .

Observe that W (ρ, π) is a Lipschitz function of ρ and π, while both ρ(t) and π(t)
are Lipschitz on every compact time interval. Therefore, ζ(t) is Lipschitz on every
compact time interval and thus absolutely continuous. Hence, dζ(t)/dt exists for
almost every t ≥ 0, and, thanks to Lemmas 3.3 and 3.7, it satisfies

d

dt
ζ(t) =

d

dt
W (ρ(t), π(t))

= ∇ρW (ρ, π)′H(f, π) + η∇̃πW (ρ, π)′(Fh(f)− π)

≤ −(1− α)V (f, π) +
2ηl

1− α

≤ − (1− α)

L
ζ(t) +

2ηl

1− α
.

Then, the claim follows by integrating both sides.

3.4. Proof of Theorem 2.5. We now proceed to proving Theorem 2.5. Let us
introduce the function

(3.11) Θ : Π → R+ , Θ(π) :=
∑
e∈E

∫ fπ
e

0

Te (s) ds

and observe that

(3.12) ∇̃Θ(π) = ΦA′T (fπ) ∀π ∈ int(Π) .

In game-theoretic terminology, (3.12) implies that Θ(π) is the potential function [19]
for the continuous-population congestion game with action space P and payoff vector
function −A′T (fπ).5

Observe that since Te(fe) is increasing, one has that each term
∫ fπ

e

0
Te (fe) dfe is

convex in fπ
e . Hence, the composition with the linear map π �→ fπ

e =
∑

p Aepπp is

5In fact, (3.12) is equivalent to

∑

e

AeqTe(f
π
e ) −

∑

e

AepTe(f
π
e ) =

∂

∂πq
Θ(π)− ∂

∂πp
Θ(π)

for every p, q ∈ P, i.e., the difference between the total delays associated to the flow fπ on paths
q and p equals the limit incremental ratio of Θ(π) with respect to an infinitesimal mass transfer
in π from path p to path q. Intuitively, if a nonatomic driver, whose weight is infinitesimal in the
continuum population model, switches path from p to q, the potential Θ increases by an infinitesimal
amount equal to the product of the increase in the driver’s delay cost times the driver’s weight.
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convex in π, which in turn implies convexity of Θ over Π. Then, for any admissible
perturbation h : Πh → R+, Definition 2.2 implies strict convexity of Θ(π) + h(π).
Therefore, since Πh is compact and convex, there exists a unique minimizer

(3.13) πh := argmin {Θ(π) + h(π) : π ∈ Πh} .

Let f (h) := fπh

. Then, we have the following.
Lemma 3.9. Let {hk} be any sequence of admissible perturbation functions such

that limk ||hk||∞ = 0, limk Πhk
= Π. Then,

lim
k→∞

f (hk) = fW .

Proof. Write πk for πhk , F k for Fhk , and Πk for Πhk
. Since {Aπk} ⊆ AΠ, and AΠ

is compact, there exists a converging subsequence {Aπkj : j ∈ N}. Let us denote by
f∗ := limj Aπ

kj ∈ AΠ its limit and choose some π∗ ∈ Π such that f∗ = Aπ∗. Notice
that since sup{Te(fπ

e ) : π ∈ Πh} < +∞ for all e ∈ E , Definition 2.2 implies that the
minimizer in (3.13) has to be in the interior of Πh. As a consequence, one finds that
necessarily ∇̃πh(π

kj ) = −ΦA′T (Aπkj ), which in turn implies that F kj (Aπkj ) = πkj .
Then, using (2.5), one finds that

(3.14) (Aπkj )′T (Aπkj ) + hkj (π
kj ) ≤ (Aπkj )′T (Aπkj ) + hkj (ω)

for all ω ∈ Πkj . Now, fix any π ∈ Π. Since Πk
k→ Π, one has that there exists a

sequence {π̃j} such that π̃j ∈ Πkj for all j and limj π̃
j = π. Hence, taking ω = π̃j in

(3.14) and passing to the limit as j grows large, one finds that

(π∗)′A′T (Aπ∗) ≤ π′A′T (Aπ∗) ∀π ∈ Π .

In turn, the above can be easily shown to be equivalent to the condition (2.14) char-
acterizing Wardrop equilibria. From the uniqueness of the Wardrop equilibrium, it
follows that necessarily f∗ = fW . Then the claim follows from the arbitrariness of
the accumulation point f∗.

We shall now estimate the time derivative of Θh(π) along trajectories of our
dynamical system. For this, define

(3.15) Γ(t) := Θ(π(t)) + h(π(t)) , ψ(t) := ΦA′T (fπ(t)) + ∇̃πh(π(t)) .

Then, using (3.12), one has

(3.16)

d

dt
Γ(t) =

(
∇̃πΘ+ ∇̃h(π(t))

)′ d

dt
π

= ηψ(t)′
(
Fh(f(t))− π(t)

)
= ηψ(t)′

(
Fh(fπ(t))− π(t)

)
+ ηψ(t)′

(
Fh(f(t))− Fh(fπ(t))

)
.

Lemma 3.8 implies that there exists t2 ≥ 0, η∗ > 0, and M1 > 0 such that for any
η < η∗, W (ρ(t), π(t)) ≤ ηM1 for all t ≥ t2. From the definition of W , it also follows
that W (ρ, π) ≥ αn−1‖ρ − ρπ‖1 for all ρ, π. Moreover, following Assumption 2, with
L := max{dμe/dρe(0) : e ∈ E}, we also have that ‖f − fπ‖1 ≤ L‖ρ − ρπ‖1 for all
f = μ(ρ) and π. Combining all these relationships, one can see that there exists a
M > 0 such that for any η < η∗,

(3.17) ||f(t)− fπ(t)|| ≤ ηM ∀ t ≥ t2.
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Moreover, recall that Fh is differentiable on F and that thanks to Lemmas 3.4 and
3.5, for η < η∗, both f(t) and fπ(t) are eventually confined in a compact K ⊆ F .
This implies that

||Fh(f(t))− Fh(fπ(t))|| ≤ K1η

for some positive constant K1, η < η∗ and sufficiently large value of t. On the other
hand, Lemma 3.4 and Proposition 3.6 imply that both T (fπ(t)) and ∇̃πh(π(t)) are
eventually bounded, so that ||ψ(t)|| ≤ K2 for some positive constant K2 and large
enough t. It follows that the second addend in the last line of (3.16) can be bounded
as

(3.18) ηψ(t)′
(
Fh(f(t))− Fh(fπ(t))

)
≤ Kη2 ∀η < η∗, ∀ t ≥ t3

for some sufficiently large but finite value of t3, where K = K1K2. Now, observe that
for every π ∈ Π,

ΦA′T (fπ) = −∇̃πh
(
Fh(fπ)

)
,

so that the first addend in the last line of (3.16) may be rewritten as

(3.19) ψ(t)′
(
Fh(fπ(t))− π(t)

)
= −Υ(π(t)) ,

where

Υ(π) :=
(
∇̃πh(F

h(fπ))− ∇̃πh(π)
)′ (

Fh(fπ)− π
)
.

It follows from (3.16), (3.18), and (3.19) that for η < η∗ and t ≥ t3,

(3.20)
d

dt
Γ(t) ≤ −ηΥ(π(t)) +Mη2 .

From the strict convexity of h(π) on the simplex Π, one finds that Υ(π) ≥ 0 for all
π, with equality if and only if π = πh. Now, put

(3.21) δ(x) :=

{
sup{||fπ − f (h)|| : Υ(π) ≤Mx}+Mx if 0 ≤ x < η∗ ,

C̃
√
|E| if x ≥ η∗ ,

where C̃ := max{1, C̃e : e ∈ E}, with C̃e as defined in Lemma 3.5. It can be verified
that δ(x) is nondecreasing. Moreover, it is right-continuous, so that in particular
limη↓0 δ(η) = δ(0) = 0. Then, (3.17) and (3.20) imply that for η < η∗,

(3.22) lim sup
t→∞

||f(t)− f (h)|| ≤ δ(η) .

Observe that since f(t) ∈ [0, C̃]E by Lemma 3.5 and f (h) ∈ AΠ ⊆ [0, 1]E , one has that

|fe(t)− f
(h)
e | ≤ max{C̃e, 1} ≤ C̃ for all e ∈ E , so that ||f(t)− f (h)||2 ≤ |E|C̃2. Hence,

(3.22) holds also for η ≥ η∗, since in that range δ(x) =
√

|E|C̃. Together with Lemma
3.9, this completes the proof of Theorem 2.5.
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Remark 4. Observe that since Υ(πh) = 0 is a minimum of Υ(π), one has that
Υ(π) = π′Hπ+O(||π−πh||3) as π → πh, where H is symmetric nonnegative definite.
From this and (3.21) one finds that δ(η) � √

η as η ↓ 0.

4. Numerical simulations. In this section, we present results from numerical
experiments. We performed several experiments with different graph topologies and
for values of η ranging from 0.01 to 100. In all the cases, we found that the trajectories
converge exactly to the perturbed Wardrop equilibrium, i.e., δ(η) in Theorem 2.5 was
estimated to be uniformly zero. We suspect that this might be because of the expo-
nential convergence also of the slow-scale dynamics. Additionally, we compared the
convergence of the trajectories corresponding to an i-logit local decision function as in
Example 4 with sensitivity γ > 0 and γ = 0. As already argued, the latter corresponds
to the case when the drivers do not take into account the local observation on the
currently observed flow and always act in a way that is consistent with their aggregate
path preference. We found no significant difference between the convergence rates.

We demonstrate these findings through an illustrative example. For this example,
the parameters were selected as follows:

• graph topology G as shown in Figure 4.1;
• linkwise flow functions as given by (2.3) with C1 = 2 and θe = 1 for all e ∈ E ;
• Fh as in (2.6) with β = 1,
• G as in (2.9) with γ = 1,
• initial conditions: πe(0) = 1/15 for all e ∈ E , ρe1(0) = ρe12(0) = 5, ρe2(0) =
ρe6(0) = ρe8(0) = 7, ρe3(0) = ρe7(0) = 3, ρe4(0) = 6, ρe5(0) = 1, ρe9(0) = 9,
ρe10(0) = 10, ρe13(0) = 12, ρe14(0) = 4, ρe15(0) = 8.

• η = 0.1.
For these values, ρh was numerically calculated by first numerically computing πh as
the equilibrium of π̇ = Fh(fπ)− π with the function Fh as defined in (2.6) and then
setting ρh = μ−1(Aπh). We considered the i-logit local route choice decision function
as in Example 4. The evolution of the 1-norm distance of ρ from ρh is plotted on a
log-linear scale in Figure 4.2 for two values of the sensitivity: (i) γ > 0 and (ii) γ = 0.
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Fig. 4.1. The graph topology used in simulations.
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Fig. 4.2. Log-linear plot for comparison of the evolution of ‖ρ(t) − ρh‖1 for the local decision
function of Example 4 with sensitivity γ > 0 and γ = 0.

Figure 4.2 also shows that there is no significant difference between the convergence
of trajectory corresponding to the two values of the sensitivity.

5. Conclusion. In this paper, we have analyzed the stability of Wardrop equilib-
ria in dynamical transportation networks characterized by dual temporal and spatial
scales of driver route choice behavior. This is affected by the relatively infrequent
drivers’ perturbed best responses to global information about the current network
congestion levels, as well as their instantaneous local observation of the immediate
surroundings as they transit through the network.

We showed that if the frequency of updates of path preferences is sufficiently small,
then the state of the transportation network ultimately approaches a neighborhood
of the Wardrop equilibrium. The technical approach relied on establishing relevant
properties for the resultant two-time-scale dynamics independently using tools from
evolutionary game dynamics and cooperative dynamical systems and then using sin-
gular perturbation techniques to establish sufficient conditions for the stability of
the Wardrop equilibrium for the coupled system. Our results contribute to providing
stronger evidence supporting the significance of Wardrop’s equilibrium postulate for a
transportation network. They may be read as a sort of robustness of such equilibrium
notion with respect to nonpersistent perturbations of the network.

There are several possible directions for future work. In a related work [6, 7] we
have studied the effect of persistent, and possibly adversarial, perturbations on the
traffic dynamics under a driver behavior model similar to the one considered in this
paper. Moreover, we plan to provide microfoundations of our dynamical model by
formally deriving it as the mean-field limit of a finite population stochastic process
(see Remark 2). Additionally, it would be very interesting to extend our analysis by
relaxing the assumptions of a single origin-destination pair, acyclic topology, increas-
ing flow function, and unbounded density. In particular, removing the last assumption
would be crucial in order to take into account backward propagation of perturbations
in the fast-scale dynamics (cf. Remark 1).

D
ow

nl
oa

de
d 

01
/1

4/
13

 to
 1

8.
7.

29
.2

40
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

252 COMO, SAVLA, ACEMOGLU, DAHLEH, AND FRAZZOLI

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, Cambridge University Press,
Cambridge, UK, 2004.

[3] M. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the Economics of Trans-
portation, Yale University Press, New Haven, CT, 1956.

[4] V. S. Borkar and P. R. Kumar, Dynamic Cesaro-Wardrop equilibration in networks, IEEE
Trans. Automat. Control, 48 (2003), pp. 382–396.

[5] G. E. Cantarella and E. Cascetta, Dynamic processes and equilibrium in transportation
networks: Towards a unifying theory, Trans. Sci., 29 (1995), pp. 305–329.

[6] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. Frazzoli, Robust distributed
routing in dynamical networks—part I: Locally responsive policies and weak resilience,
IEEE Trans. Automat. Control, 58 (2013).

[7] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. Frazzoli, Robust distributed rout-
ing in dynamical networks—part II: Strong resilience, equilibrium selection and cascaded
failures, IEEE Trans. Automat. Control, 58 (2013).

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., MIT Press, Cambridge, MA, 2001.

[9] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley,
New York, 1986.

[10] D. Fudenberg and D. K. Levine, Learning-Theoretic Foundations for Equilibrium Analysis,
Working paper, 2008.

[11] M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical
Sciences, Springfield, MO, 2006.

[12] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. I: Limit
sets, SIAM J. Math. Anal., 13 (1982), pp. 167–179.

[13] M. W. Hirsch, Systems of differential equations that are competitive or cooperative II: Con-
vergence almost everywhere, SIAM J. Math. Anal., 16 (1985), pp. 423–439.

[14] J. Hofbauer and W. H. Sandholm, Evolution in games with randomly disturbed payoffs, J.
Econom. Theory, 132 (2007), pp. 47–69.

[15] J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bull. Amer. Math. Soc., 40
(2003), pp. 479–519.

[16] H. K. Khalil, Nonlinear Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.
[17] T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov pro-

cesses, J. Appl. Probab., 7 (1970), pp. 49–58.
[18] J. R. Marden, G. Arslan, and J. S. Shamma, Joint strategy fictitious play with inertia for

potential games, IEEE Trans. Automat. Control, 54 (2009), pp. 208–220.
[19] D. Monderer and L. Shapley, Potential games, Games Econom. Behav., 14 (1996), pp. 124–

143.
[20] A. Nagurney and D. Zhang, Projected dynamical systems in the formulation, stability anal-

ysis, and computation of fixed-demand traffic network equilibria, Trans. Sci., 31 (1997),
pp. 147–158.

[21] M. Patriksson, The Traffic Assignment Problem: Models and Methods, VSP International
Science, Leiden, Netherlands, 1994.

[22] A. Polydoropoulou, M. Ben-Akiva, A. Khattak, and G. Lauprete, Modeling revealed and
stated en-route travel response to advanced traveler information systems, Transportation
Research Record: Journal of the Transportation Research Board, 1537 (1996), pp. 38–45.

[23] R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Internat. J.
Game Theory, 2 (1973), pp. 65–67.

[24] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge,
MA, 2011.

[25] M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Re-
search Part B: Methodological, 13 (1979), pp. 295–304.

[26] K. K. Srinivasan and H. S. Mahmassani, Modeling inertia and compliance mechanisms in
route choice behavior under real-time information, Transportation Research Record: Jour-
nal of the Transportation Research Board, 1725 (2000), pp. 45–53.

[27] J. G. Wardrop, Some theoretical aspects of road traffic research, ICE Proc. Engrg. Divisions,
1 (1952), pp. 325–362.D

ow
nl

oa
de

d 
01

/1
4/

13
 to

 1
8.

7.
29

.2
40

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


