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Abstract— We propose a dynamical model for cascading

failures in single-commodity network flows. In the proposed

model, the network state consists of flows and activation

status of the links. Network dynamics is determined by a,

possibly state-dependent and adversarial, disturbance process

that reduces flow capacity on the links, and routing policies at

the nodes that have access to the network state, but are oblivious

to the presence of disturbance. Under the proposed dynamics,

a link becomes irreversibly inactive either due to overload

condition on itself or on all of its immediate downstream links.

The coupling between link activation and flow dynamics implies

that links to become inactive successively are not necessarily

adjacent to each other, and hence the pattern of cascading

failure under our model is qualitatively different than standard

cascade models. The magnitude of a disturbance process is

defined as the sum of cumulative capacity reductions across

time and links of the network, and the margin of resilience of

the network is defined as the infimum over the magnitude of

all disturbance processes under which the links at the origin

node become inactive. We propose an algorithm to compute an

upper bound on the margin of resilience for the setting where

the routing policy only has access to information about the local

state of the network. For the limiting case when the routing

policies update their action as fast as network dynamics, we

give sufficient conditions on network parameters under which

the upper bound is tight under an appropriate routing policy.

I. INTRODUCTION

Resilience is becoming a key consideration in the design
and operation of many critical infrastructure systems such
as transportation, power, water, and data networks. Due to
their increasing scale and interconnectedness, these systems
tend to exhibit complex behaviors that pose several new chal-
lenges in their design and operation. Models for cascading
phenomena in infrastructure networks have been proposed in
the statistical physics literature and studied mainly through
numerical simulations, e.g., see [1], [2], [3]. Simpler models,
based on percolation and other interacting particle systems
describing the activation status of nodes and links as depen-
dent on the activation status of their neighbors in the network,
have lend themselves to more analytical studies, [4], [5].
While largely used to model the spread of epidemics and
rumors in social and economic networks, cascading failures
in financial networks and in wireless networks [6], [7], the
applicability of the latter models to the design and control
of actual physical networks is severely limited because of
their simplistic description of the causal relationship between
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failures of successive nodes and links. In particular, an
inherent characteristic of such percolation- and interacting
particles-based models is that the successive nodes and links
to fail are constrained to be adjacent to each other, which is
typically not the case in infrastructure networks. (see, e.g.,
[8]) Recently, more physically motivated dynamical models
for cascading failures overcoming such limitations have been
proposed and analyzed in the context of power networks [9],
[10], even allowing for control in between successive failure
events [11].

This paper is concerned with dynamical model for cas-
cading failures in single-commodity flow networks, and with
the characterization of maximally resilient routing policies.
When considering dynamical models for cascading failures
in physical infrastructure networks, there are several possi-
bilities for time scale separation between link inactivation
dynamics under overload, flow dynamics and reaction time
of routing (control) policies that can simplify the analysis.
The rate of information propagation among geographically
distributed routing policies relative to the dynamics can add
further complexity. In this paper, we focus our analysis on
the limiting case when the rate of information propagation
is slow (i.e., routing policies are distributed), and the link
inactivation and flow dynamics under routing policies evolve
at the same and much faster time scale. Our ability to analyze
the dynamical model relies on identifying conditions under
which the network state evolves monotonically. Irreversibility
in link inactivation in our model naturally implies monotonic-
ity in the link activation status. However, monotonicity in
the link flows requires additional restrictions on the routing
policy. We study these restrictions under flow monotonicity

and link monotonicity which refer to the sensitivity of the
action of a distributed routing policy with respect to changes
in inflow (due to changes in the upstream part of the network)
and activation status of outgoing links, respectively.

The contributions of the paper are as follows. First, we
propose a dynamical model for cascading failures in network
flows and formally state the problem of designing maximally
resilient routing policies. Second, we propose a backward
propagation algorithm for computing an upper bound on
the margin of resilience and to motivate the design of a
maximally resilient routing policy. Third, we introduce the
properties of flow and link monotonicity for distributed
routing policies, and show that these are sufficient conditions
for the upper bound to be tight. Due to space limitations, we
refer to [12] for missing proofs and technical details.

Before proceeding, we define some preliminary notations
to be used throughout the paper. Let R be the set of real
numbers, R+ := {x 2 R : x � 0} be the set of nonneg-



ative real numbers, and N be the set of natural numbers.
When A is a finite set, |A| will denote the cardinality of
A, RA (respectively, RA

+) will stay for the space of real-
valued (nonnegative-real-valued) vectors whose components
are indexed by elements of A. For x 2 RA and y 2 RB

+,
x

0 stands for the transpose of x, and x  y means that
x

i

 y

i

for all i 2 A \ B. When A = B, x0
y stands for

the dot product of x and y. The all-one and all-zero vectors
will be denoted by 1 and 0, respectively, their size being
clear from the context. A directed multigraph is the pair
(V, E) of a finite set V of nodes, and of a multiset E of
links consisting of ordered pairs of nodes (i.e., we allow for
parallel links between a pair of nodes). If e = (v, w) 2 E is
a link, where v, w 2 V , we shall write �

e

= v and ⌧

e

= w

for its tail and head node, respectively. The sets of outgoing
and incoming links of a node v 2 V will be denoted by
E+
v

:= {e 2 E : �

e

= v} and E�
v

:= {e 2 E : ⌧

e

= v},
respectively. For x 2 R, we shall use the notation [x]

+ to
mean max{0, x}.

II. DYNAMICAL MODEL FOR NETWORK FLOWS AND
PROBLEM FORMULATION

In this section, we propose a dynamical model for cas-
cading failure in network flows under distributed routing
policies. We model flow networks as finite weighted directed
multi-graphs N = (V, E , C), where V and E stand for the
sets of nodes and links, respectively, and C 2 RE is the
vector of link capacities, all assumed to be strictly positive.
We refer to nodes with no incoming links as origin nodes
and to those with no outgoing links as destination nodes. The
set of destination nodes is denoted by D. Nodes which are
neither origin nor destination are referred to as intermediate
nodes and are assumed to lie on a path from some origin to
some destination.

Let an external inflow �

o

� 0 be associated to every origin
node o 2 V , and, by convention, put �

v

= 0 for every
other node v. Then, the max-flow min-cut theorem, e.g.,
see [13], implies that a necessary and sufficient condition
for the existence of a feasible equilibrium flow is that the
capacity of every cut in the network is larger than the
aggregate inflow associated to the non-destination side of
the cut. Here, a feasible equilibrium flow refers to a vector
f 2 RE

+ satisfying capacity constraints f
e

< C

e

on every link
e 2 E , and mass conservation at every non-destination node,
i.e, �

v

+

P

e2E+
v
f

e

=

P

e2E�
v
f

e

for all v 2 V \ D. On the
other hand, a cut refers to a subset of non-destination nodes
U ✓ V \D , with CU :=

P

e2E:�e2U ,⌧e2V\U C

e

standing for
its capacity and �U :=

P

v2U �

v

for the associated aggregate
external inflow. Then, the necessary and sufficient condition
for the existence of a feasible equilibrium flow is

max

U
{�U � CU} < 0, (1)

with the index U running over all possible cuts.
We now describe network flow dynamics, evolving in

discrete time. Let N = (V, E , C) be a network as above, with
inflows �

o

at the origin nodes satisfying condition (1). At
every time t = 0, 1, . . ., the state of the system is described

by a tuple (V(t), E(t), f(t), C(t)) where: V(t) ✓ V \ D and
E(t) ✓ E are the subsets of active non-destination nodes, and
links, respectively; f(t) 2 RE

+ is the vector of link flows; and
C(t) 2 RE , with 0  C

e

(t)  C

e

, is the vector of residual
link capacities. The initial condition (V(0), E(0), C(0), f(0))

is such that V(0) = V \D, E(0) = E , i.e., all non-destination
nodes and all links start active, C(0) = C, and f(0) is a
feasible equilibrium flow for N .

Given its current state (V(t), E(t), f(t), C(t)) at time t =

0, 1, 2, . . ., the network evolves as follows. All currently ac-
tive links which become overloaded, i.e., whose current flow
exceeds the current residual capacity, along with all those
whose head node is currently inactive, become irreversibly
inactive, i.e.,

E(t + 1) = E(t) \ {e 2 E(t) : f

e

(t) � C

e

(t)}
\ {e 2 E(t) : ⌧

e

(t) /2 V(t)} . (2)

All currently active nodes v that have no active outgoing link
become irreversibly inactive, i.e.,

V(t + 1) = V(t) \ {v 2 V(t) : E+
v

(t) = ;} . (3)

At every currently active node v 2 V(t), a routing policy
determines how to split the current inflow �

v

(t) := �

v

+

P

e2E�
v (t) fe(t) among the set E+

v

(t) of its currently active
outgoing links, so that

f

e

(t + 1) = G

e

�

E+
v

(t),�

v

(t)

�

, e 2 E+
v

(t) . (4)

Finally, the residual capacity vector is reduced by a distur-
bance �(t) 2 RE

+ so that

C

e

(t + 1) = C

e

(t) � �

e

(t + 1) , e 2 E(t). (5)

The sequence (�(1), �(2), . . .) ✓ RE
+ of incremental flow

capacity reductions is meant to represent an external, pos-
sibly adversarial and network state dependent, process that,
without any loss of generality, will be assumed to satisfy

�(t) :=

X

1st

�(s)  C , 8t � 1 . (6)

Observe that, in writing (4), we have assumed that the
routing at node v is determined only by the local observation
of the current inflow �

v

(t) and the currently active set of
outgoing links E+

v

(t). In particular, the routing policies have
no information about the residual link capacities, or equiv-
alently about the disturbance process. The formal definition
of distributed oblivious routing policies is as follows.

Definition 1: Given a network N = (V, E , C), a dis-

tributed oblivious routing policy G is a family of functions

G

v

(J , · ) : R+ ! RJ
+ , v 2 V \ D , ; 6= J ✓ E+

v

,

such that, for every µ � 0,
P

e2J G

v

e

(J , µ) = µ, and, for
all K ✓ J ✓ E+

v

,

G

v

(J , µ)  G

v

(K, µ). (7)
In reading (7), recall our notation established at the end of
Section I that, for x 2 RA and y 2 RB

+, x  y implies
x

i

 y

i

for all i 2 A \ B. Definition 1 implicitly implies



that Gv

e

(J , µ) = 0 for all e 2 E+
v

\ J . Moreover, we will
assume throughout that the initial equilibrium flow f(0) is
consistent with the given distributed oblivious routing policy,
i.e., G

v

e

(E+
v

,�

v

(0)) = f

e

(0) for all e 2 E+
v

, v 2 V \ D.
In other words, the initial equilibrium flow is specified by
the routing policy and, as long as there is no perturbation,
i.e., �(t) = 0, the network state does not change. The
term oblivious in distributed routing policies is meant to
emphasize that routing policies have no information about
the disturbance process. Hereafter, unless explicitly stated
otherwise, we shall refer to a routing policy satisfying
Definition 1 simply as a distributed routing policy. Equation
(7) implies that, at every node, for a fixed inflow, shrinking
of the set of active links results in increase in flow assigned
to each of the remaining active outgoing links. We shall
refer to (7) as the link monotonicity property. While (7)
represents a natural condition for distributed routing policies,
the maximally resilient routing policies designed in this paper
have been found to satisfy it. Alternately, one could regard
the results in this paper to be optimal within this class of
distributed routing policies. We provide additional comments
on this aspect in Remark 6.

Remark 1: (7) is satisfied by any routing policy at a node
v if |E+

v

|  2.
A simple example of a distributed routing policy is the

one which assigns flow proportional to links capacities.
The model in (2)-(5) has several salient features. First, note

that the transition from active to inactive status of a link is
irreversible. Second, note that a link could become inactive
either because it is overloaded or because its downstream
node becomes inactive. The mismatch between flow and
residual capacity of a link, which gives rise to overload
condition, depends on the disturbance process and the action
of a distributed routing policy. Therefore, the links to fail
successively are not necessarily adjacent to each other.
Finally, note that in our model, routing policy updates its
action at the same time scale as flow and link inactivation
dynamics. An implication of this is that the flow vector f

may not be an equilibrium flow at all time instants because
of violation of flow conservation at some nodes. This is in
contrast to the setting of power networks, where the time
scale for flow dynamics is much faster than the link failure
dynamics and control action.

The following example illustrates cascading failure under
the dynamics in (2)-(5).

Example 1: Consider the graph topology depicted in Fig-
ure 1, where the flow capacities are given by C

i

= 4 for
i = 1, 2, C

i

= 3 for i = 3, 4, 6, 7, 10, C
i

= 1.5 for i = 5, 9

and C8 = 0.75. Let the arrival rate at the origin be � = 4. We
consider proportional routing policies at all the nodes, under
which the initial flow on all links are given by f

i

(0) = 2 for
i = 1, 2, 10, f

i

(0) = 1 for i = 3, 4, 5, and f

i

(0) = 0.5 for
i = 6, 7, 8, 9. We now consider the network dynamics under
a disturbance process for which �5(1) = 0.55, �

e

(t) = 0

for all t � 2 and �

i

(t) ⌘ 0 for all i 2 {1, . . . , 10} \ {5}.
Since C5(1) = 1.5 � 0.55 = 0.95 < f1(1) = 1, e5 /2 E(2).
This is followed by 3 /2 V(3) and e3 /2 E(4). Therefore,
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Fig. 1. A simple graph for the illustration of cascading failure under the
proposed network dynamics.

f4(5) = 2, f6(6) = f7(6) = f8(7) = f9(7) = 1. Since
C8(7) = C8(0) = 0.75 < f8(7), e8 /2 E(9). By continuing
along these lines, the order of links to become inactivated is
e5, e3, e8, e6, e9, e7, e4, e1, e10, e2. This clearly demonstrates
that the links to fail successively under our proposed network
dynamics are not necessarily adjacent to each other.

Remark 2: The model in (2)-(5) is to be contrasted with
the dynamical flow network formulation in our previous
work [14], [15] where every link has infinite buffer capacity,
and hence there are no cascading effects under link overload.
This feature is relaxed in our subsequent work [16], where
the links are modeled to have finite buffer capacity, and the
control policy at every node implements routing as well as
flow control under information about the densities and the
disturbances on the links incoming and outgoing from that
node. Such a framework allows for backward cascade effect,
which was proven to increase the resilience of the network
with respect to the framework in [14], [15]. Such control
policies were also shown to exhibit graceful collapse, i.e.,
when the inflow to the network exceed its capacity, then
all the critical links saturate simultaneously. In this paper,
we constrain the actions of the control policies to only
routing, and under no information about the disturbance.
We emphasize that, although the routing policies have no
explicit information about disturbance on the links, they
have information about its effect on the activation status on
the local links. On the other hand, due to cascade effects,
the change in the activation status of a link may not be
exclusively due to disturbance on that link.

A. Problem Formulation

In this paper, the performance criterion of interest is the
ability of a network to transfer flow from the origin nodes
to the destination nodes, under a wide range of disturbance
processes. We formalize this notion as follows.

Definition 2: Let N be a network, � a vector of inflows at
the origin nodes, G a distributed routing policy, and (�(t))

t�1

a disturbance process. Then, the associated network flow
dynamics in (2)-(5) is said to be transferring if

lim

t!+1

X

d2D

X

e2E�
d

f

e

(t) =

X

v

�

v

, (8)

where the summation in v is over the origin nodes.
Observe that, since f(0) is assumed to be a feasi-

ble equilibrium flow, one has that, at time 0, the aggre-
gate outflow from and inflow to the network match, i.e.,
P

d2D
P

e2E�
d
f

e

(t) = � for t = 0. Definition 2 requires
that, for a network N and a distributed routing policy G



to be transferring under a disturbance process (�(t))

t�1,
aggregate inflow in and outflow from the network also match
asymptotically. For disturbance processes that are active only
over finite time, (8) can be rephrased to require the inflow and
the outflow to match at all times with the possible exception
of a finite transient. We shall use this latter formulation in
Section III, where the setup allows to focus only on finite
time disturbance processes without loss of generality.

The magnitude of a disturbance process � is defined as
(see (6)): D(�) :=

P

e2E 4e

(1).

Definition 3: Let N be a network, � a vector of inflows
at the origin nodes, and G a distributed routing policy.
The margin of resilience of the network, denoted as
R(N ,�,G), is defined as the infimum of the magnitude
of disturbance processes under which the associated
dynamics is not transferring, i.e., R(N ,�,G) :=

inf

�

{D(�) | network flow dynamics in (2)-(5) for N ,�,G, �
is not transferring}.

We are now ready to formally state the problem. Our
objective in this paper is to (i) compute the margin of
resilience under distributed routing policies; and (ii) identify
maximally resilient distributed routing policies. Formally, we
consider the following optimization problem:

R⇤
(N ,�) = sup

G
R(N ,�,G), (9)

where the supremum is over the class of distributed routing
policies. A distributed routing policy G is called maximally

resilient if R(N ,�,G) = R⇤
(N ,�).

III. MAIN RESULTS

In this section, we present our main results addressing
problem (9). From now on, we will be restricted to networks
N = (V, E , C) with a single origin destination pair. We will
identify the node set V with the integer set {0, 1, . . . , n}, with
0 and n associated with the unique origin and destination
nodes, respectively. Moreover, let � > 0 be the constant in-
flow at the unique origin node. While extensions to multiple
destinations is straightforward, extensions to multiple origin
nodes is not trivial. We start by giving simple bounds on the
margin of resilience.

A. Simple Bounds

It is straightforward to obtain the following upper and
lower bounds on the margin of resilience, valid for every
routing policy G

min

e2E
{C

e

� f

e

(0)}  R(N ,�,G)  min

U
CU � � , (10)

where the minimization in the upper bound is over all the
cuts in N . The lower bound in (10) is due to the fact
that at least one link needs to become inactive to ensure
non transferring of the network, possibly under cascading
failure, and min

e2E (C

e

� f

e

(0)), which is the minimum
among all link residual capacities, corresponds to the dis-
turbance process with minimum magnitude that can cause
a link to become inactive. The upper bound in (10), which
is usually referred to as the network residual capacity, is

obtained by noting that the network is non-transferring under
a disturbance process that removes residual capacity at t = 1

from the links that constitute a min cut of N . As it may be
expected, the gap between the upper and lower bounds can
be arbitrarily large in general networks. As an illustration,
in Example 1, the minimum link residual capacity is 0.25,
corresponding to link e8, and the network residual capacity
is 2.75, corresponding to the cut {3, 5, 6, 2}. However the
example also constructs a disturbance process of magnitude
0.55 under which the network is not transferring (under
proportional routing policy).

We refer to [12] for a recursive procedure to compute
a sharper upper bound under a centralized routing archi-
tecture that considers the multi-stage feature of cascading
failures, but does not take into account the possibility of
link inactivation due to the inactivation of the corresponding
head node. In Section III-B, we propose an algorithm,
the Backward Propagation Algorithm (BPA), that addresses
these limitations to provide a tighter upper bound, and we
identify conditions under which this upper bound is provably
tight. The BPA is designed for network topologies satisfying
the following acyclicity assumption.

Assumption 1: (V, E) contains no cycles.
A consequence of Assumption 1, the oblivious property

of routing policies and the finiteness of V and E is that, we
can assume without loss of generality that, for every e 2 E ,
there exists at most one t

e

� 0 such that �

e

(t

e

) > 0, and
that �(t) = 0 after some finite time. Therefore, it is sufficient
to restrict our attention to disturbance processes � that are
non-zero only for a finite time, and hence there exists a finite
time after which (V(t), E(t), f(t), C(t)) comes to a steady
state under any such disturbance process �. Let T denote that
finite termination time. In this case, Definition 2 simplifies
as: network flow dynamics is transferring if �

n

(T ) = �.
The formulation and analysis of the BPA implicitly relies

on the following simple result showing an equivalence be-
tween a network being transferring and its origin node being
active all the time.

Proposition 1: Let N be a network satisfying Assump-
tion 1 with � a constant inflow at the origin node, G a
routing policy, and (�(t))

t�1 a disturbance process. Then,
the associated network flow dynamics (2)-(5) is transferring
if and only if 0 2 V(T ). Moreover, �

n

(T ) 2 {0,�}.
Remark 3: The analyses of conventional models for cas-

cading failure focus primarily on the connectivity of the
residual graph (V(T ), E(T )). For the setting of this paper,
the proof of Proposition 1 can be used to easily show that
there exists a directed path from 0 to n in (V(T ), E(T ))

if and only if the associated network flow dynamics is
transferring.

B. The Backward Propagation Algorithm (BPA)

We now describe the Backward Propagation Algorithm
(BPA) to compute a tighter upper bound on the margin
of resilience. The same algorithm will also motivate the
design of BPA routing which will be proven to be maximally
resilient under certain sufficient conditions.



Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V = {0, . . . , n}.
We shall assume to have fixed one such ordering in such a
way that E�

v

✓
S

0u<v

E+
u

for all v = 1, . . . , n. We recall
that the depth of a graph (V, E) satisfying Assumption 1 is
the length of the longest directed path in (V, E).

Algorithm 1: Backward Propagation Algorithm (BPA)

1: S(E+
n

, r, µ) := +1 for all r 2 RE+
n

+ and µ � 0

{destination node}
2: for v = n� 1, n� 2, . . . , 0 do {construct a series of

intermediate functions for every node starting with
n� 1, and going backward up to the origin}

3: for all r 2 RE+
v

+ and µ � 0, S(;, r, µ) = 0,

S(J , r, µ) := 0 if X
v

(J , r, µ) = ;, 8 ; 6= J ✓ E+
v

,

S

e

(µ) = S(e, r, µ) := min

n

C

e

� µ, S(E+
⌧e
,0, µ)

o

8 e 2 E+
v

. (11)

4: iteratively compute S(J , r, µ) for J ✓ E+
v

of
increasing size, starting with sets of size 2:

S(J , r, µ) := max

x2Xv(J ,r,µ)

min

e2J

⇣

S

e

(x

e

) + S

�

J \ {e}, x, µ
�

⌘

(12)

5: end for

Note that r appears only in the constraint set in the right
hand side of (12). The Backward Propagation Algorithm
derives its name from the central feature of the algorithm,
where an intermediate node collects S(J , r, µ) functions
from its downstream nodes, performs updates with respect to
local network parameters, and transmits it to upstream nodes.
As such, the BPA can be executed in a distributed fashion.
We refer to [12] for illustration of BPA on simple networks.

Complementary to the maximization in (12) is the set of
corresponding maximizers:

g (J , r, µ) := argmax

x2Xv(J ,r,µ)
min

e2J

⇣

S

e

(x

e

)+S (J \ {e}, x, µ)

⌘

.

(13)

C. Upper bound on the margin of resilience

The quantity S(E+
0 ,0,�) computed by BPA is next shown

to be an upper bound on the margin of resilience under
any distributed routing policy. For brevity in notation, we
let S⇤

(N ,�) := S(E+
0 ,0,�).

Theorem 1: Let N be a network satisfying Assumption 1
and with � a constant inflow at the origin node. Then, for
any distributed routing policy G, there exists a disturbance
process (�(t))

t�1 with D(�)  S

⇤
(N ,�) under which the

associated network flow dynamics (2)-(5) is not transferring.
Remark 4: Theorem 1 implies that R(N ,�,G) 

S

⇤
(N ,�) for all distributed routing policies G, and hence

R⇤
(N ,�)  S

⇤
(N ,�).

D. BPA routing and lower bound on the margin of resilience

We now develop lower bounds for R⇤
(N ,�). This will

be done by analyzing a specific distributed routing policy,
called BPA-routing, whose construction is inspired by the
Backward Propagation Algorithm. BPA routing is a routing
policy that satisfies the following for all v 2 V \{n}, µ � 0:

r

⇤
:= G

v

(E+
v

, µ) 2 g

�

E+
v

,0, µ
�

,

G

v

(J , µ) 2 g (J , r

⇤
, µ) , J ⇢ E+

v

.

(14)

BPA routing derives its name from the fact that it relies on
the function g(J , r, µ) from (13), which is directly related
to the central computation in the BPA. However, note that
the lower bound r

⇤ in (14) is independent of J and µ, and
is always equal to the action of the routing policy under the
same inflow µ, when all local links are active, and with no
lower bound constraint.

In general, BPA routing is not readily maximally resilient
for general networks which are not directed trees

1. There-
fore, we make the following directed tree assumption in this
paper for deriving lower bound on the margin of resilience.

Assumption 2: (V \ {n}, E \ E�
n

) is a directed tree.
With a slight abuse of terminology, we refer to N sat-

isfying Assumption 2 as a tree. Note that, N satisfying
Assumption 2 is a tree rooted at the unique origin node.

Remark 5: For a network satisfying Assumption 2, if � is
less than the min cut capacity, then f(0) under BPA routing
is an equilibrium flow. Recall that the max flow min cut
theorem implies that this is also a necessary condition for
the existence of an equilibrium flow.

BPA routing is maximally resilient on flow networks
which are trees and symmetric. Recall that a weighted rooted
tree of depth one is called symmetric if all the links outgoing
from the root node have equal weights. A weighted rooted
tree of depth greater than one is called symmetric if all the
sub-trees rooted at the children nodes are symmetric, and
identical to each other.

Proposition 2: Let N be a symmetric network satisfying
Assumption 2 with � > 0 a constant inflow at the origin
node and BPA routing policy. Then, the associated network
flow dynamics (2)-(5) is transferring for every disturbance
process (�(t))

t�1 with D(�) < S

⇤
(N ,�).

The tree assumption is not sufficient for BPA routing to
match the upper bound S

⇤
(N ,�) given by the BPA for

networks which are not symmetric, as illustrated in the
following example.

Example 2: Consider the graph topology from Figure 1,
with � = 2, C

e1 = 2.5, C
ei = 3 for i = 2, 3, C

ei = 2 for
i = 4, 7, C

ei = 0.6 for i = 5, 6, C
e8 = 0.75, C

e9 = 1.5

and C

e10 = 0.17. The plot of x

⇤
3(µ) := G

e3(E+
1 (0), µ) vs.

µ under BPA routing for these values is given in Figure 2,
which shows that x⇤

3(µ) is decreasing in µ over [1.9, 2]. Also,
for these values, S

⇤
(N ,�) = 0.3. Consider a disturbance

process such that �5(1) = 0.2, �10(1) = 0.07, �
i

(1) = 0 for
i 2 {1, . . . , 15} \ {2, 4, 5} and �(t) ⌘ 0 for all t � 2. The

1Recall that (V, E) is a directed tree if the undirected graph underlying
(V, E) is a tree.
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Fig. 2. Plot of x⇤
3(µ) := Ge3 (E
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magnitude of such a disturbance process is 0.27, which is
strictly less than S

⇤
(N ,�) = 0.3. We now describe how

such a disturbance process makes the associated network
flow dynamics (2)-(5) not transferring.

Under BPA routing, f(0) is such that: 2�f2(0) = f1(0) =

1.9. Figure 2 then implies that 1.9 � f4(0) = f3(0) =

f5(0) = 0.4. Therefore, under the given disturbance process,
{e10, e5} /2 E(2), and {e2, e3} /2 E(3). Hence f1(4) = 2

and f4(5) = 2 = C

e4 . This implies that e4 /2 E(6), and
hence e1 /2 E(8), which leads to the dynamics being not-
transferring.

On the other hand, it is easy to see that the dynamics would
be transferring under this disturbance process if the routing
policy at node 1 is such that f3(0) < 0.4, and f3(0) =

x

⇤
3(2) = 0.35 (see Figure 2) in particular. This would

correspond to the routing policy at node 1 anticipating its
inflow in advance, which is not feasible under the oblivious
and distributed setting for routing policies.

Example 2 suggests that the non-monotonicity in the
control action of BPA routing, and hence in the evolution of
flows on the links, under point-wise (with respect to inflow)
optimization could lead to its sub optimality. This motivates
consideration of the following additional constraint.

Definition 4: A distributed routing policy G is called flow-
monotone at node v 2 V \ {n} if, for every J ✓ E+

v

:

0  µ1  µ2 =) G

v

(J , µ1)  G

v

(J , µ2), (15)
Under a flow-monotone routing policy, if the inflow at a node
increases, then the flow assigned to every active outgoing link
from that node does not decrease. A routing policy which is
flow monotone over all v 2 V \ {0, n}, is said to be flow
monotone over N . We exclude the origin node because the
inflow � at the origin node is fixed.

Remark 6: Note that, unlike the link monotonicity con-
dition in (7), we did not include the flow monotonicity
condition in (15) as part of the definition of distributed
routing policies. This is because, while Example 2 illustrates
that BPA routing is not necessarily flow monotone, we have
not been able to find an example where link monotonicity is
violated by BPA routing with r

⇤
= 0 in (14).

We refer to [12] for sufficient conditions on network
parameters that guarantee flow monotonicity. The following
is a key result, which, along with Theorem 1, identifies
conditions under which BPA routing is maximally resilient.

Theorem 2: Let N be a network with |E+
v

|  3 for all
v 2 V \ {n} and satisfying Assumption 2, � > 0 a constant
inflow at the origin node and BPA routing policy that is flow
monotone. Then, the associated network flow dynamics (2)-

(5) is transferring for every disturbance process (�(t))

t�1

with D(�) < S

⇤
(N ,�).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamical model for cas-
cading failures in single-commodity network flows, where
the network dynamics is governed by a deterministic and
possibly adversarial disturbance process which incrementally
reduces flow capacity on the links, and distributed oblivious
routing policies that have information only about the local
inflow and active status of outgoing links, and in particular
no information about the disturbance process. We quantified
margin of resilience and presented an algorithm that provides
an upper bound for directed acyclic graphs between a sin-
gle origin-destination pair. The same algorithm motivates a
routing policy which provably matches the upper bound for
networks which are tree like, have out-degree at most 3, and
induce monotonicity in the flow dynamics.

In future, we plan to extend our analysis to networks
with general graph topologies, multi-commodity flows, non-
oblivious routing policies, etc.. We also plan to extend our
formulation to the physics of infrastructure networks such as
transportation, power, gas, water and supply chains.
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