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Abstract

Strong resilience properties of dynamical flow networksaaralyzed for distributed routing policies.
The latter are characterized by the property that the wayntt@wv at a non-destination node gets split
among its outgoing links is allowed to depend only on locdbimation on the current congestion
levels on such outgoing links. The strong resilience of taevork is measured as the maximum sum
of adversarial link-wise flow capacity reductions that tretwork can sustain while maintaining the
asymptotic total inflow at destination node equal to the imféd the origin. Assuming that a dynamical
flow network is acyclic and has a single origin-destinatiair,pa class of distributed routing policies
that are locally responsive to local information is showryitld the maximum possible strong resilience
under such local information constraints. The maximalmgjresilience achievable on a given dynamical
flow network is shown to be equal to its minimum node residwacity. The latter is defined as
the minimum, among all the non-destination nodes, of the, smrar all the links outgoing from the
node, of the differences between the maximum flow capacity the limit flow of the unperturbed
network. Finally, a simple convex optimization problemasrhulated to solve for the most resilient initial
equilibrium flow, and the use of tolls to induce such an ihigguilibrium flow in transportation networks
is discussed. We also present illustrative simulationsgouss the connection between cascading failures

and the resilience properties of the network.
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Index terms. dynamical flow networks, distributed routing policies,iliesce, price of anar-

chy, cascading failures.

. INTRODUCTION

Robustness of routing policies for flow networks is a cenpedblem which is gaining
increased attention with a growing awareness to safeguiichtinfrastructure networks against
natural and man-induced disruptions. Information coissdimit the efficiency and resilience of
such routing policies, and the possibility of cascadedufas through the network adds serious
challenges to this problem. The difficulty is further magdfiby the presence of dynamical
effects [2].

This paper considers the frameworkdynamical flow networkstroduced in our companion
paper [3], where the network is modeled by a system of orglidéferential equations derived
from mass conservation laws on directed acyclic graphs wigingle origin-destination pair
and a constant inflow at the origin. The rate of change of théigha density on each link of
the network equals the difference between itiftow and theoutflow of that link. The latter is
modeled to depend on the current particle density on thitthirough aflow function We focus
on distributed routing policiesvhereby the proportion of incoming flow routed to the outgpin
links of a node is allowed to depend only tmtal information consisting of the current particle
densities on the outgoing links of the same node. We call theamhical flow networkfully
transferringif the outflow at the destination node asymptotically apphes the inflow at the
origin node. Our primary objective in this paper is to analyfze robustness of distributed routing
policies in terms of the network’strong resiliencewhich is defined as the minimum sum of
link-wise magnitude of disturbances making the perturbgdadhical flow network not fully
transferring.

We prove that the maximum possible strong resilience islgklby a class abcally respon-
sive distributed routing policies, introduced in the companjmaper [3]. Moreover, we show
that the strong resilience of a dynamical flow network witlelslocally responsive distributed
routing policies equals thminimum node residual capacityhe latter is defined as the minimum,
among all the non-destination nodes, of the sum of the eiffee between the maximum flow
capacity and the limit flow of the unperturbed network, ontlad links outgoing from the node.

Using idea from [4], one can show that, when the informationstraints on the routing policies
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are relaxed, i.e., the routing policies can access the cbiogelevel over the whole network,
then the strong resilience of the network is equal to the otwesidual capacity. The latter
is defined as the difference between the min-cut capacith@fmetwork and rate of arrival at
the origin node. Since the minimum node residual capaciin igeneral less than the network
residual capacity, this shows that the information coistiseon the routing policies reduce the
strong resilience of the network. This is in stark contrasbtr result on weak resilience in
[3], where we showed that the weak resilience is unaffectedobal information constraints

on the routing policies. We also formulate a simple convetinoigation problem to solve for

the most strongly resilient limit flow, and discuss the usedadis to induce such a limit flow

in transportation networks. These results are derived rutide condition when the link-wise

flow functions are strictly increasing and the links have aurided capacity for flow densities.
We also present illustrative simulations discussing adisgafailures that arise when the links
have finite capacities on flows as well as densities. It iswotty that, we not only describe
cascading failures within a dynamical flow network framekvand formalize their effect by

establishing the connection to our notions of network i@sde, but also highlight the role of
distributed routing policies in averting such failures.

Stability analysis of network flow control policies underrieas routing policies is carried out
in [5], [6], [7]. A detailed comparison between the settiofjshese papers and our dynamical flow
network setting is included in the companion paper [3]. Tfaper also studies the connection
between the robustness properties of the network and itblegqum flow. The role of equilibrium
in the efficiency of a system, especially in economic se#timyolving multiple agents, has
attracted a lot of attention, e.g., see [8]. One of the moktbcated notions to measure the
inefficiency of an equilibrium is therice of anarchy[9]. In a transportation setting, the price
of anarchy of a given network state quantifies the extent tchvthe average delay faced by
a driver at that state exceeds the least possible averagg deér all network states. In this
paper, we propose a robustness-based metric for measuégfiigiency of equilibrium states of
dynamical flow networks. Finally, cascaded failure for céempnetworks has attracted a great
deal of attention recently, e.g., see [10], [11] where th@@ns propose various models to explain
this phenomenon.

The contributions of this paper are as follows: (i) we foratalthe notion of strong resilience

of a dynamical flow network, and show that the class of locadsponsive routing policies yield
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the maximum strong resilience under local information ta@mst; (i) we formulate a simple
convex optimization problem to solve for the most robustildmium flow, and discuss the use
of tolls in implementing such an equilibrium in transpoidat networks; and (iii) we present
illustrative simulations to discuss cascading failureslynamical flow networks and their effect
on network resilience.

The rest of the paper is organized as follows. In Sectionél pnefly summarize the dynamical
flow network framework and the postulate the notion of stroegjlience. In Section I, we
state the main result on the strong resilience, and provgtigsions on the results. Section IV
discusses the problem of selection of the most strongljieasiequilibrium flow of the network
and the use of tolls to induce such an equilibrium in transp@n networks. In Section V, we
report illustrative numerical simulation results, dissing the effect of cascading failures on the
resilience of the network. We conclude in Section VI with egks on future research directions
and state proofs of the main results in the appendices A and B.

Before proceeding, we define some preliminary notation todesl throughout the paper. Let
R be the set of real numberR,, := {x € R: = > 0} be the set of nonnegative real numbers.
Let A and B be finite sets. Then,A| will denote the cardinality of4, R* (respectivelyR%)
the space of real-valued (nonnegative-real-valued) veaodose components are indexed by
elements of4, andR4*5 the space of matrices whose real entries indexed by paireofeats
in A x B. The transpose of a matrix/ € R**5, will be denoted byM” € RB*A, while 1
the all-one vector, whose size will be clear from the contegt cl(X') be the closure of a set
X C RA. A directed multigraph is the paiiV, £) of a finite setY of nodes, and of a multiset
& of links consisting of ordered pairs of nodes (i.e., we allfmw parallel links). Given a a
multigraph (V, ), for every nodev € V, we shall denote by C &£, and&,; C &, the set
of its outgoing and incoming links, respectively. Moreqwse shall use the shorthand notation
Ry = Rff for the set of nonnegative-real-valued vectors whoseesare indexed by elements
of &, S, == {p € Ry : Y .cer e = 1} for the simplex of probability vectors ovef;, and
R := R for the set of nonnegative-real-valued vectors whose enftire indexed by the links
in €.
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[I. DYNAMICAL FLOW NETWORKS

The notion of dynamical flow network was introduced in the pamon paper [3]. In order
to render the present paper self-contained, we introduce the concepts and notation which
are most relevant.

We start with the following definition of a flow network.

Definition 1 (Flow network):A flow networkN = (7, i) is the pair of aopology described
by a finite directed multigrapd = (V, £), whereV is the node set andl is the link multiset,
and a family offlow functionsu := {u. : Ry — R, }.ce describing the functional dependence
fe = 1e(pe) of the flow on the density of particles on every linke £. The flow capacityof a

link e c & is
S = sup pre(pe) - (1)

pe=0

We shall use the notatiorf, := x,+[0, f"®) for the set of admissible flow vectors on
outgoing links from node), and F := x.c¢[0, f'®) for the set of admissible flow vectors for
the network. We shall writef := {f. : e € £} € F, andp := {p. : e € £} € R, for the
vectors of flows and of densities, respectively, on the dhffie links. The notatiory” := {f. :
ec&rt e F,, andp’ = {p.: e € &'} € R, will stand for the vectors of flows and densities,
respectively, on the outgoing links of a nodeWe shall compactly denote by = u(p) and
fv = pu’(p¥) the functional relationships between density and flow wacto

Throughout this paper, we shall restrict ourselves to flotwneks satisfying the following

assumptions.

Assumption 1:The topology7 contains no cycles, has a unique origin (i.e., a node V
such thatf; is empty), and a unique destination (i.e., a nede V such that€| is empty).

Moreover, there exists a path ih to the destination node from every other nodé/in

Assumption 2:For every linke € £, the mapu. : R, — R, is continuously differentiable,

strictly increasing, such that.(0) = 0, and f*** < +oc.

In particular, Assumption 1 implies that (see, e.g., [12}e @an identify (in a possibly non-
unique way) the node sét with the integer sef0,1,...,n}, wheren := [V| — 1, in such a
way that

- + —
£, gUogu@E“’ Yo=0,...,n. (2)
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In particular, (2) implies that is the origin node, and the destination node in the network
topology7 . An origin-destination cui(see, e.g., [13]) off is a partition ofV into &/ andV \ U
such that) € & andn € V\ U. Let & = {(u,v) € £: u e U,v € V\U} be the set of all
the links pointing from some node i to some node iV \ Y. The min-cut capacityof a flow

network \/ is defined as
C(N) = min ZMJ (3)

where the minimization runs over all the origin-destinatimuts of 7. Throughout this paper,
we shall assume a constant infloyy > 0 at the origin node. Let us define the setaaimissible

equilibrium flowsassociated td, as

F*(Xo) = {f* eF: Zee€+f:=>\o, Zee€+f:=ZeE€f§,V0<v<n} .

Then, it follows from the max-flow min-cut theorem (see, gl§3]), thatF*(\) # () whenever
Ao < C(N). That is, the min-cut capacity equals the maximum flow that pass from the
origin to the destination while satisfying capacity coasits on the links, and conservation of
mass at the intermediate nodes.

We now recall the notion of a distributed routing policy frd8j.

Definition 2 (Distributed routing policy):A distributed routing policyfor a flow network \/
is a family of functionsg := {G" : R, — S, }o<v<n describing the ratio in which the particle
flow incoming in each non-destination nodegets split among its outgoing link sé}", as a
function of the observed current particle densgityon the outgoing links themselves.

The salient feature of Definition 2 is that the routing pol&Y(y”) depends only on thiecal
information on the particle density” on the setf;" of outgoing links of the non-destination
nodew.

We are now ready to define dynamical flow networks and theirstea efficiency.

Definition 3 (Dynamical flow network and its transfer effiggnh A dynamical flow network
associated to a flow network’ satisfying Assumption 1, a distributed routing poli@y and an
inflow )\, > 0, is the dynamical system

o) = MG 0) — 1), VO<u<n, Veed!, ()
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where

L0 = o). an =1 toe=0 ©)
AT AP T Doecer fe(t) i 0<v<n

Given some flow vectof € F, the dynamical flow network (4) is said to ally transferring

with respect tof if the solution of (4) with initial conditiorp(0) = u—l(f) satisfies

lim An(t) = Ao (6)

t——+o0

Definition 3 states that a dynamical flow network is fully tséarring when the outflow is
asymptotically equal to the inflow, i.e., there is no thropgthloss asymptotically. Observe that
a fully transferring dynamical flow network does not necasamply that the link-wise flows
necessarily converge to an equilibrium, for it might in piple have a persistently oscillatory or
more complex behavior. Nevertheless, it will prove useduhtroduce the notions of equilibrium

and limit flow as follows.

Definition 4 (Equilibrium and limit flow of a dynamical flow meirk): An equilibrium flow

for the dynamical flow network (4) is a vectgr € F*()\) such that

NGl = fr,  Vee&l, W0<uv<n, )

e

wherep? .= u ' (f2), and X = Ao for v =0and\; = > . f& for 0 < v < n.
A limit flow for the dynamical flow network (4) is a vectgr € cl(F) such that the solution of

(4) with initial condition p(0) = p~'(f°) satisfies

lim f(t) = f*. (8)

t—-+oo
The set of all initial flowsf° € F such that (8) is satisfied will be referred to as theesin of
attractionof f*, and denoted by3(f*).

Remark 1:Observe that an equilibrium floyi* € F*(\) is always a limit flow, since the
solution of the dynamical flow network (4) with initial floyic = f* stays put for allt > 0,
and hence it is trivially convergent tf*. On the other hand, if a limit flow* € cl(F) satisfies
all the capacity constraints with strict inequality, i.B.,f* € F, then necessarily™* € F*(\)
is also an equilibrium flow for (4), i.e., it satisfies mass senvation equations at all the non-

destination nodes. In particular, if a dynamical flow netevadmits an equilibrium flowf*, then
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it is necessarily fully transferring with respect fd, as well as with respect to all the initial
flows f° € B(f*).

In contrast, if f* € cl(F) \ F, i.e., if at least one of the capacity constraints is satisfie
with equality, thenf* is not an equilibrium flow for (4). In fact, in this case one hhast
> ecer f& < A with possibly strict inequality for some non-destinatiarde( < v < n. Hence,
the dynamical flow network might still be non fully transfieig. Finally, observe that a limit
flow f* € cl(F) (and,a fortiori, an equilibrium flow) may not exist for general flow networks

N, and distributed routing policies.

Remark 2:Standard definitions in the literature are typically lindited static flow networks
describing the particle flow at equilibrium via conservatmf mass. In fact, they usually consist
(see e.g., [13)) in the specification of a topola@y a vector of flow capacitieg™** € R, and
an admissible equilibrium flow vectg* € F*(\,) for Ay < C(N) (or, often, f* € cl(F*(\o))
for Ao < C(N)).

In contrast, in our model we focus on the off-equilibriumtpae dynamics on a flow network
N, induced by a distributed routing poli¢j. Existence of an equilibrium of the dynamical flow
network (4) depends on the topologdy, the structural form of the flow functions and of
the distributed routing policy, as well as on the inflow,. A necessary condition for that is
Ao < C(N). In contrast, simple, locally verifiable, sufficient condlits ong for the existence of
an equilibrium flow might be hard to find for complex flow netksr However, in some cases, it
is reasonable to assume the distributed routing pdlidg be the outcome of a slow time-scale
evolutionary dynamics with global feedback which can reityrlead to an equilibrium flow
f* € F*(X\). This has been shown, e.g., in our related work [4] on trariapion networks,
where the emergence of Wardrop equilibria is proven usimgstérom singular perturbation
theory and evolutionary dynamics. Multiple time-scale ayncs leading to Wardrop equilibria

has been studied in [14] for communication networks.

While, as discussed in Remark 2, finding simple, locallyfiagvle, sufficient conditions on the
distributed routing policyg for the existence of an equilibrium flow of the associatedayical
flow network (4) is typically nontrivial, a large class of tlibuted routing policies was proven to

yield existence and uniqueness of a globally attractivét lftow f* € cl(F), as revised below.

Definition 5 (Locally responsive distributed routing pglic A locally responsivedistributed
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routing policy for a flow network topology = (V, &) with node sety = {0,1,...,n} is a
family of continuously differentiable distributed rougirfiunctionsg = {G" : R, — S, }vey Such

that, for every non-destination node< v < n:

(a) %G;f(p”)zo, Vi €& j# e, € Ry
(b) foreevery nonempty proper subsgt C £, there exists a continuously differentiable
mapGY : Ry — Sy, whereRy :=RY, andS; .= {p e Ry : > ,.,p; = 1} is the

simplex of probability vectors ovef, such that, for every” € R, if
pr— oo, YeeESN\NT,  pi—pl, Vied,

then
GU(p') =0, Yee EF\NT,  Gip)— Gl (p7), VieT.

Let us restate the result proven in [3, Theorem 1].

Theorem 1 (Existence of a globally attractive limit flow untieally responsive routing policies):
Let AV be a flow network satisfying Assumptions 1 and)2,> 0 a constant inflow, ang a
locally responsive distributed routing policy. Then, g@xists a unique limit flowf* € cl(F)
such that3(f*) = F. Moreover, if f* = f™ for somee € £, and0 < v < n, thenf* = fmax,
for everye € &.

We shall use the above result in the form of the following darg, which is an immediate

consequence of Theorem 1 and Remarks 1 and 2.

Corollary 1: Let A/ be a flow network satisfying Assumptions 1 and)3,> 0 a constant
inflow, andG a locally responsive distributed routing policy. If the lifflow f* belongs toF,
then f* € F*()\y) is a globally attractive equilibrium flow for the dynamicatwork flow (4),
and, consequently, (4) is fully transferring with respextft.

Example 1 (Locally responsive distributed routing policiet A be a flow network satisfy-
ing Assumptions 1 and 2, antl< )\, < C(N) a constant incoming flow. Fof” = u(p’) €
F*(X\o), andn > 0, define the distributed routing poligy by

fe exp(=n(pe — p.))
Gi(p) = — <, Vee &l YO<v<n. 9)
(p) > jeer 1 exp(=n(p; — p;))

Then,G can be easily verified to be locally responsive, gtido be the globally attractive limit

flow of the associated dynamical flow network (4).
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[Il. STRONG RESILIENCE OF DYNAMICAL FLOW NETWORKS

In this section, we shall introduce the notion of stronglresce of a dynamical flow network,
and show that locally responsive policies are maximallyusbptamong the class of distributed
routing policies. We shall also provide an explicit simplaracterization of the maximal strong
resilience of a dynamical flow network with respect to a giliemit flow.

We shall consider persistent perturbations of the dyndnfilima network (4) that reduce the
flow functions on the links, as per the following:

Definition 6 (Admissible perturbation)An admissible perturbatiorf a flow network N =
(T, 1), satisfying Assumptions 1 and 2, is a flow netwdvk= (7, /1), with the same topology
7, and a family of perturbed flow functiong := {f. : R, — R, }.c¢, such that, for every

e € &, fi. satisfies Assumption 2, as well as

fie(pe) < pre(pe) s Vpe 2 0.

We accordingly Ietfemax := supq{ fie(pe) : p > 0}. The magnitudeof an admissible perturbation

is defined as
6= 0 dei=sup{uclpe) = fielpe) + pe >0} (10)

Given a dynamical flow network as in Definition 3, and an adiblesperturbation as in

Definition 6, we shall consider theerturbed dynamical flow network
%ﬁe(t) = AMOG (1)~ f.(t), VY0<wv<n, Vec&, (11)
where )

Zeeg; fe(t) if O<v<n

)\0 if v=20.

(12)

We are now ready to define the notion of strong resilience ofreahical flow network as in

Definition 3 with respect to a limit flow ™.

Definition 7 (Strong resilience of a dynamical flow networkgt A/ be a flow network satis-
fying Assumptions 1 and 2y, > 0 be a constant inflow at the origin, agda distributed routing
policy. Assume that the corresponding dynamical flow nekwas a limit flow f* € cl(F). The
strong resiliencey; (f*, G) is equal to the infimum magnitude of all the admissible pédtions
for which the perturbed dynamical flow network (11) is notifuiransferring with respect to

some initial flow f° € B(f*).
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11

Fig. 1. The network topology used in Example 2.

Note that the notion of strong resilience formalized in Diifan 7 is with respect to the worst-
case scenario. Accordingly, one can provide an adversat&pretation to the perturbations as
in [3]. Our first result is an upper bound on the strong resdesof a dynamical flow network
driven by an arbitrary distributed routing policy. In orderstate such result, for a flow network

N, and a flow vectorf” € cl(F), define theminimum node residual capacigs

RN, f) = min {Zeeﬁ( max _ f;)} . (13)

0<v<n

Theorem 2 (Upper bound on the strong resiliencegt N be a flow network satisfying As-
sumptions 1 and 2, > 0 a constant inflow, and any distributed routing policy. Assume that

the associated dynamical flow network has a limit flétve F*(\o). Then,

Vl(f*vg) < R(Nv f*) .
Proof: See Appendix A. [ |

The proof of Theorem 2 essentially depends only on Assumgi@n the acyclicity of the
network topology. However, in order to show that the uppeurtabin Theorem 2 is tight for
locally responsive policies, we have to rely highly on Prtips (a) and (b) of Definition 5. The
following example illustrates the necessity of these prige

Example 2:Consider the topology illustrated in Figure 1, with = 2, flow functions given
by

fre(pe) = [ (1 = exp(—acpe)) (14)

with a; = ay = a3 = ay = 1 and 1™ = fI& =2, fI& = fM& = (.75. First consider the case

es es

whenG? (p) =1—- G2, (p°) =0.75, andG., (p') = 1 — G, (p') = 0.5. One can verify that the
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associated dynamical flow network has a unique equilibriwnw ff* with f = 1.5, f;, = 0.5,
and f,, = f., = 0.25. Now, consider an admissible perturbation such fat= 0.7, and
fle, = fte, fOr k = 2,3,4. The magnitude of such perturbationdis= 4., = 0.6. It is easy to see
that in this caséim, .., f., (t) = 1.4 = f;’;ax which is less thari.5, which is the flow routed to
it. Therefore,lim;_. 5\2(15) = 1.9 < Ay, and hence the network is not fully transferring.

Now, consider the same (unperturbed) flow network as befmre with distributed routing

policies such that
0 0 0 0 —0.031p1 —0.031p1 0.7196 1 1y 1 1y —
G (p°) =1 — GO, (p°) = 2e7 003101 /(2700310 4 D700y G (pl) =1 — G (p') = 0.5.

One can verify that the associated dynamical flow networkneg@dmits the sam¢* as before as
an equilibrium flow. Let us consider the same admissibleupleation as before. One can verify
that, for the corresponding perturbed dynamical flow neliom, ... /., (t) = 0.4 < Ngfax =14
and lim;_, feg (1) =16 < ~§;ax = 2. However, with an asymptotic arrival rate vf6 at node
1, we have thalim, ... f.,(t) = 0.75 = " andlim,_« f.,(t) = 0.75 = fm*. Therefore,
limy_, o 5\2(15) = 1.9 < Ao, and hence the network is not fully transferring.

In both the casesR(N, f*) = 1 and a disturbance of magnitudes is enough to ensure
that the perturbed dynamical flow network is not fully tramsihg. However, note that in the
second case, unlike the first case, the routing policy at Hagsponds to variations in the local
flow densities by sending more flow to link, but it is overly responsive in the sense that it
sends more flow downstream than the cumulative flow capatitiyeolinks outgoing from node
1. However, by Definition 2, a distributed routing policy istradlowed any information about
any other link other than the current flow densities of itsgoirtg links. This illustrates one
of the challenges in designing distributed routing poBcighich yield R(N, f*) as the strong
resilience. Observe that this distributed routing polisynit locally responsive, singg’ used
in the first case, does not satisfy Property (b) of Definitioartsl, in the second case, it does

not satisfy Properties (a) and (b).

We now state the main technical result of this paper, showiag provided that the distributed
routing function is locally responsive, the strong resitie coincides with the minimal residual

node capacity.

Theorem 3 (Strong resilience for locally responsive peki Let NV be a flow network sat-

isfying Assumptions 1 and 2y, > 0 a constant inflow, ang; a locally responsive distributed
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13

Fig. 2. Comparison between a node-cut and a min-cut of a flawark.

routing policy. Let f* € cl(F) be the globally attractive limit flow of the associated dyeah
flow network (4). Then,

n(fG)=RW, f).

Proof: See Appendix B. [ |

For a given flow network\', a constant inflow\,, Theorem 2 and Theorem 3 imply that,
among all distributed routing policies such that the dyr@inflow network has a given limit
flow f* € cl(F), locally responsive policies (for which such limit flow isigoe and globally
attractive by Theorem 1) have the maximum strong resilieMmeover, such maximal strong
resilience coincides with the minimum node residual cagaBiN, f*), and hence it depends
both on the flow network\’, and on the limit flow/*.

A few remarks are in order. First, it is worth comparing theximal strong resilience of a
dynamical flow network with its weak resilience. The latteasastudied in [3] and there shown
(see Definition 6, Proposition 1, and Theorem 2 therein) taade with the min-cut capacity
of the flow network,C'(\). Clearly, the former cannot exceed the latter, as can bedatsotly
verified from the definitions (13) and (3): for this, it is saf@nt to consider (see Figure 2)

ue argmin max} , v* = max{u e U},
in {¥° {weu)

- o + Je
U origin-destination cu ecly
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€1

@ D

€9

(@) (b)

Fig. 3. (a) A parallel link topology. (b) A topology to illustte arbitrarily largeC'(N) — R(N, f*).

and observe that, singg’. C &, and Zee% f. = Ao by conservation of mass, one has
RN )< Y (8= 1) < D (8™ =10 = ) 5= =CN) =N
BG(C/‘:; eeglj* eEEJ*

We provide below two examples to illustrate the differenedneen the two quantities.

Example 3:For parallel link topologies, an example of which is illeed in Figure 3 (a),

one has that
RN, )= fI™*—Xg=CN) = .

eef

Example 4:Consider the topology shown in Figure 3 (b) with =1, f" =[e,1—¢,¢,1 — ¢
and f"®™ = [1/¢,1,1/e, 1] for somee € (0,1). In this case, we have that(N) =1+ 1/¢ and
R(N, f) = e. Therefore,

CWN)—=RWN,f)=1+1/e—ce,

and hence”(N) — R(N, f7) grows unbounded asvanishes.

We conclude this section with the following observationidgsarguments along the lines of
those employed in [4], it is not hard to show th@t{\') — A\, provides an upper bound on the
strong resilience even if the locality constraint on theinfation used by the routing policies is
removed, i.e., if one allow&™ to depend on the full vector of current densitiggather than on
the local density vectop” only. Indeed, one might exhibit routing policies which ammdtions
of the global density informatiop, for which the strong resilience is exactiy{ ') — A, using
ideas developed in the paper [4]. Hence, one may interpeegp C(N) — \g — R(N, f7)
as the strong resilience loss due to the locality constr@mthe information available to the
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distributed routing policies. One could use Example 4 taragamonstrate arbitrarily large such
loss due to the locality constraint on the information afali to the routing policies. In fact, it
is possible to consider intermediate levels of informagwailable to the routing policies, which
interpolate between the one-hop information of our curraotdeling of the network, and the
global information described above. These results on tfumgtresilience are in stark contrast
to our result on weak resilience in [3], where we showed thatweak resilience is unaffected

by local information constraints on the routing policies.

IV. ROBUST EQUILIBRIUM SELECTION

In this section, for a given flow network” satisfying Assumptions 1 and 2, a constant inflow
Ao € [0,C(N)), and locally responsive distributed routing policies wlithit flow f*, we shall
address the issue of optimizing the strong resilience ofagsociated dynamical flow network,
R(N, f*) with respect tof*. First, in Section IV-A, we shall address the issue of mazing
R(f*) := R(N, f*) over all admissible equilibrium flow vectos € F*()\), i.e., with the only
constraints given by the link capacities and the consemaif mass. Then, in Section IV-B we
shall focus on the transportation network case, and addhesproblem of optimizingR(f*)
indirectly, assuming thaf* satisfies the additional constraint of being an equilibrinfruenced
by some static tolls. In Section IV-C, we shall evaluate thp getween the maximum &f(f*)
over all f*, and a generic equilibriunfi*, and interpret it as the robustness price of anarchy with
respect tof*. We then distinguish betweeR(f*) and the commonly used metric of average
delay associated tg*, and then propose a convex optimization problem to solveffothat

takes into account average delay as well as strong resglienc

A. Robust equilibrium selection as an optimization problem

The robust initial equilibrium condition selection proisiecan be posed as an optimization
problem as follows:

R := sup R(f"), (15)
1*€F* (%)

where we recall thatF*()\,) is the set of admissible equilibrium flow vectors correspogd
to the inflow )\ € [0,C(N)). Equation (13) implies thaf(f”) is the minimum of a set of

functions linear inf", and hence is concave jfi. Since the closure of the constraint $&t(\)
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is a polytope, we get that the optimization problem stated &) is equivalent to a simple convex
optimization problem. However, note that the objectivection, R(f") is non-smooth and one

needs to use sub-gradient techniques, e.g., see [15], thndirthe optimal solution.

B. Using tolls for equilibrium implementation in transpation networks

We now study the use of static tolls to influence the decisafritbie drivers in order to get a
desired emergent equilibrium condition for (unperturbeajsportation networks. The static tolls
affect the driver decisions over a slower time scale at wkhehdrivers update their preferences
for global paths through the network. These global decsseme complemented by tli@st-scale
node-wise route choice decisions characterized by De&fimRiand 5. The details of the analysis
of the transportation network with such two time-scale @iridecisions can be found in our
companion paper [4]. In particular, we show that when thestgoales are sufficiently separated
apart, then the network densities converge to a neighbdrieddNardrop equilibrium. In this
section, in order to highlight the relationship betweertistlls and the resultant equilibrium
point, we assume that the fast scale dynamics equilibratieklgy and focus only on the slow
scale dynamics.

We briefly describe the congestion game framework for trartafion networks to formalize
the equilibrium corresponding to the slow scale driver sieci dynamics. Lefl’ € R be the
link-wise vector of tolls, withY,. denoting the toll on linke. Assuming thatY is rescaled in
such a way that one unit of toll corresponds to a unit amourdeddy, the utility of a driver
associated with linke when the flow on it isf. is — (7.(f.) + Y.), whereT,(f.) is the delay
on link e when the flow on it isf.. In order to formally describe the functiofi3(f.), we shall
assume that each flow functign satisfies Assumption 2, and additionally is strictly coreav
and satisfies:,(0) < +oo. Observe that the flow function described in Example 14 fiadis
these additional assumptions. Since the flow on a link is tleelyct of speed and density on

that link, one can define the link-wise delay functicfig f.) by

+00 if fo> fa®
Te(fe) = ,ue_l(fe)/fe if fe € (07 femax)v Veel. (16)
Vpe(0) if fo=0,

Let P be the set of distincpathsfrom node0 to noden. The utility associated with a path
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pePis = ., (T (fe) +Te). Let T(f) = {T.(fe) : e € E} be the vector of link-wise delay
functions. We are now ready to definddl-inducedequilibrium.

Definition 8 (Toll-induced equilibrium)for a givenT € R, a toll-induced equilibrium is a
vector f*(T) € F* that satisfies the following for ajp € P:

fo>0 Yeep= Y (T.(f)+Te) <) (T.(fe)+Y.) VgeP.

ecp ecq

Note that,f"(0) corresponds to a Wardrop equilibrium, e.g., see [16], [WHere0 is a vector
all of whose entries are zero. For brevity in notation, wellstenote the Wardrop equilibrium.
The following result guarantees the existence and unicgseoga toll-induced equilibrium.
Proposition 1 (Existence and uniqueness of toll-inducedligium): Let N be a flow net-
work satisfying Assumptions 1 and 2 ang € [0, C'(N)) a constant inflow. Assume additionally
that the flow functionu, is strictly concave and satisfigg (0) < +oo for every linke € €£.
Then, for every toll vectofl’ € R, there exists a unique toll-induced equilibriufh(Y) € F*.
Proof: It follows from Assumption 2, strict concavity and the as@fion 4, (0) < 400
on the flow functions that, for alt € &, the delay functionl,(f.), as defined by (16), is
continuous, strictly increasing, and is such tfiat0) > 0. The Proposition then follows by
applying Theorems 2.4 and 2.5 from [18]. [ ]

In this subsection, to illustrate the proof of concept, wk fwcus on equilibrium flowsf* each
of whose components is strictly positive and less than the flapacities of the corresponding
links. Let A € {0,1}”*¢ be the path-link incidence matrix, i.e., forale Eandp € P, 4,,. =1
if e € p and zero otherwise. The results for a genefice F* follow along similar lines.
Definition 8 implies that forf*(T) € R, with f*(T) > 0 for all e € £, to be the toll-induced
equilibrium corresponding to the toll vectdr € R is equivalent toA (7'(f*(Y)) +T) = v1,
for somer > 0. We shall use this fact in the next result, where we compuie tiw get a desired
equilibrium.

Proposition 2 (Tolls for desired equilibrium).et A be a flow network satisfying Assump-
tions 1 and 2 and\, € [0, C(N)) a constant inflow. Assume additionally that the flow function
i is strictly concave and satisfies (0) < +oo for every linke € £. Assume that the Wardrop
equilibrium fWV is such thatfV > 0 for all e € £. Let f* € F*, with £ € (0, f) for all
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e € &, be the desired toll-induced equilibrium flow vector. Defifief) € R by

1) = (max B ) TG = 7(6). 7)

Then f* is the desired toll-induced equilibrium associated to thievector Y (f*).

Proof: Since f' is the Wardrop equilibrium, corresponding to the toll vecio= 0, we
have that
AT(fY) = 11, (18)

for somev, > 0. For f* to be the toll-induced equilibrium associated to the tolitee T € R,

one needs to find, > 0 such that

A(T(f)+7T) =w»l. (19)
Using (18) and simple algebra, one can verify that (19) issBatl with Y(f*) as defined in
(17) andvy = vy - (maxeeg 77::((1{5’))> [ |

Remark 3:The toll vector yielding a desired equilibrium operatinghddion is not unique.
In fact, any toll of the formY (") = ¢T'(fW) — T(f"), with ¢ > max{T.(f.)/T.(fV): e € &}

would inducef” as the toll-induced equilibrium. Proposition 2 gives juseasuch toll vector.

C. The robustness price of anarchy

Conventionally, transportation networks have been vieagdstatic flow networks, where a
given equilibrium traffic flow is an outcome of driver’s selfibehavior in response to the delays
associated with various paths and the incentive mechariismkace. The price of anarchy [9]
has been suggested as a metric to measure how sub-optimaraeggjuilibrium is with respect
to the societal optimal equilibrium, where the societaliroptity is related to the average delay
faced by a driver. In the context of robustness analysisafsportation networks, it is natural
to consider societal optimality from the robustness poinview, thereby motivating a notion
of the robustness price of anarchy. Formally, fof’ac F*()\,), define the robustness price of
anarchy asP (f") := R* — R(f"). It is worth noting that, for a parallel topology, we have
that R* = R (f) = ece JOF = Ao for all f*. That is, the strong resilience is independent of
the equilibrium operating condition and hence, for a patatbpology, P (f) = 0. However,
for a general topology and a general equilibrium, this gityams non-zero. This can be easily

justified, for example, for robustness price of anarchy wéspect to the Wardrop equilibrium:
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a Wardrop equilibrium is determined by the delay functidnsf.) as well as the topology of
the network, whereas the maximizer Bf f*) depends only on the topology and the link-wise
flow capacities of the network, as implied by the optimizatmoblem in (15). In fact, as the
following example illustrates, for a non-parallel topoypdghe robustness price of anarchy with
respect to Wardrop equilibrium can be arbitrarily large.

Example 5 (Arbitrarily large robustness price of anarchythwiespect to Wardrop equilibrium):
Consider the network topology shown in Figure 1. Let the-kvike flow functions be given by
Equation (14). The delay function is then given By(0) = (a.f™) ", T.(f.) = _Klfe log(1 —
fe/ [ for f. € (0, f'®) and T.(f.) = +oo for f. > fI* Fix somee € (0,1) and let
Ao = 1/e. Let the parameters of the flow functions be given B = fI® = 1/e + ¢,

T = [T = 1/(2) + /2, 01 = 1, ap = a3 = ag = (£5) log (§£5) /log (155 ). For
these values of the parameters, one can verify that the enddardrop equilibrium is given by
MYV=1 1/e—1 1/(2¢) —1/2 1/(2¢) —1/2]T. The strong resilience of"V is then given
by RN, fV) = min{2/e + 2¢ — 1/¢,1/e + € — (1/e — 1)} = 1 + €. One can also verify that,
for this case,R* = 1/e + 2¢ which would correspond tg” = [1/e 0 0 0]7. Therefore,

P(fY)=1/e+2¢— (14¢€) =1/e+e— 1 which tends to+oco ase — 0.

The above example provides a strong motivation to take tabss into account while selecting
the equilibrium operating condition for the network. Howevconventionally, the equilibrium
selection problem for transportation networks has beemamly motivated from the point-of-
view of minimizing average delay. The average delay assatiith an equilibriumyf* is defined

as:

D(f*) =Y fT(£2)/ Do (20)

ecE
The following simple example illustrates that the maximizef —D(f*) and R(f*) are not
necessarily the same.

Example 6:Consider the network topology shown in Figure 1. Let the-hvike flow functions
be given by Equation (14). Let the parameters of the flow foncbe given by:a., = 0.01,
Uey = Qey = G, = 10 and fI¥ = fII& = 2 foo&x — f& = (.75. Let \y = 2. The
equilibrium maximizingR(f*) is f* =[2 0 0 0]7 and the maximum strong resilience is
found to beR* = 1.5. The minimum value ofD(f*) over all f* € F*()\o) is 15.17, and the
corresponding equilibriunt* and the value of strong resilience d0&5 1.5 0.75 0.75]7 and
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Fig. 4. Plots of the solution of the optimization in (21) foarpmeters specified in Example 6, tass increased fron0 to
R* = 1.5: (a) fi is the flow on linke; corresponding tof* optimizing (21); note thafs = Ao — f1, and f5 = fi = f5/2,
(b) D* is the solution of (21).

0.5 respectively. Note that the maximizers ofD(f*) and R(f*) are not necessarily the same.
Therefore, a reasonable optimization problem should tateaccount average delay as well as
network resilience. Accordingly, we propose a modified mation problem as follows:
minimize D(f™)
subj. to f* € F*(\o), (21)
R(f") =2 b,

whereb € [0, R*]. Assumption 2 and Equation (20) imply tha{ f*) is convex. Therefore, taking
into account the expression fé( f*), (21) is still a convex optimization problem. Figure 4 plots

the outcome of this optimization dsis varied from0 to R*. In all the cases, we solved (21)

using CVX, a package for specifying and solving convex programs [19].

V. CASCADED FAILURES

In this section, through numerical experiments, we studycdise when the flow functions are
set to the ones commonly accepted in the transportatioatites, e.g., see [20]. In transportation
literature, the flow functions are defined over a finite indmf the form[0, p7®], where pI"®*

is the maximum traffic density that link can handle. Additionally. is assumed to be strictly

concave and achieves its maximum(in p7®). For example, consider the following:

e
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A1 pe(PE™ — pe)
- (P™)? ’
An important implication of the finite capacity on the traffiensities is the possibility of cascaded

/~Le<pe) Pe € [07 prcpax] (22)

spill-backstraveling upstream as follows. When the density on a linichea its capacity, its

outflow permanently becomes zero and hence the link is afédgtcut out from the network.

When all the outgoing links from a particular node are cut dutnakes the outflow on all the
incoming links to that node zero. Eventually, thagastreamlinks might possibly reach their
capacity on the density and cutting themselves off permtinand cascading the effect further
upstream. We shall show how such cascaded effects possithlice the resilience.

Another important differentiating feature of the flow fuloets given by (22) with respect to
the flow functions satisfying Assumption 2 is that the flow dtions corresponding to (22) are
not strictly increasing. As a result, one cannot readilyncltnat the locally responsive distributed
routing policies are maximally robust for this case. Howewe illustrate via simulations that,
with additional assumptions, the locally responsive thsted routing policies considered in this
paper could possibly be maximally robust. In these simoestj we also study the effect of the
flow functions given by (22) on theveak resilienceof the network, which was formally defined
in [3]. In simple words, weak resilience of the network is defl as the minimum sum of the
link-wise magnitude of all the disturbances under whichdb#low from the destination node is
asymptotically zero. In [3, Proposition 1], we showed ttred tveak resilience of the dynamical
flow network with the flow functions satisfying Assumption 2 upper bounded by its min-cut
capacity. It is easy to show that this upper bound on wealigase also holds when the flow
functions are the ones given by (22).

For the simulations, we selected the following parameters:

« the graph topology shown in Figure 5.

e \o=3.

o let pi®™ = 3 for all e € &, and flow capacities given by"® = fI'# = fI'& = 2.5,
o= 0.9, fI% = 175, fI¥ = fI& = fI& =1 fi# = fI% =07, f0% = 0.4,
o= fI = 1.5, fi%® =2, and f"* = 1.6. The link-wise flow functions are as given in

(22), ife € &, orif p < p»* for at least onedownstreamedgec¢’, i.e., ¢’ € £ such that

e/

ee€ & ande € EF for somev € {1,...,n — 1}, and the flow functions are uniformly
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Fig. 5. The graph topology used in simulations.

zero otherwise;

« the equilibrium flow f* has component$} = f7 = fi = 0.5, f2, =2, f, = fi, = 0.3,
foo =15, f5 =f;, =025 f; =02, f: = f;,=009, f; =02, f; =03 f, =11,
and f;_ = 0.7

« for the route choice function is as follows:

oy = e e(=nlpe = p2)) Lo e (pe)
Djeer Ii exp(=n(p; — p5))Lio,pmx (p5)
wheren will be a variable parameter for the simulations. Note thét is a modified version

Gelp

of the route choice function given provided in [3]. The mazhfion is done to respect the
finite traffic density constraint on the links.

One can verify that, with these parameters, the minimum nmedelual capacity, and hence
an upper bound on the strong resilience, as defined by (1Byjs One can also verify that the
maximum flow capacity of the network, and hence an upper bammthe weak resilience, is
5.2.

A. Effect ofy on the strong resilience

Consider an admissible perturbation such that = %pem and i, = p for all k& €
{1,...,15}\ {10}. As a resulty.,, = 0.7 andd., = 0 for all £ € {1,...,15}\ {10}. Therefore,
the magnitude of the perturbation és= 0.7. Note that this value is less than the minimum

node residual capacity of the network. We found that, .., \.,(t) = 0 for all n < 0.25, and
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limy o Aeg () = Ao = 3 for all n > 0.25. The role ofy) in the strong resilience is best understood
by concentrating on a parallel topology consisting of edggsand e;, with arrival rate \, .
Using similar techniques as in the proof of Theorem 3, one faw the existence of a new
equilibrium for thislocal system. However, this equilibrium is not attractive fromoaftguration
where at least one qf,,, or p.,, is at pgo* or p*, respectively. Fom < 0.25, p.,, reaches
penx, whereas form > 0.25, neitherp.,, nor p.,, hit the maximum density capacity and the

system is attracted towards the new equilibrium.

B. Effect of cascaded shutdowns on the weak resilience

Consider an admissible disturbance such fhat= 2/ic,, fie; = 22 fics, fleg = 2H6r fler = 2fler
fies = 2fless fieg = $hegs flery = 2flergr flers = 15 Her, @NAJ = py for k= {1,2,3,11,13,14,15}.
As result,d., = 0.7, 0., = 0.6, de, = 0.2, 8, = 0.5, ey = 0.5, ¢y = 0.2, 5., = 0.6, 0o, = 0.7
andé., = 0 for k = {1,2,3,11, 13,14, 15}. Therefore,0 = 4, which is less than the min-cut
flow capacity of the network. For this case, it is observed, tha; .., \.,(t) = 0 independent
of the value ofn. This can be explained as follows. For the given disturbamee have that
~;‘j§x+ ~§1’,j" =1.7<18= f: +f:,. Therefore, after finite time;, we have thap.,(t) = pi>*
and g, (t) = pgsx for all t > ¢,. As a consequence, we have that,(t) = 0 and f.,(t) = 0
for all t > ¢,. One can repeat this argument to conclude that, for the giN®mrbance, after
finite time, p., for k = 1,...,9 reach and remain at their maximum density capacities. As a
consequence, after such a finite tinfe,(t) + f.,(¢) + fe,(t) = 0 and hencelim, .. A, (t) = 0,
i.e., the network is not partially transferring. This is@lfustrated in Figure 6 which plots the
flow through some of the links of the network as a function ofdi This example illustrates that

the cascaded effects can potentially reduce the weakeamsdiof a dynamical flow network.

VI. CONCLUSION

In this paper, we studied strong resilience of dynamical flegtworks, with respect to
perturbations that reduce the flow functions of the linkshaf hetwork. We showed that locally
responsive distributed routing policies yield the maximsimong resilience under local informa-
tion constraint. We also showed that the correspondingngtresilience is equal to the minimum
node residual capacity of the network, and hence dependseoliniit flow of the unperturbed

network. Our results show that, unlike the weak resiliendectv was considered in [3], the
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Fig. 6. Plot of link-wise flows for some of the links of the neftile that ultimately shut down. The timings of shut downs of

the links demonstrate the cascaded effect starting frokndip and traveling up to the origin node.

strong resilience of a dynamical flow network is sensitivddecal information constraint. We
proposed simple convex optimization problems to solve fprildria that maximize traditional
metrics of social optimality such as average delay subjeauarantees on strong resilience.
We also discussed the use of tolls to induce a generic imgallibrium flow in the context of
transportation networks. Finally, we also discussed ahsgafailures due to spill backs when
we impose finite density constraints on the links and illistl the utility of routing policies
discussed in this paper in averting such failures. The foglof this and the companion paper [3]
stand to provide important guidelines for management aéisgVarge scale critical infrastructures
both from planning as well as real-time operation point @i

In future, we plan to extend the research in several direstidVe plan to rigorously study
the robustness properties of the network with finite linlsevicapacity for the densities, and
formally establish the results on the resilience as sugdest Section V. We plan to study the
scaling of the resilience with respect to the amount of imfation, e.g., multi-hop as opposed
to just single-hop, available to the routing policies. Weogplan to perform robustness analysis
in a probabilistic framework to complement the adversairiamework of this paper, possibly
considering other general models for disturbances. Inquéat, it would be interesting to study
robustness with respect to sequential disturbances ttsirope-shot disturbance considered in
this paper. We plan to consider a setting with buffer capecion the nodes and study the

scaling of the resilience with such buffer capacities. Wao gblan to consider more general
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graph topologies, e.g., graphs having cycles and multiptgredestination pairs.

APPENDIX A

PROOF OFTHEOREM 2

In this section, we shall prove Theorem 2 , by showing thagmia flow network\ satisfying
Assumptions 1 and 2, a constant infloy > 0, a distributed routing policy, and a limit flow

f* € cl(F) for the associated dynamical flow network (4), the strondieese satisfies

n(f*,9) = RN, /7).

Let f° € B(f*) be some initial flow attracted by*. In order to prove the result it is sufficient
to exhibit a family of admissible perturbations, with maguie§ arbitrarily close toR(N, f*),
under which the network is not fully transferring with respéo f°. Let us fix some non-
destination nod® < v < n minimizing the right-hand side of (13), and pat= ) .+ fI"
For anyR(N, f*) < § < k, consider the admissible perturbation defined by

_ K—20 .
fe(pe) = - pe(pe), Vee&S, fe(pe) = pelpe), VeeE\ES. (23)

Clearly, the magnitude of such perturbation equals

Let us consider the origin-destination cut-&et= {0, 1,...,v}, and put
Ef i ={(u,w)e€: 0<u<v,v<w<n}.

Observe that, thanks to Assumption 1 on the acyclicity of mie¢work topology, since all
the edges outgoing from some node< v are unaffected by the perturbation, the associated
perturbed dynamical flow network (11) with initial roy@(O) = f° € B(f*) satisfies

. ra - . _ +
tlgrnoo fe(t) = tl}inoo fe(t) = f., Vee &, YVO<u<w.
In particular, this implies thaf.(p.(t)) = f. for all t > 0, and for every linke € &} \ . On
the other hand, one has that

- . —5
Fot) < frax = B Ogmax g e ety >0,
K

March 19, 2011 DRAFT



26

Therefore, one has that

lim sup Zeegf; Je <t> < z:eegi,L énax + Zeeglj\gf Je
k= o max ¥
- K Zeeé‘j e T z:ee:i';;\f)u+ Je

(24)
N Zeegj énax —0- Zeé@j Je+ Zeé&t Je
= RN, f*)—d+X.
Observe that, for every < w < n, andt > 0,
d 0 £ V([ ~w 3
& (Zeeﬁ$ pe(t)) - Zee€$ (ZGE&; fe(t)) Ge (p (t)) - Zeeé’$ fe(t) (25)

- Zee&; fe(t) B Zeé&I fe(t) '

Define the edge sets
L n—1 n L n _
A= Uw:v+1 X, B:= Uwzv+1 £,
and put((t) := Y. 4 pe(t). Using (25), the identityd U & = B, and (24), one gets that there

exists some”’ > (0 such that

d - -
EC(t) = Zv<w§n Zeeé'[, fe(t) - Zv<w§n Zee€$ fe(t)
- ZeeB fe(t) B Zee&f fe(t) B ZeE.A fe(t)
- Zeeelj fe(t) B Zee&; fe(t)

< RN, ") =0+ X — Au(t) + ¢,

for all ¢ > 7’. Now assume, by contradiction, that

(26)

liminf A, (t) > RN, f*) =8 + Ao .

t—+4o00

Then, there would exist sonme> 0 and7” > 0 such that

M(t) > RN, f*) =6+ X +2e,  t>7".
It would then follow from (26) and Gronwall’s inequality tha
C(t) < (1) — (t—T1)e, vVt > T,

wherer := max{7’, 7"}. Then,((t) would converge to-oo ast grows large, contradicting the
fact that((t) > 0 for all ¢ > 0. Hence, necessarily

liminf A, (t) < RN, f*) =0 + Ao < Ao,

t——+o0
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so that the perturbed dynamical flow network is not fully sf@nring. Then, from the arbitrariness
of the perturbation’s magnitudec (R(N, f*), k), it follows that the network’s strong resilience
is upper bounded by (N, f*).

APPENDIX B

PROOF OFTHEOREM 3

In this section, we shall prove Theorem 3, by showing thagmia flow network\ satisfying
Assumptions 1 and 2, a constant infloy> 0, and a locally responsive distributed routing policy
G, then the strong resilience of the unique limit flgiv € cl(F) of the associated dynamical

flow network (4) satisfies

Thanks to Theorem 2, it is sufficient to show that
n(f*,G) > RN, f7). (27)

First, let us consider the case wh¢h € cl(F) \ F*()\o), i.e., when the limit flow of the
unperturbed dynamical flow network (4) is not an equilibriuhs argued in Remark 1, in this
case some of the capacity constraints are satisfied withliggua., there exis) < v < n and
e € &' such thatf* = f™»_ Then, Theorem 1 implies that" = f™* for all e € £, so that

RN, f) < 3 (fm— 1) =0,
ec&f
and (27) is trivially satisfied, since;(f*,G) > 0 by definition. Therefore, for the rest of this
section, we shall restrict ourselves on the case wfieg F*()\), i.e., whenf* is a globally
attractive equilibrium flow of the unperturbed dynamicalmlaetwork (4).

Observe that, for any admissible perturbation, regardédsgs magnitude, the perturbed
dynamical flow network (11) satisfies all the assumptions leédrem 1, which can therefore
be applied to show the existence of a globally attractiveupleed limit flow f* € cl(F). This
in particular implies that\,(t) = ", f.(t) converges to\! = 3" .- f- ast grows large.
However, this is not sufficient in order to prove strong liesite of the perturbed dynamical
flow network (11), as it might be the case thét< X,.

In fact, it turns out that, provided that the magnitude of &denissible perturbation is smaller

than R(\, f*), the perturbed limit flowf* is an equilibrium flow for the perturbed dynamical
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flow network, so thati;; = )¢ and (11) is fully transferring. In order to show this, we need
study theperturbed local system

d .
&pe(t) -

PR

OGP (1) = fot), felt) = fe(pe(t), Ve &S, (28)

for every non-destination node < v < n, and nonnegative-real-valued, Lipschitz local input
S\(t). Indeed, [3, Lemma 4] can be applied to the perturbed locatesy (28) establishing
convergence of the perturbed local floy?is(t) to a local equilibrium rowf*(A) € F,, provided
that the input rowS\(t) converges, as grows large, to a valua which is strictly smaller than
the sum of the perturbed flow capacities of the outgoing litd@wvever, such local result is not
sufficient to prove strong resilience of the entire pertdridgnamical flow network. The key
property in order to prove such a global result is stated imio@ 1, which describes how the
flow redistributes itself upon the network perturbationphurticular, such result ensures that the
increase in flow on all the links downstream from a node whaggaing links are affected by
a given perturbation, is less than the magnitude of the iahce itself. We shall refer to this
property as to theliffusivity of the local perturbed system.

Lemma 1 (Diffusivity of the local perturbed systerhgt A be a flow network satisfying As-
sumptions 1 and 27 be a locally responsive distributed routing poligy,> 0 a constant inflow.
Assume thatf* € F*(),) is an equilibrium flow for the dynamical flow network (4). L&f be
an admissible perturbation ¢f', 0 < v < n be a nondestination node; := > .+ f;, and
AEN0,D et fmaxy Then, for every7 C &, the local equilibrium flowf*()\) of the perturbed
local system (11) with constant local inptt) = \ satisfies

PO (AR PR S (29)

whered, := [[pe(-) = fie(+)]loo-

Proof: Define \; := >, .+ fi, and A := max{\, \;}. Let 5°(¢) be the solution of the
perturbed local system (28) with constant inpiit) = ), and initial conditionp,(0) = p :=
psl(fr), for all e € £F, and letf.(e) := ji.(p.(t)). We shall first prove that

~

L) >fr, V>0 Yee& (30)

For this, consider a point” € R,, such thatp” # p°, and there exists somec £ such that

pi = p; andp, > p, for all e # i € EF. For such ap® and i, [3, Lemma 4] implies that
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GY(p") > GY(p"). This, combined with the fact that > \* and

fi(pi) < pa(pi) = pi(p;)
yields

~

MNGL(Y) = i(pi) = NG (p ) — pilp;) = 0. (31)

Considering the regiof := {p* € R, : p; > p;, ¥j € £}, and denoting by € RE the unit
outward-pointing normal vector to the boundary(ofat p*, (31) shows that

d .
= <)\UG”([)”) —m(ﬁv)> Ww<0, Yp'edn, t>0.

Therefore ) is invariant under (28). Sincg’(0) = p~ € Q, this proves (30).

Then, for any7 C &, (30) implies that
DN AEIPT O
< A= o)
= NN 4D mo) =D o) (32)
< =X+ Zj f; + Zkﬁk
S TS DN/ DR

where the summation indicgs &, ande run over7, &\ J, and&;", respectively. Moreover,
since < A from [3, Lemma 3], one gets that(\) < f*(\) = f* for all e € £F. In particular,

this implies that

N ENSY f vTcES.

JjeT JjeJ
This, combined with (32), proves (29). [ |
The following lemma exploits the diffusivity property frooemma 1 along with an induction
argument on the topological ordering of the node set to ptbaeR (N, f*) is indeed a lower
bound on the strong resilience of the network under the Ipceakponsive distributed routing
policies.
Lemma 2 (Gloally attractive equilibrium for perturbed flowtwork): Consider a flow net-

work N satisfying Assumptions 1 and 2, a locally responsive disted routing policyg, and
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7
I 7

Fig. 7. lllustration of the sets used in proving the inductsiep.

a constant inflow\, > 0. Assume thatf* € F*()\q) is an equilibrium flow for the associated
dynamical flow network. Lel be an admissible perturbation &f, of magnitudel < R(N/, f*).
Then, the perturbed dynamical flow network (11) has a glghattiractive equilibrium flow and
hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the perturbedhiycal network (11)
in order to prove existence of a globally attractive limitwilo/* € cl(F) for the perturbed
dynamical network flow (11). For brevity in notation, for eyd < v < n, put

o= N =D fen A=y e

ecEF ecEy ecEF

Also, for every node € V, let
DU::UU_OSJ, B, ={(u,w)e&: 0<u<v,v<w<n}

be, respectively, the set of all outgoing links, and the-likindary of the node s¢0. 1, ..., v}.

We shall prove the following through induction en=0,1,...,n — 1:
S(f-r)<>6., vICB. (33)
eéj GEDu

First, notice that3, = D, = &;". Since

256§5<R(N7f*) < Z( énax_f;‘)7
ecEf ecEf
we also have thap, < S\Uma". Therefore, by using (29) of Lemma 1, one can verify that (33)

holds true forv = 0.
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Now, for somev < n — 2, assume that (33) holds true for evary< v. Consider a subset
J C B,i1 and letJ; .= JNES, andJ, := T\ Ji (e.g., see Figure 7). By applying Lemma 1
to the set7;, one gets that

Ze% <fe - fe) = [)‘”“ B )‘”“L + Zeeam by VE20. (34)
It is easy to check that, C B, and &, C B,. Therefore, using (33) for the sets, and

J2UE, ., one gets the following inequalities respectively:

Zeejz <]Ee* B f;) = ZGEDU e; (35)
S e R) e (- 8) <X 0 (36)

Consider the two caseé;H < A, 0r 5\:+1 > ;. By adding up (34) and (35), in the first
case, or (34) and (36) in the second case, one gets that

S(F-r) =X (-m)+>X(-r)<s X o+Yas Y o

ecJ e€J1 e€Jo e€€l, e€D,y e€Dy11
This proves (33) for node + 1 and hence the induction step.

Fix 1 <wv < n. Since&,; C B,_1, (33) withu = v — 1 implies that
M=) LS R+ D b= A b= > b,
ccEr ccEr e€Dy_1 ccEF ecE e€E\Dy_1

where the third step follows from the fact thgf, . f; = > ..+ f. by conservation of mass.
Then, sinceg C £\ D,_1, one gets that

A< Y foHd=) 0
< D SHRWL) =) 0
< D LD (L) =) 6
= > (ff=0)
DI

where the summation indexruns over€;r. Hence, it follows from [3, Lemma 2] applied to the

perturbed local system (28) that

fr=fr00) < fmx. Yee&f, (37)
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forall 1 < v <n — 1. Moreover, since\o = > _ o+ fo < D cer £, applying [3, Lemma 2]
again to the perturbed local system (28) shows that (37)shinice forv = 0 as well. Hence,

fr < frax Ve € €,

so that the limit flow f* belongs toF, and hence it is necessarily an equilibrium flow of the
perturbed dynamical flow network (11), as argued in Remarkhkrefore, the dynamical flow

network (11) is fully transferring. [ |

Theorem 3 now immediately follows from Lemma 2, and the aabiness of the admissible
perturbation of magnitude smaller th&{\/, /*).

REFERENCES

[1] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. FrdzZ®n robustness analysis of large-scale transportation
networks,” inProc. of the Int. Symp. on Mathematical Theory of Networks Spstemspp. 2399-2406, 2010.

[2] I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, and D.bie), “Transient dynamics increasing network vulnerapito
cascading failures,Physical Review Lettersol. 100, no. 21, pp. 218701-1 — 2187014, 2008.

[3] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. FrdzZ&obust distributed routing in dynamical flow networks.
Part I: locally responsive policies and weak resiliendEEE Transactions on Automatic Contrd011. Submitted.

[4] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. FrdgztStability analysis of transportation networks
with multiscale driver decisions,”"SIAM Journal on Control and Optimization2011.  Submitted, Available at
http://arxiv.org/abs/1101. 2220.

[5] M. Sengoku, S. Shinoda, and R. Yatsuboshi, “On a funcfmmnthe vulnerability of a directed flow networkRetworks
vol. 18, no. 1, pp. 73-83, 1988.

[6] L. Tassiulas and A. Ephremides, “Stability propertiésanstrained queueing systems and scheduling policieméximum
throughput in multihop radio networkslEEE Transactions on Automatic Contralol. 37, no. 12, pp. 1936-1948, 1992.

[7] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestcontrol,” IEEE Control Systems Magazineol. 22, no. 1,
pp. 28-43, 2002.

[8] P. Dubey, “Inefficiency of Nash equilibriaMathematics of Operations Researsiol. 11, no. 1, pp. 1-8, 1986.

[9] T. Roughgardengselfish Routing and the Price of AnarchMIT Press, 2005.

[10] A. E. Motter and Y. Lai, “Cascade-based attacks on cempletworks,”Physical Review Evol. 66, no. 6, pp. 065102—
1-065102-4, 2002.

[11] P. Crucitti, V. Latora, and M. Marchiori, “Model for caading failures in complex networksZhysical Review Evol. 69,
no. 4, pp. 045104-1-045104—-4, 2004.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Staitrpduction to Algorithms MIT Press, 2nd ed., 2001.

[13] R. K. Ahuja, T. L. Magnanti, and J. B. Orliljetwork Flows: Theory, Algorithms, and ApplicatiorBrentice Hall, 1993.

[14] V. S. Borkar and P. R. Kumar, “Dynamic Cesaro-Wardropiloration in networks,”|EEE Transactions on Automatic
Control, vol. 48, no. 3, pp. 382—-396, 2003.

[15] D. BertsekasNonlinear Programming Athena Scientific, 2 ed., 1999.

March 19, 2011 DRAFT



33

[16] J. G. Wardrop, “Some theoretical aspects of road traffgearch,1"CE Proceedings: Engineering Divisiongol. 1, no. 3,
pp. 325-362, 1952.

[17] M. Beckmann, C. B. McGuire, and C. B. WinsteBtudies in the Economics of Transportatioviale University Press,
1956.

[18] M. Patriksson,The Traffic Assignment Problem: Models and Method$.P. Intl Science, 1994.

[19] M. Grant and S. Boyd, “CVX: Matlab software for discipbd convex programming, version 1.21.”
http://cvxr.com cvx, Feb. 2011.

[20] M. Garavello and B. PiccoliTraffic Flow on Networks American Institute of Mathematical Sciences, 2006.

March 19, 2011 DRAFT



