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Abstract

Robustness of distributed routing policies is studied fgnaiical flow networks, with respect to
adversarial disturbances that reduce the link flow cameacith dynamical flow network is modeled as
a system of ordinary differential equations derived fromsmaonservation laws on a directed acyclic
graph with a single origin-destination pair and a constafibw at the origin. Routing policies regulate
the way the inflow at a non-destination node gets split amtm@utgoing links as a function of the
current particle density, while the outflow of a link is moel@lto depend on the current particle density
on that link through a flow function. The dynamical flow netwds called partially transferring if the
total inflow at the destination node is asymptotically boeshdway from zero, and its weak resilience is
measured as the minimum sum of the link-wise magnitude daisturbances that make it not partially
transferring. The weak resilience of a dynamical flow netwwith arbitrary routing policy is shown
to be upper-bounded by the network’s min-cut capacity, pedelently of the initial flow conditions.
Moreover, a class of distributed routing policies that etglusively on local information on the particle
densities, and are locally responsive to that, is shown étdysuch maximal weak resilience. These

results imply that locality constraints on the informatiavailable to the routing policies do not cause
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loss of weak resilience. Some fundamental properties ofuohjeal flow networks driven by locally
responsive distributed policies are analyzed in detadluiting global convergence to a unique limit

flow.

Index terms. dynamical flow networks, distributed routing policies, Wweasilience, min-cut

capacity, cooperative dynamical systems.

I. INTRODUCTION

Flow networks provide a fruitful modeling framework for maapplications of interest such
as transportation, data, and production networks. Thewileat fluid-like description of the
macroscopic motion oparticles which are routed from their origins to their destinationa v
intermediate nodes: we refer to standard textbooks, su¢®]afor a thorough treatment.

The present and a companion paper [4] stdggamical flow networksnodeled as systems of
ordinary differential equations derived from mass corggon laws on directed acyclic graphs
with a single origin-destination pair and a constant inflowtree origin. The rate of change
of the particle density on each link of the network equals difeerence between thanflow
and theoutflow of that link. The latter is modeled to depend on the currentigga density
on that link through dlow function On the other hand, the way the inflow at an intermediate
node gets split among its outgoing links depends on the ruparticle density, possibly on
the whole network, through euting policy. Such a routing policy is said to k#istributed if
the proportion of inflow routed to the outgoing links of a nadeallowed to depend only on
local information consisting of the current particle densities on the oungdinks of the same
node. The inspiration for such a modeling paradigm comeas #mpirical findings from several
application domains: in transportation networks [5], tlesvffunctions are typically referred to as
fundamental diagramsvhile the routing policies model the emerging selfish bédranf drivers;
in data networks [6], flow functions model congestion-dejsrithroughputandaverage delays
while routing policies are designed in order to optimizetthtal throughput or other performance
measures; in production networks [7], flow functions cquoexl toclearing functions

Our objective is the design and analysis of distributedingupolicies for dynamical flow
networks that arenaximally robuswith respect taadversarial disturbancethat reduce the link
flow capacities. Two notions of transfer efficiency are idtroed in order to capture the extremes

of the resilience of the network towards disturbances: Theathical flow network isfully
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transferringif the total inflow at the destination node asymptoticallpagaches the inflow at the
origin node, angbartially transferringif the total inflow at the destination node is asymptotically
bounded away from zero. The robustness of distributedrigyiplicies is evaluated in terms of
the network’sstrongandweak resiliencewhich are defined as the minimum sum of link-wise
magnitude of disturbances making the perturbed dynamioal fletwork not fully transferring,
and, respectively, not partially transferring. In this papve prove that the maximum possible
weak resilience is yielded by a classlotally responsivalistributed routing policies, which rely
only onlocal informationon the current particle densities on the network, and areacterized
by the property that the portion of its inflow that a node reutevards an outgoing link does not
decrease as the particle density on any other outgoingricieases. Moreover, we show that the
maximum weak resilience of dynamical flow networks with &driy, not necessarily distributed,
routing policies equals th@in-cut capacityof the network and hence is independent of the initial
equilibrium flow. We also prove some fundamental propeiedynamical flow networks driven
by locally responsive distributed policies, including lggd convergence to a unique limit flow.
Such properties are mainly a consequence of the particolaperativestructure (in the sense
of [17], [18]) that the dynamical flow network inherits froradally responsive routing policies.

Stability analysis of network flow control policies undemnpersistent disturbances, especially
in the context of internet, has attracted a lot of attentg,, see [8], [9], [10], [11]. Recent
work on robustness analysis of static flow networks undeeesdrial and probabilistic persistent
disturbances in the spirit of this paper include [12], [1R]4]. It is worth comparing the
distributed routing policies studied in this paper with th&ck-pressure policy [15], which is
one of the most well-known robust distributed routing pplior queueing networks. While
relying on local information in the same way as the distoutouting policies studied here,
back-pressure policies require the nodes to have, pogsitiipited, buffer capacity. In contrast,
in our framework, the nodes have no buffer capacity. In fd#ue, distributed routing policies
considered in this paper are closely related to the wellaknbot-potatoor deflection routing
policies [16] [6, Sect. 5.1], where the nodes route inconpagkets immediately to one of the
outgoing links. However, to the best of our knowledge, theustness properties of dynamical
flow networks, where the outflow from a link is not necessagiiyal to its inflow have not been
studied before.

The contributions of this paper are as follows: (i) we foratala novel dynamical system
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framework for robustness analysis of dynamical flow netwarkder feedback routing policies,
possibly constrained in the available information; (ii) wlearacterize a general class of locally
responsive distributed routing policies that yield the maxm weak resilience; (iii) we provide a
simple characterization of the resilience in terms of tipwtogy and capacity of the flow network.
In particular, the class of locally responsive distributedting policies can be interpreted as
approximate Nash equilibria in an appropriate zero-sumeyastting where the objective of
the adversary inflicting the disturbance is to make the ndtwmt partially transferring with
a disturbance of minimum possible magnitude, and the dbgedf the system planner is to
design distributed routing policies that yield the maximpossible resilience. The results of
this paper imply that locality constraints on the inforroatiavailable to routing policies do not
affect the maximally achievable weak resilience. In castirthe companion paper [4] focuses on
the strong resilience properties of dynamical flow netwpddd shows that locally responsive
distributed routing policies are maximally robust, butyowlithin the class of distributed routing
policies which are constrained to use only local informatim the network congestion status.

The rest of the paper is organized as follows. In Section #, farmulate the problem by
formally defining the notion of a dynamical flow network ansliigsilience, and we prove that the
weak resilience of a dynamical flow network driven by an aaoyt, not necessarily distributed,
routing policy is upper-bounded by the min-cut capacity loé hetwork. In Section Ill, we
introduce the class of locally responsive distributedir@ipolicies, and state the main results on
dynamical flow networks driven by such locally responsiv&rithuted routing policies: Theorem
1, concerning global convergence towards a unique equitibflow; and Theorem 2 concerning
the maximal weak resilience property. In Sections IV, andvé,state proofs of Theorem 1, and
Theorem 2, respectively.

Before proceeding, we define some preliminary notation todesl throughout the paper. Let
R be the set of real numberR,, := {x € R: = > 0} be the set of nonnegative real numbers.
Let A and B be finite sets. Then,4| will denote the cardinality of4, R* (respectivelyR+')
the space of real-valued (nonnegative-real-valued) veaoidose components are indexed by
elements of4, andR**5 the space of matrices whose real entries indexed by pairefeats
in A x B. The transpose of a matrix/ ¢ R**5, will be denoted byM” ¢ RB5*A, while 1
the all-one vector, whose size will be clear from the contegt cl(X') be the closure of a set

X C RA. A directed multigraph is the paiV, £) of a finite setV of nodes, and of a multiset

March 19, 2011 DRAFT



& of links consisting of ordered pairs of nodes (i.e., we allfmw parallel links). Given a a
multigraph (V, ), for every nodev € V, we shall denote by C &£, and&,; C &, the set
of its outgoing and incoming links, respectively. Moreqwse shall use the shorthand notation
Ry, = Ri’j for the set of nonnegative-real-valued vectors whoseesare indexed by elements
of &, S, == {p € Ry : X .cer e = 1} for the simplex of probability vectors ovef;, and
R := Rf for the set of nonnegative-real-valued vectors whose entire indexed by the links
in &.

II. DYNAMICAL FLOW NETWORKS AND THEIR RESILIENCE

In this section, we introduce our model of dynamical flow retve and define the notions of

transfer efficiency.

A. Dynamical flow networks

We start with the following definition of a flow network.

Definition 1 (Flow network):A flow networkN = (7, i) is the pair of aopology described
by a finite directed multigrap = (V, £), whereV is the node set ané is the link multiset,
and a family offlow functionsy := {u. : Ry — R, }.c¢ describing the functional dependence
fe = pe(pe) of the flow on the density of particles on every liake £. The flow capacityof a

link e € € is defined as
J&% = sup fie(pe) - (1)

pe=0

We shall use the notatiorf, := x,.+[0, f"®) for the set of admissible flow vectors on
outgoing links from node, and F := x.c¢[0, f'®) for the set of admissible flow vectors for
the network. We shall writef := {f. : e € £} € F, andp := {p. : e € £} € R, for the
vectors of flows and of densities, respectively, on the dhffie links. The notatiory” := {f. :
ec&rt e F,, andp’ = {p.: e € &'} € R, will stand for the vectors of flows and densities,
respectively, on the outgoing links of a nodeWe shall compactly denote by = u(p) and
fv = u’(p¥) the functional relationships between density and flow wacto

Throughout this paper, we shall restrict ourselves to ngtwapologies satisfying the follow-

ing:
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Fig. 1. A network topology satisfying Assumption 1: the nedeare labeled by the integers betwegidenoting the origin
node) andn (denoting the destination node), in such a way that the labtie head node of each edge is higher than the label
of its tail node. The inflow at the origin\o, maybe interpreted as the input to the dynamical flow netwankl the total inflow at
the destination),(¢), as the output. Far € (0, 1], the dynamical flow network ie-transferring iflim inf;— o An(t) > aXo,

i.e., if at leasta-fraction of the inflow at the origin is transferred to the tilestion, asymptotically.

Assumption 1:The topology7 contains no cycles, has a unique origin (i.e., a node V
such thatf~ is empty), and a unique destination (i.e., a nede V such that€' is empty).

Moreover, there exists a path ih to the destination node from every other nodé/in

Assumption 1 implies that one can find a (not necessarilyusjit¢opological ordering of the
node seb’ (see, e.g., [21]). We shall assume to have fixed one suchingdélentifying)’ with
the integer sef0,1,...,n}, wheren := |V| — 1, in such a way that

&, C EF Yo=0,...,n. (2)

0<u<v ¢’
In particular, (2) implies tha is the origin node, ana the destination node in the network
topology7 (see Fig. 1). Anorigin-destination cut(see, e.g., [2]) off is a partition ofV into
U andV \ U such thatd € ¢/ andn € V \ U. Let

& ={(u,v) €€ ueld,veV\U} (3)
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Fig. 2. An origin/destination cut of the networl is a subset of nodes including the oridirbut not the destination, and

& is the subset of those edges with tail nodé/inand head node iw \ /.

be the set of all the links pointing from some nodelinto some node iV \ U (see Fig. 2).

The min-cut capacityof a flow network is defined as

C(N) := muin Zeng max 4)

where the minimization runs over all the origin-destinatimuts of 7. Throughout this paper,
we shall assume a constant infloyy > 0 at the origin node. Let us define the setaafmissible

equilibrium flowsassociated to an inflov, as

F (o) = {f* eF: Zee€+f§=>\o, Zee€+fgzzeegf§,vo<v<n} :

Then, it follows from the max-flow min-cut theorem (see, €[8]), that 7*(\o) # ) whenever
Ao < C(N). That is, the min-cut capacity equals the maximum flow thatgass from the origin
to the destination node while satisfying capacity constgabn the links, and conservation of
mass at the intermediate nodes.

Throughout the paper, we shall make the following assummiothe flow functions (see also
Fig. 3):

Assumption 2:For every linke € £, the mapu. : Ry — R, is continuously differentiable,

strictly increasing, has bounded derivative, and is suehh(0) = 0, and f™** < 4o0.
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Fig. 3. Qualitative behavior of a flow function satisfyingsAsnption 2:u.(p.) is differentiable, strictly increasing, has bounded
derivative and such that.(0) = 0, and lim+ te(pe) = f&** < +o00. The median density?, as defined in (5) is plotted as
pe—+00

well.

Thanks to Assumption 2, one can define thedian densityn link e € £ as the unique value

pt € R, such that
pe(pl) = &/ 2. (5)

Example 1 (Flow function)for every linke € &, let a. and f*** be positive real constants.

Then, a simple example of flow function satisfying Assumptibis given by

pe(pe) = fo (1 — exp(—acpe)) -

It is easily verified that the flow capacity i§"®, while the median density for such a flow

function is p* = a_ ' log 2.

We now introduce the notion of a distributed routing poliged in this paper.

Definition 2 ((Distributed) routing policy):A routing policyfor a flow network\ is a family
of differentiable functionsj := {G" : R — S, }o<v<n describing the ratio in which the particle
flow incoming in each non-destination nodegets split among its outgoing link sét", as a
function of the observed current particle density. A rogtpolicy is said to bedistributed if,
for all 0 < v < n, there exists a differentiable functia®: R, — S, such thatG"(p) = G (p*)

for all p € R, wherep’ is the projection ofp on the outgoing link sef'.
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The salient feature in Definition 2 is that a distributed nogifpolicy depends only on tHecal
informationon the particle density” on the se€." of outgoing links of the non-destination node
v, instead of the full vector of current particle densitiesn the whole link sef. Throughout
this paper, we shall make a slight abuse of notation and \@itg"), instead ofG" (p"), for the
vector of the fractions in which the inflow of nodegets split into its outgoing links.

We are now ready to define a dynamical flow network.

Definition 3 (Dynamical flow network)A dynamical flow networkassociated to a flow net-
work A satisfying Assumption 1, a distributed routing poli@y and an inflow), > 0, is the

dynamical system

Cpelt) = MOG(0) ~ f(1),  YO<u<n, Veefl, (6)
where
)\0 if v=20
e = el Pe s )\U = 7
fe(t) := pe(pe(t)) (t) { S h) f 0<v<n (7)

Equation (6) states that the rate of variation of the partaensity on a linke outgoing from
some non-destination nodeis given by the difference between (t)G¥(p(t)), i.e., the portion
of the inflow at nodev which is routed to linke, and f.(¢), i.e., the particle flow on linke.
Observe that the (distributed) routing poli€¥ (p) induces a (local) feedback which couples the
dynamics of the particle flow on the the different links.

We can now introduce the following notion of transfer effiag of a dynamical flow network.

Definition 4 (Transfer efficiency of a dynamical flow networ&pnsider a dynamical flow net-
work A satisfying Assumptions 1 and 2. Given some flow vegtore F, anda € [0, 1], the
dynamical flow network (6) is said to hetransferringwith respect tof° if the solution of (6)

with initial condition p(0) = p~(f°) satisfies

liminf A\, () > a)g. (8)

t——+o0

Definition 4 states that a dynamical flow network dstransferring when the outflow is
asymptotically not smaller than times the inflow. In particular, a fully transferring dynarai
flow network is characterized by the property of having owtflasymptotically equal to its

inflow, so that there is no throughput loss. On the other hanuhrtially transferring dynamical
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flow network might allow for some throughput loss, providédttsome fraction of the flow is

still guaranteed to be asymptotically transferred.

Remark 1:Standard definitions in the literature are typically lindite> static flow networks

describing the particle flow at equilibrium via conservatmf mass. In fact, they usually consist

(see e.g., [2]) in the specification of a topolo@y a vector of flow capacitieg™> € R, and
an admissible equilibrium flow vectof* € F*(\o) for Ay < C(N) (or, often, f* € cl(F*(\o))
for \y < C(N)). In contrast, in our model, we focus on the off-equilibrigoarticle dynamics

on a flow networkV, induced by a (distributed) routing policy.

B. Examples

We now present three illustrative applications of the dyitairflow network framework.

(i) Transportation networksin transportation networks, particles represent drivaard dis-

(ii)

tributed routing policies correspond to their local routeice behavior in response to
the locally observed link congestions. A desired route obdiehavior from a social
optimization perspective may be achieved by appropriatentive mechanisms. While
we do not address the issue of mechanism design in this pygecompanion paper [4]
discusses the use of tolls in influencing the long-term dlabate choice behavior of
drivers to get a desired initial equilibrium state for thewark. The robust distributed
routing policies designed in this paper would correspondh®mideal node-wise route
choice behavior of the drivers. The flow functipp(p.) presented in this paper is related
to the notion of fundamental diagram in traffic theory, egee [5]. Note that in our
formulation, we assume that the density of drivers is homegas over a link. One can
refer to [5] for models that incorporate inhomogeneityhaltgh such models are developed
under non-feedback routing policies.

Data networksIn data networks, the particles represent data packetsatbao be routed
from sources to destinations by routers placed at the neges €.9., [6, Ch. 5]). Typically
the average packet delay from one router to the other ineseagh the increase in queue
length on the link between the two routers. Hence, one hastith average delay is given
by d.(p.), whered.(p.) is an increasing function. If one further assumes that tHayde
functiond.(p.) is concave and such thiminf, .. d.(p.)/p. > 0, then the relationship

between the throughput and the queue lendthe p./d.(p.), can be easily shown to
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11

satisfy Assumption 2. Therefore, in analogy with the gehieaanework, p. and f, denote
the queue length and the throughput, respectively, @and.) represents the throughput
functions on the links of data networks.

(i) Production networksln production networks, the particles represent goodsrtaad to be
processed by a series of production modules representeddagnit is known, e.g., see [7],
that the rate of doing work decreases with the amount of workrogress at a production
module. This relationship is formalized by the conceptlefiring functionsin this context,
production networks have a clear analogy with our setup &pgerepresents the work-in-
progress,f. represents the rate of doing work, andp.) represents the clearing function.

Remark 2:While there are many examples of congestion-dependenighput functions and
clearing functions that satisfy Assumption 2, typical fantental diagrams in transportation
systems have a-shaped profile. While we do not study the implications of tanalytically,
some simulations are provided in [4] illustrating how theulés of this paper could be extended
to this case.

Remark 3:It is worth stressing that, while distributed routing pa& depend only on local
information on the current congestion, their structurahfanay depend on some global infor-
mation on the flow network which might have been accumulabedugh a slower time-scale
evolutionary dynamics. A two time-scale process of thig sas been analyzed in our related
work [22] in the context of transportation networks. Mulégime-scale dynamical processes

have also been analyzed in [23] in the context of commurtinatietworks.

C. Perturbed dynamical flow networks and resilience

We shall consider persistent perturbations of the dyndnfima network (6) that reduce the
flow functions on the links, as per the following:

Definition 5 (Admissible perturbation)An admissible perturbatiorf a flow network N =
(T, 1), satisfying Assumptions 1 and 2, is a flow netwdvk= (7, /1), with the same topology
7, and a family of perturbed flow functiong := {f. : R, — R, }.c¢, such that, for every
e € &, 1. satisfies Assumption 2, as well as

fie(pe) < pre(pe) s Vpe = 0.

We accordingly letf™ := sup{/i.(g.) : p. > 0}. The magnitudeof an admissible perturbation
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is defined as
6= Zeeg ey O :=sup {pe(pe) — fle(pe) : pe > 0} . 9)

The stretching coefficiendf an admissible perturbation is defined as
0 = max{pt'/pt' : ec &}, (10)

wherep#, andp# are the median densities associated to the unperturbecharmetturbed flow

functions, respectively, on link € £, as defined in (5).

Given a dynamical flow network as in Definition 3, and an adibiesperturbation as in
Definition 5, we shall consider theerturbed dynamical flow network

Chl) = MMGG0) ~ 1), VO<uv<n, Vees!, (11)

where

(12)
)\0 if v=020.

{ S ft) i 0<u<n
o(t) = :
Observe that the perturbed dynamical flow network (11) hassime structure of the original
dynamical flow network (6), as it describes the rate of vamabf the particle density on each
link e outgoing from some non-destination nodas the difference between (t)G2(5(t)), i.e.,
the portion of the perturbed inflow at nodewhich is routed to linke, minus the perturbed
flow on link e itself. Notice that the only difference with respect to thegmal dynamical
flow network (6) is in the perturbed flow functigi.(p.) on each linke € &£, which replaces
the original one,u.(p.). In particular, the (distributed) routing polioy is the same for the
unperturbed and the perturbed dynamical flow networks. s way, we model a situation in
which the routers are not aware of the fact that the flow nditvias been perturbed, but react
to this change only indirectly, in response to variationghaf local density vectorg®(¢).

We are now ready to define the following notion of resiliené¢eaaynamical flow network

as in Definition 3 with respect to an initial flow.

Definition 6 (Resilience of a dynamical flow networket A/ be a flow network satisfying
Assumptions 1 and 27 be a distributed routing policy, andl, > 0 be a constant inflow at
the origin node. Giverr € (0,1], § > 1 and f° € F, let v,0(f°,G) be equal to the infimum

magnitude of all the admissible perturbations of stretgluoefficient less than or equal écfor

March 19, 2011 DRAFT



13

which the perturbed dynamical flow network (11) is metransferring with respect tg°. Also,

define
70,6(]007 g) = l(i?ol’yaﬂ(fov g) .

For a € [0, 1], the a-resiliencewith respect tof° is defined as

9(f°.G) = I Yaulf".0).

The 1-resilience will be referred to as tistrong resiliencewhile the0-resilience will be referred

to as theweak resilience

Remark 4 (Zero-sum game interpretatiof)he notions of resilience are with respect to ad-
versarial perturbations. Therefore, one can provide a-geno game interpretation as follows.
Let the strategy space of the system planner be the classtoibdied routing policies and the
strategy space of an adversary be the set of admissibleripatitns. Let the utility function
of the adversary be/© — ¢, where M is a large quantity, e.g) .. f&'™, and© takes the
valuel if the network is nota-transferring under given strategies of the system plaandrthe
adversary, and zero otherwise. Let the utility functionte system planner bie- M ©. As stated
in Sectio n lll, a certain class dbcally responsivalistributed routing policies characterized by
Definition 7, is maximally robust with respect to the notiafsveak and strong resilience. This
will then show that the locally responsive distributed mogtpolicies correspond to approximate

Nash equilibria in this zero-sum game setting.

In the remainder of the paper, we shall focus on the chaiaatem of the weak resilience
of dynamical flow networks, while the strong resilience vk addressed in the companion
paper [4]. Before proceeding, let us elaborate a bit on Ciefmi6. Notice that, for every

€ (0,1], the a-resilience~,(f°,G) is simply the infimum magnitude of all the admissible
perturbations such that the perturbed dynamical netwatk i€l not a-transferring with respect
to the equilibrium flowf*. In fact, one might think ofy,(f°,G) as the minimum effort required
by a hypothetical adversary in order to modify the dynamiical network from (6) to (11), and

make it nota-transferring, provided that such an effort is measure@ims of the magnitude of

It is easily seen that the limits involved in this definitiotways exist, asy..»(f°,G) is clearly nonincreasing im (the
highera, the more stringent the requirementw@fransfer) and (the higherd, the more admissible perturbations are considered

that may potentially make the dynamical flow network to be adtansferring).
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the perturbatiory = 3 __. ||1e( ) — fie( - )||sc- FOra = 0, trivially the perturbed network flow
is alwaysO0-transferring with respect to any initial flow. For this reas the definition of the
weak resiliencey,(f°, G) involves the double limitim,_. . o lim, o 7.,0(f°, G): the introduction
of the bound on the stretching coefficient of the admissil@egypbation is a mere technicality
whose necessity will become clear in Section V.

We conclude this section with the following result, provigian upper bound on the weak
resilience of a dynamical flow network driven by any, not reseeily distributed, routing policy
g, in terms of the min-cut capacity of the network. Tightnesshis bound will follow from
Theorem 2 in Section Ill, which will show that, for a partiaulclass of locally responsive
distributed routing policies, the dynamical flow networkshaeak resilience equal to the min-
cut capacity.

Proposition 1: Let A be a flow network satisfying Assumptions 1 and\2,> 0 a constant
inflow, and G an arbitrary routing policy. Then, for any initial floy°, the weak resilience of

the associated dynamical flow network satisfies
(f°,G) < CWN).
Proof: We shall prove that, for every € (0, 1], and everyd > 1,
Yol G) < CN) = Sho. (13)
Observe that (13) immediately implies that

(f*,G) = Jim limaee(f*,G) < lim lim (CNV) = aro/2) = CWN),

0—+o00 a]0
thus proving the claim.

Consider a minimal origin-destination cut, i.e., sotdeC V such that0 € U, n ¢ U, and
Zeeglj frax = C(N). Definee := a\/(2C(N)), and consider an admissible perturbation such
that fic(pe) = epe(pe) for everye € &, andjic(p.) = pe(pe) for all e € £\ &F. It is readily

verified that the magnitude of such perturbation satisfies

=(=0) Y ., ™= (1= )CN) = CN) = 3o,

while its stretching coefficient i$.
Observe that

Au(t) ==Y felt) < Zeegf; fr=e Zeegg e —a) /2, t>0. (14)

eESJ
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Now, let W := V \ U be the set of nodes on the destination side of the cut, andwebt®at
d B _ o B
= (X ) = X (X HW) G =Y L@
- Zee&E Je(t) = Zeee+ fe(t)

Define A := Uyen&, B = Uyewé&,, and let((t) := > ., pe(t). From (15), the identity
AUET = B, and (14), one gets

d d .

EC(t) - ZwEW Zeeéﬁ &pe(t}
- ZeeB fe(t) B Zee&? fE(t) B ZGEA fE(t)
- ZeeSJ fe(t) a Zee&? fe(t)

< Oé)\(]/Q - S\n(t) .

(15)

(16)

Now assume, by contradiction, that

lim inf A, () > a)g .

t—+o00
Then, there would exist some> 0 such that\,(t) > 3a\,/4 for all t > 7. For allt > 7, it
would then follow from (16) thatl((¢)/dt < —a\,/4, so that

C(t) < C(7) + (t = T)ako /4

by Gronwall’s inequality. Therefore,(¢) would converge to-oco ast grows large, contradicting
the fact that((¢) > 0 for all £ > 0. Then, necessarily

lim inf A, (t) < aXo,

t——+o0
so that the perturbed dynamical network is netransferring. This implies (13), and therefore

the claim. [ |

I1l. M AIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with a familyméximally robustdistributed routing
policies. Such a family is characterized by the following:
Definition 7 (Locally responsive distributed routing pgiic A locally responsivedistributed

routing policy for a flow network topology = (V, &) with node sety = {0,1,...,n} is a
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family of continuously differentiable distributed rougjriunctionsg = {G" : R, — S, },ev Such

that, for every non-destination node< v < n:

0
(a) 9 Gi(p°) >0, Vjee&l,j#e,p’ €RY;
(b) foreevery nonempty proper subsgt C &, there exists a continuously differentiable
mapG7 : Ry — Sy, whereRy :=R{, andS; == {p € Ry : 3 ,.,p; = 1} is the

simplex of probability vectors ovef, such that, for every”? € R, if

pr— oo, YeeESN\NT,  pi—pl, Vied,

then
Gip’) =0, YeeEFNT,  G(p") =G (p7), Vied.

Property (a) in Definition 7 states that, as the particle iere an outgoing linke € £
increases while the particle density on all the other oungdinks remains constant, the fraction
of inflow at nodev routed to any link; € £\ {¢} does not decrease, and hence the fraction of
inflow routed to linke itself does not increase. In fact, Property (a) in Definiffois reminiscent
of Hirsch’s notion ofcooperative dynamical systerfis/], [18]. On the other hand, Property (b)
implies that the fraction of incoming particle flow routeddcsubset of outgoing link& C &,
vanishes as the density on links k& grows unbounded while the density on the remaining
outgoing links remains bounded. It is worth observing thaten the routing policy models
some selfish behavior of the particles (e.g., in transportatetworks), then Property (a) and
(b) are very natural assumptions on such behavior as thetyreapome sort of greedy local
minimization of the delay.

Example 2 (Locally responsive distributed routing policyet »,, for 0 < v < n, anda,, for
e € £, be positive constants. Define the routing poligyy

Gi(p) = - GeSPEmP) et <y, (17)
D jeet @i eXp(—1up;)
Clearly, G is distributed, as it uses only information on the particé@sity on the links outgoing

from a nodev in order to compute how the inflow at nodegets split among its outgoing links.
Moreover, for all0 < v < n, ande € £, G(p) is clearly differentiable, and computing partial

derivatives one gets

2 Gi(p) =, OPENLIXPEND) 5 o yiegr Gre, a9
P (Zie&j Q; eXp(_nUpl))
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and B%Ge(p) =0 for all j € £\ &F. This implies that Property (a) of Definition 7 holds true.
Property (b) is also easily verified. Therefofkis a locally responsive distributed routing policy.
In the context of transportation networks, the example if) (& a variant of the logit function

from discrete choice theory emerging from utilization nmaigation perspective of drivers, where
the utility associated with link is the sum of-p. +log a./n, and a double exponential random

variable with parameter, (see, e.g., [24]).

We are now ready to state our main results. The first one shioats when the distributed
routing policyG is locally responsive, the dynamical flow network (6) alwaybnits a unique,

globally attractive limit flow vector.

Theorem 1 (Existence of a globally attractive limit flow untieally responsive routing policies):
Let N be a flow network satisfying Assumptions 1 and)3,> 0 a constant inflow, and a
locally responsive distributed routing policy. Then, #exists a unique limit flow/* € cl(F)

such that, for every initial conditiop(0) € R, the dynamical flow network (6) satisfies

lim f(t) = f*.

t——+o0
Moreover, the limit flowf* is such that, iff* = f™* for some linke € £ outgoing from a
nondestination node < v < n, then f* = f™* for every outgoing linke € .

Proof: See Section IV. [

Theorem 1 states that, when the routing policy is distridbtied locally responsive, there is a
unigue globally attractive limit flowf*. Such a limit flow may be inF, in which case it is not
hard to see that it is necessarily an equilibrium flow, ifé.€ F*(\o); or belong tocl(F)\ F, i.e.,
it satisfies the capacity constraint on one link with eqyalit which case it is not an equilibrium
flow. In the latter case, it satisfies the additional propéhigt, on all the links outgoing from
the same node, the capacity constraints are satisfied withligg Such additional property will
prove particularly useful in our companion paper [4], whé&aracterizing the strong resilience
of dynamical flow networks. As it will become clear in Sectitw, the global convergence
result mainly relies on Assumption 2 on monotonicity of tt@mMlfunction, and Property (a) of
Definition 7 of locally responsive distributed routing podis, from which the dynamical flow
network (6) inherits a cooperative property. It is worth miemng that we shall not use general

results for cooperative dynamical systems [17], [18], [2kit rather exploit some other structural
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fgwax f’t)\’o"ax}
fo () 0\
2
fel()\o) Ay
ax —¥ max
0 N A 0=f(0 1
(@) (b)

Fig. 4. Dependence of the limit floyf* on the inflow )y for the dynamical flow network of Example 3. In (a), the two
components of the limit flow,/f;, and fZ,, are plotted as functions of the inflow,. In (b), the curve of the limit flows is

plotted in the(f,, fZ,)-plane. Observe as both components are increase @reonf:"**, as Ao ranges betweefi and A\y"**,

while they remain constant gg"**, as )\, varies above\;**.

(@ =0 () do=1 (€) =2

Fig. 5. Flow vector fields and flow trajectories for the dyneahiflow network of Example 3, for three values of the inflow.
In the first two caseso < A\g'®*, and hence the limit flowf™ is an equilibrium flow. In contrast, in the latter case, > A§'**,

and consequently™ is not an equilibrium flow and;, = f2}** and f3** = f,, as predicted by Theorem 1.

properties of (6) which in fact allow us to prove strongertes The additional property of the
limit flow follows instead mainly from Property (b) of Defiin 7.
Example 3:Consider a simple topology containing just the origin anel destination node,

i.e., withV = {0, 1}, and two parallel links = {e;, eo}. Assume that the flow functions on the
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two links are identicali., (p) = pe,(p) = 3(1 — e~?)/4. Consider the routing policy

%e_pel GePe2

GO = )
%6_”61 + 6ePe2’ “ (p) %6_”61 + 66 Pe2

Ge,(p) =

Then, the limit flow of the associated dynamical flow netwodn de explicitly computed for

every constant inflowA, > 0, and is given by

(12)\0 — 11+ /(120 — 112+ 28>\0) /24 if0< N < 3/2

fi (o) = .
3/4 it Ao >3/2,

(12)\0 11— /(12h — 112 + 28)\0) /24 if 0< N <3/2
3/4 it o > 3/2.

fz*()\o) =

Figure 4 shows the dependence of the limit flgtvon the inflow \,. The two components
f2, and f, increase frond to f'**, and, respectively, from to f**, as ), ranges fromD to
A= fliex 4 fnax while they remain constant ag varies above\yg**. Figure 5 reports the
vector fields and flow trajectories associated to the dynainfiow network for three different
values of the inflow, namelp, = 0, Ao = 1, and \; = 2. In the first two cases), < A,
and f* € F*(\o) is an equilibrium flow; in the case (iii)f* € cl(F*(\g)) \ F*(A\o) IS not an

equilibrium flow.

Our second main result, stated below, shows that locallyaresive distributed routing policies
are maximally robust, as the resilience of the induced dycanflow network coincides with
the min-cut capacity of the network.

Theorem 2 (Weak resilience for locally responsive disteduouting policies):Let N be a
flow network satisfying Assumptions 1 and, > 0 a constant inflow, ang a locally responsive
distributed routing policy such that?(p) > 0 forall 0 <v <n,e€ &S, andp’ € R,. Then,
for every f° € F, the associated dynamical flow network is partially trarrgig with respect
to f° and has weak resilience

%(f%,G) =CN).

Proof: See Section V. [ ]

Theorem 2, combined with Proposition 1, shows that locadigponsive distributed routing
policies achieve the maximal weak resilience possible amenglow network\'. A consequence

of this result is that locality constraints on the feedbatklimation available to routing policies
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do not reduce the achievable weak resilience. It is alsohna@tserving that such maximal weak
resilience coincides with min-cut capacity of the netwaakd is therefore independent of the
initial flow f°. This is in sharp contrast with the results on the strondieesie of dynamical

flow networks presented in the companion paper [4]. Theige,shown that the strong resilience
depends on the initial flow, and local information constraireduce the maximal strong resilience

achievable on a given flow network.

V. PROOF OFTHEOREM 1

Let \V be a flow network satisfying Assumptions 1 andi2a locally responsive distributed
routing policy, and\, > 0 a constant inflow. We shall prove that there exists a unjtjue cl(F)
such that the flowf(¢) associated to the solution of the dynamical flow network @)verges
to f* ast grows large, for every initial conditiop(0) € R. Before proceeding, it is worth
observing that, thanks to Property (a) of Definition 7 of lbcaesponsive distributed routing
policies, Assumption 2 on the monotonicity of the flow fuoc, and the structure of the
dynamical flow network (6), one may rewrite (6) as

d
Epe—Fe(p), Ve e &,

where F : R — R¢ is differentiable and such that
—Fe<p>20, V€¢j€£

The above shows that, the dynamical flow network (6) drivem ligcally responsive distributed
routing policy G is cooperative in the sense of Hirsch [17], [18]. Indeed, amey apply the
standard theory of cooperative dynamical systems and ranadtows [17], [18], [25] in order
to prove some properties of the solution of (6), e.g., caymece from almost every initial
condition. However, we shall not rely on this general theang rather use a direct approach
based on a Lyapunov argument exploiting the particularctire of the dynamical system (6),
and leading us to stronger results, igligbal convergence to aniquelimit flow.

We shall proceed by proving a series of intermediate resoltse of which will prove useful
also in the companion paper [4]. First, given an arbitrarp-destination nod® < v < n, we
shall focus on the input-output properties of fbeal system

d

P = 2AOG (" (@) = felt), fell) = pelpe(t)), Ve £, (19)
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where \(¢) is a nonnegative-real-valued, Lipschitz continuous inpnd f¥(t) := {f.(t) : e €
&} is interpreted as the output. We shall first prove existeaoe (Uniqueness) of a globally
attractive limit flow for the system (19) under constant inpWe shall then extend this result to
show the existence and attractivity of a local equilibriuminp under time-varying, convergent
local input. Finally, we shall exploit this local input-qutt property, and the assumption of
acyclicity of the network topology in order to establish tin@in result.

The following is a simple technical result, which will prouseful in order to apply Property
(a) of Definition 7.

Lemma 1:Let 0 < v < n be a nondestination node, ad¢l : R, — S, a continuously
differentiable function satisfying Property (a) of Defiait 7. Then, for any, < € R,,

D s sEn(oe = <) (Gilo) = GU<)) < 0. (20)

Proof: Consider the set& := {e € & : 0. > <.}, J == {e € & : 0. < .}, and

L:={ec&: 0. <} DefineGi(C) :=> 1 Gi(C), G£(€) == >, G (), and Gz (() :=
> jes G3(¢). We shall show that, for any,s € R,,

Gi (o) < Gk(s), Grlo) > Ge(s). (21)

Let ¢ € R, be defined by, = o for all k € K, and¢, = ¢, for all e € £\ K. We shall prove
that G (0) — Gie(s) < 0 by writing it as a path integral oV Gy (¢) first along the segmertix
from ¢ to &, and then along the segmesit from £ to o. Proceeding in this way, one gets

Gi(o)—Gk(s) = s VG (¢)-d¢+ s VGk(()-d¢ = — s VGz(¢)-dC+ s VGk(¢)-dg¢,
K L K L (22)

where the second equality follows from the fact that(¢) = 1—G 7(¢) sinceG"(¢) € S,. Now,
Property (a) of Definition 7 implies thalG(¢)/0¢, > 0 for all [ € £, and9G 7(¢)/9¢, > 0
for all £ € K. It follows that VG 7(¢) - d¢ > 0 along Sx, and VG (¢) - d¢ < 0 along S;.
Substituting in (22), one gets the first inequality in (21heTsecond inequality in (21) follows

by similar arguments. Then, one has

Zeeg;r sgn(o. — <) (Ge(o) = GY(<)) = Gr(o) — Gr(s) + Ge(s) — Ge(o) <0,

which proves the claim. [ |
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We can now exploit Lemma 1 in order to prove the following kegult guaranteeing that
the solution of the local dynamical system (19) with constaput \(¢) = A converges to a
limit point which depends on the value afbut not on the initial condition. (Cf. Example 3 and
Figure 5.)

Lemma 2: (Existence of a globally attractive limit flow foetlocal dynamical system under
constant inputLet 0 < v < n be a non-destination node, anch nonnegative-real constant. As-
sume thatz* : R, — &, is continuously differentiable and satisfies Property (apefinition 7.
Then, there exists a uniqué&(\) € cl(F,) such that the solution of the dynamical system (19)
with constant input\(¢) = \ satisfies

lim fo(t) =fi(\),  Vee&[,

for every initial conditionp’(0) € R,.

Proof: Let us fix some)\ € R,. For every initial conditionc € R, and timet > 0, let
d'(0) := p’(t) be the value of the solution of (19) with constant inpyt) = A and initial
conditionp(0) = o, at timet > 0. Also, let ¥'(s) € R, be defined by(c) = p.(®! (o)), for

everye € £F. Now, fix two initial conditionso, ¢ € R,, and define
X(t) = [|®"(0) = " ()1, &) = [[¥"(o) = TS|} -
Since . (pe) is increasing by Assumption 2, one has that
sgn(Pg(0) — D(c)) = sgn(We(o) — V(<)) (23)

On the other hand, using Lemma 1, one gets

Do sen(@ho) — @L) (GH'(0) = GL@'()) <0, VEz0.  (24)
From (23) and (24), it follows that, for all < s <,
x(t) = [|2"(c) — (o)l

= x(s) + / Zeeﬁ sgn(®; (o) — DY ()) (GE(2"(0)) — GL(@*()) — W (o) + W(s))du

(25)
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Sincex(t) > 0, (25) implies thatf0 u)du < x(0) for all t > 0. Sinceé(u) > 0, it follows that

+oo
= <
[ e, [ st

exists and is finite. Now, observe thgt) = ||u"(p"(t))||1 is @ uniformly continuous function

the limit

of t on [0, +o0), as it is the composition of the uniformly continuous funos f* —

p’ — p’(p”) (whose uniform continuity follows from Assumption 2), and— p¥(t) (whose
uniform continuity follows from being the solution of theca dynamical system (19)). Hence,
an application of Barbalat's lemma [26, Lemma 4.2] impliestt(¢) converges td, ast grows
large. That is,

lim [[¥(0) = U'(q)|[[ =0, Vo,ceR,. (26)

t—+4o00

Now, for anyo € R, one can apply (26) witk := ®"(¢), and get that

lim [|W(0) = 97 (o)l = lim [|W(0) = W@ ()l =0,  ¥r>0.

t—-+o0
The above implies that, for any initial conditigri(0) = o € R,, the flow ¥’(o) is Cauchy, and
hence convergent to somfé(\, o) € cl(F,). It follows from (26) again, that

17 On0) = Ol = Jim [[W(0) = W) =0,  Vo,c€ Ry,

which shows that the limit flow does not depend on the init@idition. [ |

Now, let us define
)\vmax — Zee€+ fmax

The following result characterizes the way the local limoifl f*(\) depends on the local input
A. (Cf. Example 3 and Figure 4.)

Lemma 3 (Dependence of the local limit flow on the inpugt0 < v < n be a non-destination
node, and\ a nonnegative-real constant. Assume thét: R, — S, is continuously differen-
tiable and satisfies Properties (a) and (b) of Definition . £€)\) € cl(F,) be the limit flow
of the local system (19) with constant inputt) = A, existence and uniqueness of which follow

from Lemma 2. Then,

0] if A < A" then

L) <=, MG (ff))=f,  Vee&l;
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(i) if A > A1 then fX(\) = f for everye € ;.
Moreover, f*(\) is continuous as a map fro, to cl(F,).

Proof: Define p* € R, by

o { pFIO)) I fIO) < g

A it ) = o
Now, by contradiction, assume that there exists a nonempuygep subset/ C & such that
p; < +oc for everyj € J, andp; = +oo for everyk € K := £\ J. Thanks to Property (b)
of Definition 7, one would have that, for any initial conditip(0) € R, the solution of (19)

satisfies

lim Y AGH(p"(0) — fult) = =D [ <0,

t——+o0
kel kel

so that there would exist some> 0 such that

> (G (1) — fult) <0, VE>7.

ke
Hence,
S nt) =3 a)+ [ S OGE) - AN < Y pln < 4o, Wz
kek kek T kek kek

which would contradict the assumption thét= +oo for everyk € K. Therefore, eithep is
finite for everye € £, or p} is infinite for everye € £,'.
In order to distinguish between the two cases, let

)= pelt), )= felt).

on ecEF

Observe that, for alt > = > 0,

¢t = ¢(r) + / (A= 0(s)) ds 27)

First, consider the case when< \"**, and assume by contradiction th&t= +oco, and hence

[ = fmex_for everye € £. This would imply that

lim 9(t) = A > ),

t—o0
so that there would exist some> 0 such that\ — J(¢) < 0 for everyt > 7, and hence (27)

would imply that((t) < {(r) < +oo for all ¢ > 7, thus contradicting the assumption thatt)
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converges t; = +oo ast grows large. Hencef*(\) € F,, and therefore it is necessarily an
equilibrium flow for the local dynamical system (19).

On the other hand, whek > \™#* (27) shows that () is non-decreasing, hence convergent
to some( (o) € [0, +o0] att grows large. Assume, by contradiction, tligto) is finite. Then,

passing to the limit of large in (27), one would get

+0o0
[ = 9(6))ds = C(o0) = ¢() < (o0) < e
This, and the fact that(¢) < A\"* < A for all t > 0, would imply that

lim 9(t) = \. (28)

t——+o0
Since f.(t) < fx, (28) is impossible ifA > A***. On the other hand, iA = A\**, then (28)
implies that, for every € &£, f.(t) converges tof™**, and hencey,.(t) grows unbounded as
grows large, so that(oo) would be infinite. Hence, ik > A***, then necessarily(oo) is infinite,
and thanks to the previous arguments this implies that +oco, and hencef?(\) = f™ for
aloceR,, ecé&f.
Finally, it remains to prove continuity of*(\) as a function of\. For this, consider the

function H : (0, +00)& x (0, \m*) — RE’ defined by

He(p",\) == AGL(p") — prepe), Ve € &S

Clearly, H is differentiable and such that

aipeHe(p”,A) = Aﬁ%GZ( ") — belpe) = ZA—eG” p") — pe(pe) < —Z%Hj(#’,k),

j#e j#e (29)
where the inequality follows from the strict monotoniciti/tbe flow function (see Assumption
2). Property (a) in Definition 7 implies thatt;(p", ) /0p. > 0 for all j # e € £F. Hence, from
(29), we also have thalH.(p*, \)/dp. < 0 for all e € . Therefore, for allp® € (0, +00)%"
and A € (0, A1), the Jacobian matriX/ . H(p", \) is strictly diagonally dominant, and hence
invertible by a standard application of the Gershgorin I€iiftheorem, e.g., see Theorem 6.1.10
in [27]. It then follows from the implicit function theorentat p*(\), which is the unique zero
of H(-,\), is continuous on the intervad, \***). Hence, alsof*(\) = u(p*(\)) is continuous
on (0, \®), since it is the composition of two continuous functions.r&twver, since
DN =A 0SS, Vee &l VAE (0,0,

ecEt
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one gets that
lim fX(A\) =0, lim fr(\) = firex,

A0 AfAmax 7 €

for all e € £F. Now, one has that_, .+ f7(0) = 0, so that

— ) — Tim £ +
U—fe(O)—lggfe(A% Vee & .

Moreover, as previously shown,

feQ) = £ = lim f2(A), VA= AT

AT Amax

This completes the proof of continuity gf(\) on [0, +00). [ |

While Lemma 2 ensures existence of a unique limit point far tbcal system (19) with
constant input\(¢) = A, the following lemma establishes a monotonicity properithwespect
to a time-varying input\(¢).

Lemma 4 (Monotonicity of the local systent)et 0 < v < n be a nondestination nodé&;" :

R, — S, a continuously differentiable map, satisfying Proper{ias and (b) of Definition 7,
and A~ (¢t), and A" (¢) be two nonnegative-real valued Lipschitz-continuous fiams such that
A (t) < A*(¢t) for all £ > 0. Let p~(¢) andp™(¢) be the solutions of the local dynamical system
(19) corresponding to the inpufs (¢), and \*(¢), respectively, with the same initial condition
p~(0) = p™(0). Then

oo (1) < pf(t), Vee &S, Vi >0. (30)

e

Proof: Fore € £, definer, .= inf{t > 0: pf(¢t) > p. (1)}, and letr := min{r.: e € E}.
Assume by contradiction that, (¢) > p. (t) for somet > 0, ande € &;. Then,7 < o0, and
T .= argmin{7, : e € £} is a well defined nonempty subset &f . Moreover, by continuity,
one has that there exists some 0 such thatp; (1) = p;" (7), p; (t) > p; (t), andp; (t) < p; (t)
foralli e Z, j € J, andt € (1,7 +¢), whereJ := & \ Z. Using Lemma 1, one gets, for

everyt € (1,7 + ¢),
0 > 33 senlp; (t) — pl (1) (GLlp™ (1) — GL(p* (1))
= 3 (Zi Gi(p™ (1) = 22 Gi(p™ (1) = 22, G5 (p™ (1) + 225 G?(,O*(t)))
= 2 Gilpm (1) = 22 GipT (D),
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where the summation indices i, and j run over&;", Z, and 7, respectively. On the other
hand, Assumption 2 implies that(p; (t)) > u;(pf (t)) for all i € Z, t € [r,7 + ). Now, let
X(t) ==Y ,c7 (pi (t) — pf (t)) . Then, for everyt € (7,7 +¢), one has

0 < x(t) = x(7)
N / A () ZZEI (G (p™(s)) = G} (p~(s))) ds
_/ (AT(s) = A7 (s)) GY(p*(s))ds —/ Z,-g (1i(p; (5)) — (i ())) ds

< 0,

i€l

which is a contradiction. Then, necessarily (30) has to hiald. [ |

The following lemma establishes that the output of the loggtem (19) is convergent,
provided that the input is convergent.

Lemma 5 (Attractivity of the local dynamical systerhpt 0 < v < n be a nondestination
node,G" : R, — S, a continuously differentiable map, satisfying Propertias and (b) of

Definition 7, andA(t) a nonnegative-real-valued Lipschitz continuous functach that

lim A(t) = \. (31)

t—-+oo
Then, for every initial conditiorp(0) € R, the solution of the local dynamical system (19)
satisfies
lim fo(t) = fi(\), Vee&, (32)

where f*(\) is as defined in Lemma 2.

Proof: Fix somes > 0, and letr > 0 be such thaf\(t) — | < e for all ¢t > 7. Fort > 7, let
f~(t) and f*(¢) be the flow associated to the solutions of the local dynansigsiem (19) with
initial condition p~(7) = p*(7) = p¥(7), and constant inputa~(¢) = A\~ := max{\ — ¢,0},

and A\ (t) = X\ + ¢, respectively. From Lemma 4, one gets that
fe@® < fe) <5,  VizT,  Veel. (33)

On the other hand, Lemma 2 implies thét(¢) converges tof*(\~), and f*(¢) converges to

f*(A\1), ast grows large. Hence, passing to the limit of larg (33) yields

f2(7) < liminf f.(t) < limsup f.(t) < fX (A +¢), Ve e &F.

N t——+o0 t—+o00
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Form the arbitrariness of > 0, and the continuity off*(\) as a function of), it follows that
f(t) converges tof*(\), ast grows large, which proves the claim. [ |

We are now ready to prove Theorem 1 by showing that, for artjairdondition p(0) € R,

the solution of the dynamical flow network (6) satisfies

Jim f(t) = f2, (34)
for all e € £. We shall prove this by showing via induction on=0,1,...,n — 1 that, for all

e € &f, there existy* € [0, f#*] such that (34) holds true. First, observe that, thanks torham
2, this statement is true far = 0, since the inflow at the origin is constant. Now, assume that
the statement is true for all < v < w, wherew € {1,...,n — 2} is some intermediate node.

Then, sinceS; C U, &+, one has that

tkgloo )\; <t) - tE—irpoo Zee&j fe(t) - Zeé&] fe - )‘w '
Then, Lemma 5 implies that, for alle £, (34) holds true withf* = f*(\%), thus proving the

statement fon = w. This proves the existence of a globally attractive limitflg*. The proof

of Theorem 1 is completed by Lemma 3.

V. PROOF OFTHEOREM 2

This section is devoted to the proof of Theorem 2 on the wealtieace of dynamical flow
networks with locally responsive distributed routing p@sg.

To start with, let us recall that in this case Theorem 1 ingpliee existence of a globally
attractive limit flow f* € cl(F) for the perturbed dynamical flow network associated to any
admissible perturbation/. Define \j = X, and\; = 3. f7, for 0 < v < n.

Lemma 6: Consider a dynamical flow netwoyX satisfying Assumptions 1 and 2, with locally
responsive distributed routing poligy such thatG?(p”) > 0 forall 0 < v < n, e € £, and
p’ € R,. Then, for everyd > 1, there existsGy € (0,1) such that, if A/ is an admissible
perturbation of\" with stretching coefficient less than or equaltcand f* € cl(F) is the limit

flow vector of the corresponding perturbed dynamical flowwwoek (11), then
f2 = Bo;
for every non-destination node< v < n, and every linke € £ for which f* < fmx /9,
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Proof: First, observe that the claim is trivially true jf > f™»/2 for all e € £. Therefore,
let us assume that there exists some link £ for which f* < fm/2. Definep’ € R, by
pl =0forall je&f, j+#e andp! = 6p!, where recall thap! is the median density of the
flow function .. Since the stretching coefficient &f is less than or equal #, one has that the
median densities of the perturbed and the unperturbed flaatifuns satisfyp” < 6p#. This and
the fact thatf; < fm=/2 imply that 5: < p* < p?, while clearly 5t > 0 = pf for all j € &,

j # e. Now, let 3y := G?(p’), and observe that, thanks to the assumption on the stridiviiys

of GY(p”), one hasd, > 0. Then, from Lemma 1 one gets that

Gt =5 (G +1-3 Gn) 25 (G 1= @) = G = .
(35)
On the other hand, singg < f™»/2 < f™» Lemma 2 implies that necessarilyG?(5*) = f.
The claim now follows by combining this and (35). [ ]
As a consequence of Lemma 6, we now prove the following restgtving that the dynamical
flow network is partially transferring and providing a lowaound on its weak resilience:
Lemma 7:Let NV be a flow network satisfying Assumptions 1 and\g > 0 a constant inflow,
and g a locally responsive distributed routing policy such th&t o) > 0 for all 0 < v < n,
e € &F, andp” € R,. Then, the associated dynamical flow network is partialnsferring,

and, for everyd > 1, anda € (0, 5], its resilience satisfies
Yao(f1G) = CN) = 2[ENofy "er,

where, € (0,1) is as in Lemma 6.

Proof: Consider an arbitrary admissible perturbati®hof magnitude
§ < OWN) = 2|E| Ny ", (36)

and stretching coefficient less than or equad t&Ve shall iteratively select a sequence of nodes

0 =: vg,v1,...,v; ;= n such that, for every < j <k,
Ji€{0,...,j—1}  suchthat (v;v;) €E, fi,,) = roaB) " (37)
Sincev, = n, and 35" > 1, the above withj = k < n will immediately imply that

im \, (1) =\ = o> a),
lim A A: 1 o3y A (38)
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so that the perturbed dynamical flow networkdgtransferring. For) < a < 377/(2|€| o),
one could chose a trivial perturbatiodi = A" so that (38) would imply the partial transferring
property of the original dynamical flow network. Moreovéretrest of the claim will then readily
follow from the arbitrariness of the considered admisspeeturbation.

First, let us consider the cage= 1. Assume by contradiction thaﬁ; < N3y, for every
link e € &'. Sincea < 3, this would imply thatf: < ByAo and hence, by Lemma 6, that
fmax < of* for all e € £F, so that

Do frsed < 20lE715 A < 201€]5) "o
0 0

Combining the above with the inequality(N) < Zee% frmex"one would get

5230 o (10 = Jr) > C) — 20l€]55 .

thus contradicting the assumption (36). Hence, necegghile exists € £ such thatf; >
Moaf, ", and choosing, to be the unique node W such that ¢ &,., one sees that (37) holds
true with j = 1.

Now, fix somel < j* < k, and assume that (37) holds true for eveérg j < j*. Then, by

choosingi as in (37), one gets that
Ny = D cer 102 Ty Z M00B) " 2 a7 VIS <7 (39)
Moreover, J
Ai= X > doay" > Noafy T (40)

Let U := {vg, v1,...,v~_1} and&; C € be the set of links with tail node it¥ and head node

in ¥V \ Y. Assume by contradiction that
fr<XaB) ™, VYee&h.

Thanks to (39) and (40), this would imply thlt, < 55\, for every0 < j < j* ande € & N&;.
Then, sinceS;; = U/, (£f N &;), Lemma 6 would imply thayf > < 2f* for everye € & .

This would yield

Fmax % j*—n 1-n
Zeng frmex < Zeng 2ff <2y . AoaBy " < 2AE Mooy "

u

From the above and the inequaliy(\) < D e Jo, one would get

5230 o (10 = Jr) > CN) — 20l€l55 N,
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thus contradicting the assumption (36). Hence, necegdhelre exists € & such thatf; >
Xoaf, ", and choosing;- to be the unique node i® such thate € 5;]_* one sees that (37)

holds true withj = j*. Iterating this argument unti;» = n proves the claim. [ ]

It is now easy to see that Lemma 7 implies thai, o v.¢ > C(N) for everyd > 1, thus
showing thaty,(f°,G) > C(N). Combined with Proposition 1, this shows that /°,G) =
C(N), thus completing the proof of Theorem 2.

VI. CONCLUSION

In this paper, we studied robustness properties of dyndrfima networks, where the dy-
namics on every link is driven by the difference between thiéow, which depends on the
upstream routing decisions, and the outflow, which depemdshe particle density, on that
link. We proposed a class of locally responsive distributedting policies that rely only on
local information about the network’s current particle siéies and yield the maximum weak
resilience with respect to malicious disturbances thaticedhe flow functions of the links of
the network. We also showed that the weak resilience of tieark in that case is equal to
min-cut capacity of the network, and that it is independdnthe local information constraint
and the initial flow. Strong resilience of dynamical flow netks is studied in the companion
paper [4].
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