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Robust Distributed Routing in Dynamical Networks
– Part I: Locally Responsive Policies and Weak

Resilience
Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh Emilio Frazzoli

Abstract—Robustness of distributed routing policies is studied
for dynamical networks, with respect to adversarial disturbances
that reduce the link flow capacities. A dynamical network is
modeled as a system of ordinary differential equations derived
from mass conservation laws on a directed acyclic graph with
a single origin-destination pair and a constant total outflow at
the origin. Routing policies regulate the way the total outflow at
each non-destination node gets split among its outgoing links as
a function of the current particle density, while the outflow of a
link is modeled to depend on the current particle density on that
link through a flow function. The dynamical network is called
partially transferring if the total inflow at the destination node is
asymptotically bounded away from zero, and its weak resilience
is measured as the minimum sum of the link-wise magnitude
of all disturbances that make it not partially transferring. The
weak resilience of a dynamical network with arbitrary routing
policy is shown to be upper-bounded by the network’s min-cut
capacity, independently of the initial flow conditions. Moreover, a
class of distributed routing policies that rely exclusively on local
information on the particle densities, and are locally responsive to
that, is shown to yield such maximal weak resilience. These results
imply that locality constraints on the information available to the
routing policies do not cause loss of weak resilience. Fundamental
properties of dynamical networks driven by locally responsive
distributed routing policies are analyzed in detail, including
global convergence to a unique limit flow. The derivation of these
properties exploits the cooperative nature of these dynamical
systems, together with an additional stability property implied
by the assumption of monotonicity of the flow as a function of
the density on each link.

Index terms: dynamical networks, distributed routing poli-
cies, weak resilience, min-cut capacity, cooperative dynamical
systems, monotone control systems.

I. INTRODUCTION

Network flows provide a fruitful modeling framework for
transport phenomena, with many applications of interest, e.g.,
road traffic, data, and production networks. They entail a
fluid-like description of the macroscopic motion of particles,
which are routed from their origins to their destinations via
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intermediate nodes: we refer to standard textbooks, such as
[2], for a thorough treatment.

The present and a companion paper [3] study dynamical
formulations of flows over networks. In particular, we study
dynamical networks, modeled as systems of ordinary differen-
tial equations derived from mass conservation laws on directed
acyclic graphs with a single origin-destination pair and a
constant total outflow at the origin. The rate of change of
the particle density on each link of the network equals the
difference between the inflow and the outflow of that link. The
latter is modeled to depend on the current particle density on
that link through a flow function. On the other hand, the way
the total outflow at a non-destination node gets split among its
outgoing links depends on the current particle density, possibly
on the whole network, through a routing policy. A routing
policy is said to be distributed if the proportion of total outflow
routed to the outgoing links of a node is allowed to depend
only on local information, consisting of the current particle
densities on the outgoing links of the same node.

The inspiration for such a modeling paradigm comes from
empirical findings from several application domains: in road
traffic networks [4], the flow functions are typically referred
to as fundamental diagrams; in data networks [5], [6], [7],
flow functions model congestion-dependent throughput and
average delays, while routing policies are designed in order to
optimize the total throughput or other performance measures;
in production networks [8], [9], flow functions correspond
to clearing functions. As for the routing policies, in data
and production networks they have to be thought as suitably
designed distributed feedback controls. On the other hand, in
road traffic networks routing policies are meant to describe the
selfish dynamic route choice behavior of the drivers adapting
to the current congestion levels of the network.

Our objective is the analysis and design of distributed
routing policies for dynamical networks that are maximally
robust with respect to adversarial disturbances that reduce
the link flow capacities. Two notions of transfer efficiency are
introduced in order to capture the extremes of the resilience
of the network towards disturbances: the dynamical network
is fully transferring if the total inflow at the destination node
asymptotically approaches the total outflow at the origin node,
and partially transferring if the total inflow at the destination
node is asymptotically bounded away from zero. The robust-
ness of distributed routing policies is evaluated in terms of
the network’s strong and weak resilience, which are defined
as the minimum sum of link-wise magnitude of disturbances



2

making the perturbed dynamical network not fully transferring,
and, respectively, not partially transferring. In this paper, we
prove that the maximum possible weak resilience is yielded
by a class of locally responsive distributed routing policies,
which rely only on local information on the current particle
densities on the network, and are characterized by the property
that the portion of its total outflow that a node routes towards
an outgoing link does not decrease as the particle density on
any other outgoing link increases. Moreover, we show that
the maximum weak resilience of dynamical networks with
arbitrary, not necessarily distributed, routing policies equals
the min-cut capacity of the network and hence is independent
of the initial flow.

The contributions of this paper are as follows: (i) we
formulate a novel dynamical system framework for robustness
analysis of transport networks under feedback routing policies
that are possibly constrained in the available information; (ii)
we introduce a rich class of locally responsive distributed
routing policies that yield the maximum weak resilience;
(iii) we provide a simple characterization of the resilience
in terms of the topology and capacity of the network. In
particular, the class of locally responsive distributed routing
policies can be interpreted as approximate Nash equilibria in
an appropriate zero-sum game setting where the objective of
the adversary inflicting the disturbance is to make the network
not partially transferring with a disturbance of minimum
possible magnitude, and the objective of the system planner is
to design distributed routing policies that yield the maximum
possible resilience. The results of this paper imply that locality
constraints on the information available to routing policies
do not affect the maximally achievable weak resilience. In
contrast, in the companion paper [3], we focus on the strong
resilience properties of dynamical networks, and show that
locally responsive distributed routing policies are maximally
robust, but only within the class of distributed routing policies
which are constrained to use only local information on the
particle densities.

The main technical assumptions in our model are that the
network topology is acyclic and contains a single origin-
destination pair; that the density is not bounded a priori;
and that, on every link, the flow is monotonically increasing
in the density. The acyclicity assumption does not cause
serious limitations to the applicability of our results as long
as one is dealing, as we are, with a single origin-destination
pair. However, such assumption limits the generalizability of
our results to scenarios with multiple origin-destination pairs,
where the absence of cycles is harder to justify. On the
other hand, the absence of an a priori bound on the particle
density prevents the occurrence of backward effects, such as
the so-called bullwhip effect often observed in production
networks (see, e.g., [10]). Finally, monotonicity of the flow
function is a reasonable assumption for production networks
[10], as well as data networks, in particular the Internet,
for the existence of TCP/IP (traffic control protocol/Internet
protocol) congestion control procedures [6], [7]. In contrast,
this assumption constitutes a major limitation in road traffic
networks, where fundamental diagrams are typically assumed
to have a ∩-shaped graph. However, in this application context,

our results can be applied, provided that the density on each
link remains on the interval in which the flow function is
increasing, and thus allow one to obtain possibly conservative
bounds on the resilience of road traffic networks. Also, it
is worth stressing out that, in road traffic networks, local
responsiveness of the distributed routing policies appears to
be a very natural assumption for the behavior of drivers which
naturally tend to choose a link with higher frequency the less
congested it is. Similarly, local responsiveness appears to be
an intuitive design guideline for distributed routing policies in
data and production networks.

In the course of our analysis, we prove some fundamental
properties of dynamical networks driven by locally responsive
distributed policies, including global convergence to a unique
limit flow. These results are mainly a consequence of the
cooperativeness property (in the sense of Hirsch [11], [12],
see also the recent survey [13]) which dynamical networks
inherit from local responsiveness of the distributed routing
policies. In particular, our proof of global convergence to a
unique limit flow exploits the acyclicity assumption on the
network topology in order to treat the dynamical network as
a cascade of monotone local systems (in the spirit of [14]),
whose input-output characteristics are established by an ad
hoc contraction argument which makes careful use of the local
responsiveness of the distributed routing policy, as well as of
the monotonicity of the link flow functions.

Stability analysis of network flow control policies under
non-persistent disturbances, especially in the context of the
Internet, has attracted a lot of attention, e.g., see [15], [16],
[17], [18]. Robustness of the internet with respect to its
architecture has been studied in [19], [20]. Recent work on
robustness analysis of static network flows under adversarial
and probabilistic persistent disturbances in the spirit of this
paper include [21], [22], [23]. Our problem setup could also
be considered as a dynamical and distributed version of
the network interdiction problem, e.g., see [24], where the
objective is to find the set of links to be removed from a
network to maximize the reduction in its flow capacity subject
to budget constraints on link removal. It is worth comparing
the distributed routing policies studied in this paper with the
back-pressure policy [25], which is one of the most well-
known robust distributed routing policy for queueing networks.
While relying on local information in the same way as the
distributed routing policies studied here, back-pressure policies
require the nodes to have, possibly unlimited, buffer capacity.
In contrast, in our framework, the nodes have no buffer
capacity. In fact, the distributed routing policies considered in
this paper are closely related to the well-known hot-potato or
deflection routing policies [26] [5, Sect. 5.1], where the nodes
route incoming packets immediately to one of the outgoing
links. However, to the best of our knowledge, the robustness
properties of dynamical networks, where the outflow from a
link is not necessarily equal to its inflow have not been studied
before.

It is also worth contrasting our work with the fluid-
dynamical and kinetic models of transport networks as treated,
e.g., in [4], [9], and references therein. As compared to these
models (typically described by partial, or integro-differential
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equations), ours provide a much coarser description (treating
particle density and flow as homogeneous quantities on the
links, representative of spatial averages), whereas it highlights
the role of the feedback routing policies, with possibly differ-
ent levels of information, which is typically neglected in that
literature.

Finally, we wish to stress once more that the notion of
resilience we deal with in this work is with respect to de-
terministic adversarial disturbances. Based on similar analy-
ses for other complex networks [19], [20], it is reasonable
to expect that, in some cases, stochastic perturbations may
guarantee better resilience for given probabilistic properties of
the considered perturbations, as opposed to worst case scenario
analyzed here. This point is not addressed here, but rather left
as a topic for further research.

The rest of the paper is organized as follows. In Section II,
we formulate the problem by formally defining the notion of
a dynamical network and its resilience, and we prove that the
weak resilience of a dynamical network driven by an arbitrary,
not necessarily distributed, routing policy is upper-bounded
by the min-cut capacity of the network. In Section III, we
introduce the class of locally responsive distributed routing
policies, and state the main results on dynamical networks
driven by such locally responsive distributed routing policies:
Theorem 1, concerning global convergence towards a unique
equilibrium flow; and Theorem 2 concerning the maximal
weak resilience property. In Sections IV, and V, we state
proofs of Theorem 1, and Theorem 2, respectively.

Before proceeding, we define some preliminary notation
to be used throughout the paper. Let R be the set of real
numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative
real numbers. When A and B are finite sets, |A| will denote
the cardinality of A, RA (respectively, RA+) will stay for the
space of real-valued (nonnegative-real-valued) vectors whose
components are indexed by elements of A, and RA×B for
the space of matrices whose real entries indexed by pairs of
elements in A × B. The transpose of a matrix M ∈ RA×B,
will be denoted by MT ∈ RB×A, while 1 will stand for the
all-one vector, whose size will be clear from the context. Let
cl(X ) be the closure of a set X ⊆ RA. A directed multigraph
is the pair (V, E) of a finite set V of nodes, and of a multiset E
of links consisting of ordered pairs of nodes (i.e., we allow for
parallel links). Given a directed multigraph (V, E), for every
node v ∈ V , we shall denote by E+v ⊆ E , and E−v ⊆ E , the set
of its outgoing and incoming links (i.e., the sets of links whose
tail, and, respectively, head node is v), respectively. Moreover,
we shall use the shorthand notation Rv := RE

+
v

+ for the set of
nonnegative-real-valued vectors whose entries are indexed by
elements of E+v , Sv := {p ∈ Rv :

∑
e∈E+v pe = 1} for the

simplex of probability vectors over E+v , and R := RE+ for
the set of nonnegative-real-valued vectors whose entries are
indexed by the links in E .

II. DYNAMICAL NETWORKS AND THEIR RESILIENCE

In this section, we introduce our model of dynamical
networks and define the notions of transfer efficiency.

!0 !n(t)0
nv

e fe(t)

Fig. 1. A network topology satisfying Assumption 1: the nodes v are labeled
by the integers between 0 (denoting the origin node) and n (denoting the
destination node), in such a way that the label of the head node of each link
is higher than the label of its tail node. The total outflow at the origin, λ0,
may be interpreted as the input to the dynamical network, and the total inflow
at destination, λn(t), as the output. For α ∈ [0, 1], the dynamical network is
α-transferring if lim inft→∞ λn(t) ≥ αλ0, i.e., if at least an α-fraction of
the total outflow at the origin is transferred to the destination, asymptotically.

A. Dynamical networks

We start with the following definition.

Definition 1 (Network): A network N = (T , µ) is the pair
of a topology, described by a finite directed multigraph T =
(V, E), where V is the node set and E is the link multiset,
and a family of flow functions µ := {µe : R+ → R+}e∈E
describing the functional dependence fe = µe(ρe) of the flow
on the density of particles on every link e ∈ E . The flow
capacity of a link e ∈ E is defined as

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notation Fv := ×e∈E+v [0, fmax
e ) for the

set of admissible flow vectors on outgoing links from node v,
and F := ×e∈E [0, fmax

e ) for the set of admissible flow vectors
for the network. We shall write f := {fe : e ∈ E} ∈ F ,
and ρ := {ρe : e ∈ E} ∈ R, for the vectors of flows and
of densities, respectively, on the different links. The notation
fv := {fe : e ∈ E+v } ∈ Fv , and ρv := {ρe : e ∈ E+v } ∈ Rv
will stand for the vectors of flows and densities, respectively,
on the outgoing links of a node v. We shall compactly denote
by f = µ(ρ) and fv = µv(ρv) the functional relationships
between density and flow vectors.

Throughout this paper, we shall restrict ourselves to network
topologies satisfying the following:

Assumption 1: The topology T contains no cycles, has a
unique origin (i.e., a node v ∈ V such that E−v is empty),
and a unique destination (i.e., a node v ∈ V such that E+v is
empty). Moreover, there exists a path in T to the destination
node from every other node in V .
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Fig. 2. An origin/destination cut of the network: U is a subset of nodes
including the origin 0 but not the destination n, and E+U is the subset of those
links with tail node in U , and head node in V \ U .

Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V (see, e.g., [27]).
We shall assume to have fixed one such ordering, identifying
V with the integer set {0, 1, . . . , n}, where n := |V| − 1, in
such a way that

E−v ⊆
⋃

0≤u<v
E+u , ∀v = 0, . . . , n . (2)

In particular, (2) implies that 0 is the origin node, and n the
destination node in the network topology T (see Fig. 1). An
origin-destination cut (see, e.g., [2]) of T is a binary partition
of V into U and V \ U such that 0 ∈ U and n ∈ V \ U . Let

E+U := {(u, v) ∈ E : u ∈ U , v ∈ V \ U} (3)

be the set of all the links pointing from some node in U to
some node in V \ U (see Fig. 2). The min-cut capacity of a
network N is defined as

C(N ) := min
U

∑
e∈E+U

fmax
e , (4)

where the minimization runs over all the origin-destination
cuts of T . Throughout this paper, we shall assume a constant
total outflow λ0 ≥ 0 at the origin node. Let us define the set
of admissible equilibrium flows associated to a total flow λ0
as

F∗(λ0) :=

f∗ ∈ F :
∑
e∈E+0

f∗e = λ0 ,

∑
e∈E+v

f∗e =
∑
e∈E−v

f∗e , ∀ 0 < v < n

 .

Then, it follows from the max-flow min-cut theorem (see,
e.g., [2]), that F∗(λ0) 6= ∅ whenever λ0 < C(N ). That
is, the min-cut capacity equals the maximum flow that can
pass from the origin to the destination node while satisfying

fig17
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Fig. 3. Qualitative behavior of a flow function satisfying Assumption 2:
µe(ρe) is differentiable, strictly increasing, has bounded derivative and such
that µe(0) = 0, and lim

ρe→∞
µe(ρe) = fmax

e < +∞. The median density

ρµe , as defined in (5) is plotted as well.

capacity constraints on the links, and conservation of flow at
the intermediate nodes.

Throughout the paper, we shall make the following assump-
tion on the flow functions (see also Fig. 3):

Assumption 2: For every link e ∈ E , the map µe :
R+ → R+ is continuously differentiable, strictly increasing,
has bounded derivative, and is such that µe(0) = 0, and
fmax
e < +∞.

Thanks to Assumption 2, one can define the median density
on link e ∈ E as the unique value ρµe ∈ R+ such that

µe(ρ
µ
e ) = fmax

e /2. (5)

Example 1 (Flow function): For every link e ∈ E , let ae
and fmax

e be positive real constants. Then, a simple example
of flow function satisfying Assumption 2 is given by

µe(ρe) = fmax
e (1− exp(−aeρe)) .

It is easily verified that the flow capacity is fmax
e , while the

median density for such a flow function is ρµe = a−1e log 2.

We now introduce the notion of a distributed routing policy
used in this paper.

Definition 2 ((Distributed) routing policy): A routing pol-
icy for a network N is a family of differentiable functions
G := {Gv : R → Sv}0≤v<n describing the ratio in which the
particle flow incoming in each non-destination node v gets
split among its outgoing link set E+v , as a function of the
observed current particle density. A routing policy is said to be
distributed if, for all 0 ≤ v < n, there exists a differentiable
function G

v
: Rv → Sv such that Gv(ρ) = G

v
(ρv) for all

ρ ∈ R, where ρv is the projection of ρ on the outgoing link
set E+v .

The salient feature in Definition 2 is that a distributed
routing policy depends only on the local information on the
particle density ρv on the set E+v of outgoing links of the non-
destination node v, instead of the full vector of current particle
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densities ρ on the whole link set E . Throughout this paper, we
shall make a slight abuse of notation and write Gv(ρv), instead
of G

v
(ρv), for the vector of the fractions in which the total

outflow of node v gets split into its outgoing links.
We are now ready to define a dynamical network.

Definition 3 (Dynamical network): A dynamical network
associated to a network N satisfying Assumption 1, a dis-
tributed routing policy G, and a total outflow λ0 ≥ 0 at the
origin, is the dynamical system

d

dt
ρe(t) = λv(t)G

v
e(ρ(t))− fe(t) , ∀ e ∈ E , (6)

where v is the tail node of link e, and

fe(t) := µe(ρe(t)) ,

λv(t) :=

{
λ0 if v = 0∑
e∈E−v fe(t) if 0 < v ≤ n.

Equation (6) states that the rate of change of the particle
density on a link e outgoing from some non-destination node
v is given by the difference between λv(t)G

v
e(ρ(t)), i.e., the

portion of the total outflow at node v which is routed to
link e, and fe(t), i.e., the particle flow on link e. Observe
that the (distributed) routing policy Gv(ρ) induces a (local)
feedback which couples the dynamics of the particle flow on
the different links. Notice that the differentiability assumptions
on the routing policy and on the flow functions readily imply
existence and uniqueness of a solution to the dynamical
network (6) for every initial flow f◦ ∈ F (or, equivalently,
for every initial density ρ◦ ∈ R).

We now introduce the following notion of transfer efficiency
of a dynamical network.

Definition 4 (Transfer efficiency): Consider a dynamical
network N satisfying Assumptions 1 and 2. Given some flow
vector f◦ ∈ F , and α ∈ [0, 1], the dynamical network (6) is
said to be α-transferring with respect to f◦ if the solution of
(6) with initial condition ρ(0) = µ−1(f◦) satisfies

lim inf
t→∞

λn(t) ≥ αλ0 . (7)

Definition 4 states that a dynamical network is α-
transferring when the total inflow at destination is asymp-
totically not smaller than α times the total outflow at the
origin. In particular, a fully transferring (α = 1) dynamical
network is characterized by the property of having total inflow
at destination asymptotically equal to the total outflow at the
origin, so that there is no throughput loss. On the other hand, a
partially transferring dynamical network might allow for some
throughput loss, provided that some fraction of the flow is still
guaranteed to be asymptotically transferred.

Remark 1: Standard definitions in the literature are typi-
cally limited to static network flows describing transport of
particles at equilibrium via conservation of flow at interme-
diate nodes. In fact, they usually consist (see e.g., [2]) in
the specification of a topology T , a vector of flow capaci-
ties fmax ∈ R, and an admissible equilibrium flow vector
f∗ ∈ F∗(λ0) for λ0 < C(N ) (or, often, f∗ ∈ cl(F∗(λ0))

for λ0 ≤ C(N )). In contrast, in our model, we focus on the
off-equilibrium particle dynamics on a network N , induced
by a (distributed) routing policy G.

B. Examples

We now present three illustrative applications of the dynam-
ical network framework.

(i) Data networks: We start by explaining how to frame data
networks with TCP/IP congestion control in our setting. We
shall refer to models and terminology from [5], [7]. In data
networks, the particles are meant to represent data packets,
the nodes are an abstraction for the combination of a modem
and the corresponding local process associated with the data
link control layer (for transmission of data between nodes)
and the network layer (for implementing the routing protocol).
Links are the channels where the packets form queues during
transmission between the corresponding nodes. Hence, the
notion of density ρe on a link e in our framework is directly
related to the (suitably rescaled) queue length on the channels.
On the other hand, the outflow µe(ρe) = fe represents the
throughput, measuring the number of packets successfully
transmitted per unit of time.

Observe that, in TCP/IP, the round-trip (delay) time (RTT) is
the time from sending a packet for the first time to receiving its
acknowledgement from the destination (see, e.g., [7]). When
only a few packets are being sent on the channel, one does
not observe relevant congestion effects, and the throughput can
be reasonably modeled as proportional to the density divided
by the RTT. On the other hand, as the number of packets
being sent increases, bandwidth limitations imply an increase
in the packet drop probability, and consequently an increase
in the (average) number of retransmissions per packet. As an
effect, as the packet density increases, the throughput tends
to saturate approaching the channel capacity. Flow functions
fe = µe(ρe) satisfying Assumption 2 provide effective models
for such behavior.

(ii) Production networks: In the context of multi-stage
production networks, the particles represent goods that need
to be processed by a series of production modules located
on links. The nodes represent abstractions of routing policies
that route goods from one stage to the next. The density
corresponds to work-in-process. It is known, e.g., see [8], that
the throughput of a single-stage production system follows
a nonlinear relationship with respect to its work-in-process.
This relationship, which is commonly referred to as clearing
function, satisfies Assumption 2 of our model. Therefore, such
production networks have a clear analogy with our setup where
ρe represents the work-in-progress and µe(ρe) represents the
clearing function. Notice that, in our formulation, we assume
infinite capacity for work-in-process because of which our
model can not generate bullwhip effects commonly observed
in supply chains, e.g., see [28], [9].

(iii) Traffic networks: In road traffic networks, particles
represent drivers and distributed routing policies correspond
to their local route choice behavior in response to the lo-
cally observed link densities. The distributed routing policies
correspond to the node-wise route choice behavior of the
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drivers. In that respect, observe that, in road traffic networks,
locally responsive policies as characterized by Definition 7
are particularly natural as they model the behavior of drivers
myopically preferring routes which appear to be locally less
congested.

The flow function µe(ρe) presented in this paper is related
to the notion of fundamental diagram in traffic theory, e.g.,
see [4]. As already pointed out, however, Assumption 2 on the
monotonicity of the flow functions poses a potential limitation
to the applicability of our results, as typical fundamental
diagrams in road traffic theory have a ∩-shape form. Some
simulations are provided in [3] illustrating how the results
of this paper could be extended to this case. On the other
hand, the analysis presented in this paper continues to provide
insight on the local behavior of dynamical networks with flow
functions having ∩-shaped graph, in the region where the flow
is increasing in the density.1

Remark 2: It is worth stressing that, while distributed rout-
ing policies depend only on local information on the current
density, their structural form may depend on some global
information on the network. Such global information might
have been accumulated through a slower time-scale evolu-
tionary dynamics. A two time-scale process of this sort has
been analyzed in our related work [29] in the context of
traffic networks. Multiple time-scale dynamical processes have
also been analyzed in [30] in the context of data networks.
When not directly designable, desired route choice behaviors
from a social optimization perspective may be achieved by
appropriate incentive mechanisms. While we do not address
the issue of mechanism design in this paper, the companion
paper [3] discusses the use of tolls in influencing the long-
term global route choice behavior of drivers to get a desired
equilibrium flow in traffic networks.

C. Perturbed dynamical networks and resilience

We shall consider persistent perturbations of the dynamical
network (6) that reduce the flow functions on the links, as per
the following:

Definition 5 (Admissible perturbation): An admissible per-
turbation of a network N = (T , µ), satisfying Assumptions 1
and 2, is a network Ñ = (T , µ̃), with the same topology T ,
and a family of perturbed flow functions µ̃ := {µ̃e : R+ →
R+}e∈E , such that, for every e ∈ E , µ̃e satisfies Assumption
2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly let f̃max
e := sup{µ̃e(ρe) : ρe ≥ 0}. The

magnitude of an admissible perturbation is defined as

δ :=
∑
e∈E

δe , δe := sup
ρe≥0
{µe(ρe)− µ̃e(ρe)} . (8)

The stretching coefficient of an admissible perturbation is
defined as

θ := max{ρ̃µe /ρµe : e ∈ E} , (9)

1In particular, in that context, possibly conservative bounds on the resilience
of dynamical networks driven by locally responsive distributed routing policies
can be obtained exploiting our analysis and the monotone properties of such
dynamical systems.
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Fig. 4. Perturbed flow functions for Example 2, with ε = 1/2. For the
first perturbation µ̃e(ρe) = µe(ρe)/2 (dashed plot), the magnitude is δe =
fmax
e /2, while the stretching coefficient is θ = ρ̃µe /ρ

µ
e = 1. For the second

perturbation µ̂e(ρe) = µe(ρe/2) (densely dotted plot), the magnitude is
δe = sup{µe(ρe)−µe(ρe/2) : ρe ≥ 0}, while the stretching coefficient is
θ̂ = ρ̂µe /ρ

µ
e = 1/2.

where ρµe , and ρ̃µe are the median densities associated to the
unperturbed and the perturbed flow functions, respectively, on
link e ∈ E , as defined in (5).

Observe that the magnitude of an admissible perturbation is
defined as the sum, over all links, of the infinity norm of the
original minus the perturbed flow functions and is therefore
an aggregate measure of the changes on the ordinate of the
flow function graphs. In contrast, the stretching coefficient is
a measure of the maximal change of the median of the flow
functions, which is measured on the abscissa of their graphs.
In fact, we shall regard the former as the most informative
measure of the perturbation, while the latter is introduced
mostly for technical reasons which will be made clear in the
sequel (see Remark 4).

Example 2: Fix ε ∈ (0, 1], and consider the perturbed
networks with flow functions µ̃e(ρe) = εµe(ρe), and µ̂e(ρe) =
µe(ερe), respectively, for e ∈ E . Then, the first perturba-
tion has magnitude δ = (1 − ε)

∑
e f

max
e , and stretching

coefficient θ = 1, while the second one has magnitude
δ̂ =

∑
e sup{µe(ρe) − µe(ερe) : ρe ≥ 0}, and stretching

coefficient θ̂ = 1/ε. The case ε = 1/2 is reported in Figure 2.

Given a dynamical network as in Definition 3, and an
admissible perturbation as in Definition 5, we shall consider
the perturbed dynamical network

d

dt
ρ̃e(t) = λ̃v(t)G

v
e(ρ̃(t))− f̃e(t) , ∀e ∈ E , (10)

where v denotes the tail node of link e, and

f̃e(t) := µ̃e(ρ̃e(t)) ,

λ̃v(t) :=

{ ∑
e∈E−v f̃e(t) if 0 < v < n

λ0 if v = 0 .

(11)

Observe that the perturbed dynamical network (10) has the
same structure of the original dynamical network (6), as it
describes the rate of change of the particle density on each
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link e outgoing from some non-destination node v as the
difference between λ̃v(t)G

v
e(ρ̃(t)), i.e., the portion of the

perturbed total outflow at node v which is routed to link e,
minus the perturbed flow on link e itself. Notice that the only
difference with respect to the original dynamical network (6)
is in the perturbed flow function µ̃e(ρe) on each link e ∈ E ,
which replaces the original one, µe(ρe). In particular, the
(distributed) routing policy G is the same for the unperturbed
and the perturbed dynamical networks. In this way, we model
a situation in which the routers are not aware of the fact that
the network has been perturbed, but react to this change only
indirectly, in response to variations of the local density vectors
ρ̃v(t).

Remark 3: Observe that admissible perturbations as char-
acterized by Definition 5 do not include complete link shut-
downs, as these would correspond to perturbed flow functions
µ̃e(ρe) ≡ 0, which clearly violate the strict monotonicity
required by Assumption 2. Nevertheless, complete link shut-
downs can be approximated arbitrarily closely by admissible
perturbations, e.g., by considering perturbed flow functions of
the form µ̃e(ρe) = εµe(ρe) with arbitrarily small but positive
ε. In fact, the analysis presented in this work could be suitably
extended so as to include complete link shutdowns. The
authors’ choice not to do that is in the interest of simplicity
and brevity of the exposition.

We are now ready to define the following notion of re-
silience of a dynamical network as in Definition 3 with respect
to an initial flow.

Definition 6: (Resilience of a dynamical
network) Let N be a network satisfying Assumptions 1 and
2, G be a distributed routing policy, and λ0 ≥ 0 be a constant
total outflow at the origin node. Given α ∈ (0, 1], θ ≥ 1 and
f◦ ∈ F , let γα,θ(f◦,G) be equal to the infimum magnitude of
all the admissible perturbations of stretching coefficient less
than or equal to θ for which the perturbed dynamical network
(10) is not α-transferring with respect to f◦. Also, define

γ0,θ(f
◦,G) := lim

α↓0
γα,θ(f

◦,G) .

For α ∈ [0, 1], the α-resilience with respect to f◦ is defined
as2

γα(f◦,G) := lim
θ→∞

γα,θ(f
◦,G) .

The 1-resilience will be referred to as the strong resilience,
while the 0-resilience will be referred to as the weak resilience.

Remark 4: For α = 0, the perturbed network flow is always
0-transferring with respect to any initial flow. For this reason,
the definition of the weak resilience γ0(f◦,G) involves the
double limit limθ→∞ limα↓0 γα,θ(f◦,G): the introduction of
the bound on the stretching coefficient of the admissible per-
turbation is a mere technicality whose necessity will become
clear in Section V.

2It is easily seen that the limits involved in this definition always exist, as
γα,θ(f

◦,G) is clearly nonincreasing in α (the higher α, the more stringent
the requirement of α-transfer) and θ (the higher θ, the more admissible
perturbations are considered that may potentially make the dynamical network
to be not α-transferring).

In the remainder of the paper, we shall focus on the charac-
terization of the weak resilience of dynamical networks, while
the strong resilience will be addressed in the companion paper
[3]. Before proceeding, let us elaborate a bit on Definition 6.
Notice that, for every α ∈ (0, 1], the α-resilience γα(f◦,G)
is simply the infimum magnitude of all the admissible pertur-
bations such that the perturbed dynamical network (10) is not
α-transferring with respect to the equilibrium flow f◦. In fact,
one might think of γα(f◦,G) as the minimum effort required
by a hypothetical adversary in order to modify the dynamical
network from (6) to (10), and make it not α-transferring,
provided that such an effort is measured in terms of the
magnitude of the perturbation δ =

∑
e∈E ||µe( · )− µ̃e( · )||∞.

Remark 5 (Zero-sum game interpretation): The notions of
resilience are with respect to adversarial perturbations. There-
fore, one can provide a zero-sum game interpretation as
follows. Let the strategy space of the system planner be the
class of distributed routing policies and the strategy space of
an adversary be the set of admissible perturbations. Let the
utility function of the adversary be MΘ − δ, where M is a
large quantity, e.g.,

∑
e∈E f

max
e , and Θ takes the value 1 if

the network is not α-transferring under given strategies of the
system planner and the adversary, and zero otherwise. Let the
utility function of the system planner be δ −MΘ. As stated
in Section III, a certain class of locally responsive distributed
routing policies characterized by Definition 7, is optimal in
terms of both weak and strong resilience. This will then
show that the locally responsive distributed routing policies
correspond to approximate Nash equilibria in this zero-sum
game setting.

We conclude this section with the following result, provid-
ing an upper bound on the weak resilience of a dynamical
network driven by any, not necessarily distributed, routing
policy G, in terms of the min-cut capacity of the network.
Tightness of this bound will follow from Theorem 2 in Section
III, which will show that, for a particular class of locally
responsive distributed routing policies, the dynamical network
has weak resilience equal to the min-cut capacity.

Proposition 1: Let N be a network satisfying Assumptions
1 and 2, λ0 > 0 a constant total outflow at the origin, and G
an arbitrary routing policy. Then, for any initial flow f◦, the
weak resilience of the associated dynamical network satisfies

γ0(f◦,G) ≤ C(N ) .

Proof: We shall prove that, for every α ∈ (0, 1], and every
θ ≥ 1,

γα,θ(f
◦,G) ≤ C(N )− α

2
λ0 . (12)

Observe that (12) immediately implies that

γ0(f◦,G) = lim
θ→∞

lim
α↓0

γα,θ(f
◦,G)

≤ lim
θ→∞

lim
α↓0

(C(N )− αλ0/2)

= C(N ) ,

thus proving the claim.
Consider a minimal origin-destination cut, i.e., some U ⊆ V

such that 0 ∈ U , n /∈ U , and
∑
e∈E+U

fmax
e = C(N ).
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Define ε := αλ0/(2C(N )), and consider an admissible
perturbation such that µ̃e(ρe) = εµe(ρe) for every e ∈ E+U ,
and µ̃e(ρe) = µe(ρe) for all e ∈ E \ E+U . It is readily verified
that the magnitude of such perturbation satisfies

δ = (1− ε)
∑
e∈E+U

fmax
e = (1− ε)C(N ) = C(N )− α

2
λ0 ,

while its stretching coefficient is 1.
Observe that

λ̃U (t) :=
∑
e∈E+U

f̃e(t) ≤
∑
e∈E+U

f̃max
e = ε

∑
e∈E+U

fmax
e =

αλ0
2

,

(13)
for all t ≥ 0. Now, let W := V \ U be the set of nodes
on the destination side of the cut, and observe that, for every
w ∈ W \ {n},

d

dt

∑
e

ρ̃e(t) =
∑
e

∑
j

f̃j(t)G
v
e(ρ̃(t))−

∑
e

f̃e(t)

=
∑
j

f̃j(t)−
∑
e

f̃e(t) ,

(14)
where the summation indices e and j run over E+w , and E−w ,
respectively. Define

A :=
⋃
w∈W

E+w , B :=
⋃
w∈W

E−w ,

and let

ζ(t) :=
∑
e∈A

ρ̃e(t) .

From (14), the identity A ∪ E+U = B, and (13), one gets

d

dt
ζ(t) =

∑
w∈W

∑
e∈E+w

d

dt
ρ̃e(t)

=
∑
e∈B

f̃e(t)−
∑
e∈E−n

f̃e(t)−
∑
e∈A

f̃e(t)

=
∑
e∈E+U

f̃e(t)−
∑
e∈E−n

f̃e(t)

≤ αλ0/2− λ̃n(t) .

(15)

Now assume, by contradiction, that

lim inf
t→∞

λ̃n(t) ≥ αλ0 .

Then, there would exist some τ ≥ 0 such that λ̃n(t) ≥ 3αλ0/4
for all t ≥ τ . For all t ≥ τ , it would then follow from (15)
that dζ(t)/dt ≤ −αλ0/4 < 0 , which would contradict the
fact that ζ(t) ≥ 0 for all t ≥ 0. Then, necessarily

lim inf
t→∞

λ̃n(t) < αλ0 ,

so that the perturbed dynamical network is not α-transferring.
This implies (12), and therefore the claim.

III. MAIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with a family of
maximally robust distributed routing policies. Such a family
is characterized by the following:

Definition 7 (Locally responsive distributed routing): A
locally responsive distributed routing policy for a network
with topology T = (V, E) and node set V = {0, 1, . . . , n}
is a family of continuously differentiable distributed routing
functions G = {Gv : Rv → Sv}v∈V such that, for every
non-destination node 0 ≤ v < n:

(a) for every ρv ∈ Rv ,

∂

∂ρe
Gvj (ρ

v) ≥ 0 , ∀j, e ∈ E+v , j 6= e ;

(b) for every nonempty proper subset J ( E+v , there exists
a continuously differentiable map

GJ : RJ → SJ ,

where RJ := RJ+ , and SJ := {p ∈ RJ :
∑
j∈J pj = 1} is

the simplex of probability vectors over J , such that, for every
ρJ ∈ RJ , if

ρve →∞ , ∀e ∈ E+v \ J , ρvj → ρJj , ∀j ∈ J ,

then

Gve(ρ
v)→ 0 , ∀e ∈ E+v \ J ,

Gvj (ρ
v)→ GJj (ρJ ) , ∀j ∈ J .

Property (a) in Definition 7 states that, as the particle density
on an outgoing link e ∈ E+v increases while the particle density
on all the other outgoing links remains constant, the fraction of
total outflow at node v routed to any link j ∈ E+v \{e} does not
decrease, and hence the fraction of total outflow routed to link
e itself does not increase. In fact, Property (a) in Definition 7
is reminiscent of Hirsch’s notion of cooperative dynamical
systems [11], [12]. On the other hand, Property (b) implies
that the fraction of incoming particle flow routed to a subset
of outgoing links K ⊂ E+v vanishes as the density on links
in K grows unbounded while the density on the remaining
outgoing links remains bounded. It is worth observing that,
when the routing policy models some selfish behavior of the
particles (e.g., in road traffic networks), then Property (a) and
(b) are very natural assumptions on such behavior as they
capture some sort of greedy local behavior.

Example 3 (Locally responsive distributed routing): Let
ηv , for 0 ≤ v < n, and ae, for e ∈ E , be positive constants.
Define the routing policy G by

Gve(ρ) =
ae exp(−ηvρe)∑

j∈E+v aj exp(−ηvρj)
, (16)

for every 0 ≤ v < n and e ∈ E+v . Clearly, G is distributed,
as it uses only information on the particle density on the
links outgoing from a node v in order to compute how the
total outflow at node v gets split among its outgoing links.
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Moreover, for all 0 ≤ v < n, and e ∈ E+v , Gve(ρ) is clearly
differentiable, and computing partial derivatives one gets

∂

∂ρj
Gve(ρ) = ηv

aeaj exp(−ηvρe) exp(−ηvρj)(∑
i∈E+v ai exp(−ηvρi)

)2 ≥ 0 , (17)

for every j ∈ E+v , j 6= e, and ∂
∂ρj

Ge(ρ) = 0 for all j ∈
E \ E+v . This implies that Property (a) of Definition 7 holds
true. Property (b) is also easily verified. Therefore, G is a
locally responsive distributed routing policy. In the context
of road traffic networks, the example in (16) is a variant of
the logit function from discrete choice theory emerging from
utility maximization perspective of drivers, where the utility
associated with link e is the sum of −ρe + log ae/ηv and a
double exponential random variable with parameter ηv (see,
e.g., [31]).

We are now ready to state our main results. The first one
shows that, when the distributed routing policy G is locally
responsive, the dynamical network (6) always admits a unique,
globally attractive limit flow vector.

Theorem 1 (Existence of globally attractive limit flow):
Let N be a network satisfying Assumptions 1 and 2, λ0 ≥ 0
a constant total outflow at the origin, and G a locally
responsive distributed routing policy. Then, there exists a
unique limit flow f∗ ∈ cl(F) such that, for every initial
condition ρ(0) ∈ R, the dynamical network (6) satisfies

lim
t→∞

f(t) = f∗ .

Moreover, the limit flow f∗ is such that, if f∗e = fmax
e for

some link e ∈ E+v outgoing from a nondestination node 0 ≤
v < n, then f∗e = fmax

e for every outgoing link e ∈ E+v on
that node.

Proof: See Section IV.

Theorem 1 states that, when the routing policy is distributed
and locally responsive, there is a unique globally attractive
limit flow f∗. Such a limit flow may be in F , in which case
it is not hard to see that it is necessarily an equilibrium flow,
i.e., f∗ ∈ F∗(λ0); or belong to cl(F) \ F , i.e., it satisfies the
capacity constraint on one link with equality, in which case
it is not an equilibrium flow. In the latter case, it satisfies the
additional property that, on all the links outgoing from the
same node, the capacity constraints are satisfied with equality.
Such additional property will prove particularly useful in our
companion paper [3], when characterizing the strong resilience
of dynamical networks. As it will become clear in Section IV,
the global convergence result mainly relies on Assumption
2 on monotonicity of the flow function, and Property (a) of
Definition 7 of locally responsive distributed routing policies,
from which the dynamical network (6) inherits a cooperative
property. It is worth mentioning that we shall not use general
results for cooperative dynamical systems [11], [12], [32], but
rather exploit some other structural properties of (6) which in
fact allow us to prove stronger results. The additional property
of the limit flow follows instead mainly from Property (b) of
Definition 7.

Example 4: Consider a simple topology containing just the
origin and the destination node, i.e., with V = {0, 1}, and two

fe
1
(!0)
*

!0!max0
0

fe
2
(!0)*

fe*

(a)

0=f (0)*

*f (!0
max)

*

!0

f (!0)

fe
2

*

*fe
1

fmax
e

2

fmax
e

1

(b)

Fig. 5. Dependence of the limit flow f∗ on the total outflow λ0 at the
origin for the dynamical network of Example 4. In (a), the two components
of the limit flow, f∗e1 and f∗e2 , are plotted as functions of λ0. In (b), the
curve of the limit flows is plotted in the (f∗e1 , f

∗
e2
)-plane. Observe that both

the components of the limit flow are increasing from 0 to fmax
e , as λ0 is

increasing from 0 to λmax
0 , while they remain constant at fmax

e , for all λ0
above λmax

0 .

parallel links E = {e1, e2}. Assume that the flow functions on
the two links are identical µe1(ρ) = µe2(ρ) = 3(1 − e−ρ)/4.
Consider the routing policy

G0
e1(ρ) =

3

5

e−ρe1

Z(ρ)
, G0

e2(ρ) = 6
e−ρe2

Z(ρ)
,

where Z(ρ) := 3
5e
−ρe1 + 6e−ρe2 . Then, the limit flow of the

associated dynamical network can be explicitly computed for
every constant total outflowλ0 ≥ 0 at the origin, and is given
by

f∗1 (λ0) =

{
(12λ0 − 11 + ω(λ0)) /24 if 0 ≤ λ0 < 3/2

3/4 if λ0 ≥ 3/2 ,

f∗2 (λ0) =

{
(12λ0 + 11− ω(λ0)) /24 if 0 ≤ λ0 < 3/2

3/4 if λ0 ≥ 3/2 ,
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(a) λ0 = 0
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f

fe
1
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0

(b) λ0 = 1

fe
2
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1
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(c) λ0 = 2

Fig. 6. Flow vector fields and flow trajectories for the dynamical network of
Example 4, for three values of the inflow. In the first two cases λ0 < λmax

0 ,
and hence the limit flow f∗ is an equilibrium flow. In contrast, in the latter
case, λ0 ≥ λmax

0 , and consequently f∗ is not an equilibrium flow and f∗e1 =
fmax
e1

and fmax
e2

= f∗e2 , as predicted by Theorem 1.

where
ω(λ0) :=

√
(12λ0 − 11)2 + 48λ0 .

Figure 5 shows the dependence of the limit flow f∗ on
the total outflow at the origin, λ0. The two components f∗e1 ,
and f∗e2 , increase from 0 to fmax

e1 , and, respectively, from 0
to fmax

e2 , as λ0 increases from 0 to λmax
0 := fmax

e1 + fmax
e2 ,

while they remain constant for all λ0 above λmax
0 . Figure 6

reports the vector fields and flow trajectories associated to the
dynamical network for three different values of the inflow,
namely λ0 = 0, λ0 = 1, and λ0 = 2. In the first two cases,
λ0 < λmax

0 , and f∗ ∈ F∗(λ0) is an equilibrium flow; in the
third case, f∗ ∈ cl(F∗(λ0)) \ F∗(λ0) is not an equilibrium
flow.

Our second main result, stated below, shows that locally
responsive distributed routing policies are maximally robust,
as the resilience of the induced dynamical network coincides
with the min-cut capacity of the network.

Theorem 2 (Weak resilience): Let N be a network satisfy-
ing Assumptions 1 and 2, λ0 > 0 a constant inflow, and
G a locally responsive distributed routing policy such that
Gve(ρ

v) > 0 for all 0 ≤ v < n, e ∈ E+v , and ρv ∈ Rv .
Then, for every f◦ ∈ F , the associated dynamical network
is partially transferring with respect to f◦ and has weak
resilience

γ0(f◦,G) = C(N ) .

Proof: See Section V.

Theorem 2, combined with Proposition 1, shows that locally
responsive distributed routing policies achieve the maximal
weak resilience possible on a given network N . A conse-
quence of this result is that locality constraints on the feedback
information available to routing policies do not reduce the
achievable weak resilience. It is also worth observing that such
maximal weak resilience coincides with min-cut capacity of
the network, and is therefore independent of the initial flow
f◦. This is in sharp contrast with the results on the strong
resilience of dynamical networks presented in the companion
paper [3]. There, it is shown that the strong resilience depends
on the initial flow, and local information constraints reduce the
maximal strong resilience achievable on a given network.

Remark 6: It is interesting to note that the upper bound on
the weak resilience, as given by Proposition 1, does not change
even if we allow routing policies G that have knowledge of
the perturbation. This, combined with Theorem 2, shows that
the lack of knowledge of the perturbations is not a hindrance
in achieving maximal weak resilience.

IV. PROOF OF THEOREM 1

Let N be a network satisfying Assumptions 1 and 2, G
a locally responsive distributed routing policy, and λ0 ≥ 0
a constant inflow. We shall prove that there exists a unique
f∗ ∈ cl(F) such that the flow f(t) associated to the solution
of the dynamical network (6) converges to f∗ as t grows large,
for every initial condition ρ(0) ∈ R. Before proceeding, it is
worth observing that, thanks to Property (a) of Definition 7 of
locally responsive distributed routing policies, Assumption 2
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on the monotonicity of the flow functions, and the structure
of the dynamical network (6), one may rewrite (6) as

d

dt
ρe = Fe(ρ) , ∀e ∈ E ,

where F : R → RE is differentiable and such that
∂

∂ρe
Fe(ρ) ≤ 0 ,

∂

∂ρj
Fe(ρ) ≥ 0 , ∀e 6= j ∈ E .

The above shows that, the dynamical network (6) driven by a
locally responsive distributed routing policy G is cooperative
in the sense of Hirsch [11], [12]. Indeed, one may apply
the standard theory of cooperative dynamical systems and
monotone flows [32], [13] in order to prove some properties
of (6), e.g., convergence from almost every initial condition.

However, we shall not rely on this general theory and rather
use a direct approach leading us to much stronger results, i.e.,
global convergence to a unique limit flow, and prove a series
of intermediate results some of which will prove useful also
in the companion paper [3]. Our approach is based on the
observation that, thanks to Assumption 1 on the acyclicity of
the network topology, one can consider the dynamical network
(6) as a cascade of monotone local systems (see [14]), each
describing the flow dynamics on the set of outgoing links of
a non-destination node. Specifically, for every 0 ≤ v < n, we
shall focus on the input-output properties of the local system

d

dt
ρe(t) = λ(t)Gve(ρ

v(t))− fe(t) ,

fe(t) = µe(ρe(t)) ,

∀e ∈ E+v , (18)

where λ(t) is a nonnegative-real-valued, Lipschitz continuous
input, and fv(t) := {fe(t) : e ∈ E+v } is interpreted as the
output. We shall first prove existence (and uniqueness) of a
globally attractive limit flow for the local system (18) under
constant input (a property similar to static input-output char-
acteristic, cf. [14, Def. V.I]). We shall then extend this result to
show the existence and attractivity of a local equilibrium point
under time-varying, convergent local input. Finally, we shall
exploit this local input-output property, and the assumption of
acyclicity of the network topology in order to establish the
main result.

The following is a simple technical result, which will prove
useful in order to apply Property (a) of Definition 7.

Lemma 1: Let 0 ≤ v < n be a nondestination node, and
Gv : Rv → Sv a continuously differentiable function satisfy-
ing Property (a) of Definition 7. Then, for any σ, ς ∈ Rv ,∑

e∈E+v

sgn(σe − ςe) (Gve(σ)−Gve(ς)) ≤ 0. (19)

Proof: Define

K := {e ∈ E+v : σe > ςe} , GK(ζ) :=
∑
kG

v
k(ζ) ,

J := {e ∈ E+v : σe ≤ ςe} , GJ (ζ) :=
∑
j G

v
j (ζ) ,

L := {e ∈ E+v : σe < ςe} , GL(ζ) :=
∑
lG

v
l (ζ) ,

where ζ ∈ Rv , and the summation indices k, l, and j run
over K, L, and J , respectively. We shall show that, for any

σ, ς ∈ Rv ,

GK(σ) ≤ GK(ς), GL(σ) ≥ GL(ς) . (20)

Let ξ ∈ Rv be defined by ξk = σk for all k ∈ K, and ξe = ςe
for all e ∈ E+v \K. We shall prove that GK(σ)−GK(ς) ≤ 0 by
writing it as a path integral of ∇GK(ζ) first along the segment
SK from ς to ξ, and then along the segment SL from ξ to σ.
Proceeding in this way, one gets

GK(σ)−GK(ς) =

∫
SL

∇GK(ζ) · dζ +

∫
SK

∇GK(ζ) · dζ

=

∫
SL

∇GK(ζ) · dζ −
∫
SK

∇GJ (ζ) · dζ ,
(21)

where the second equality follows from the fact that GK(ζ) =
1 − GJ (ζ) since Gv(ζ) ∈ Sv . Now, Property (a) of Def-
inition 7 implies that ∂GK(ζ)/∂ζl ≥ 0 for all l ∈ L,
and ∂GJ (ζ)/∂ζk ≥ 0 for all k ∈ K. It follows that
∇GJ (ζ) · dζ ≥ 0 along SK, and ∇GK(ζ) · dζ ≤ 0 along
SL. Substituting in (21), one gets the first inequality in (20).
The second inequality in (20) follows by similar arguments.
Then, one has

0 ≥ GK(σ)−GK(ς) +GL(ς)−GL(σ)

=
∑
e∈E+v

sgn(σe − ςe) (Gve(σ)−Gve(ς)) ,

which proves the claim.

We can now exploit Lemma 1 in order to prove the
following key result guaranteeing that the solution of the local
dynamical system (18) with constant input λ(t) ≡ λ converges
to a limit point which depends on the value of λ but not on
the initial condition. (Cf. Example 4 and Figure 6.)

Lemma 2: (Existence of a globally attractive limit flow for
the local dynamical system under constant input) Let 0 ≤ v <
n be a non-destination node, and λ a nonnegative-real constant.
Assume that Gv : Rv → Sv is continuously differentiable
and satisfies Property (a) of Definition 7. Then, there exists a
unique f∗(λ) ∈ cl(Fv) such that the solution of the dynamical
system (18) with constant input λ(t) ≡ λ satisfies

lim
t→∞

fe(t) = f∗e (λ) , ∀e ∈ E+v ,

for every initial condition ρv(0) ∈ Rv .
Proof: Let us fix some λ ∈ R+. For initial condition

σ ∈ Rv , and time t ≥ 0, let Φt(σ) := ρv(t) be the value of
the solution of (18) with constant input λ(t) ≡ λ and initial
condition ρ(0) = σ, at time t ≥ 0. Also, let Ψt(σ) ∈ Rv be
defined by Ψt

e(σ) = µe(Φ
t
e(σ)), for every e ∈ E+v . Now, fix

two initial conditions σ, ς ∈ Rv , and define χ(t) := Φt(σ)−
Φt(ς), and ξ(t) := Ψt(σ)−Ψt(ς). Since µe(ρe) is increasing
by Assumption 2, for all e ∈ E+v , one has that sgn(χe(t)) =
sgn(ξe(t)). On the other hand, using Lemma 1, one gets∑

e∈E+v

sgn(χe(t))
(
Gve(Φ

t(σ))−Gve(Φt(ς))
)
≤ 0 ,

for all t ≥ 0. It follows that, if

ϕ(t) := λ
∑
e∈E+v

sgn(χe(t))
(
Gve(Φ

t(σ))−Gve(Φt(ς))
)
,
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then, for all t ≥ 0,

||χ(t)||1 = ||χ(0)||1 +

∫ t

0

(ϕ(s)− ||ξ(s)||1) ds

≤ ||χ(0)||1 −
∫ t

0

||ξ(s)||1ds .

Rearranging the inequality above gives that∫ t

0

||ξ(s)||1ds ≤ ||χ(0)||1 , ∀t ≥ 0 . (22)

Therefore, (each component of) ξ(t) is absolutely integrable,
and hence ξ(t) is integrable for all t ≥ 0.

Now, let

ht :=
d

dt
Ψt(σ) , t ≥ 0 .

By applying the mean value theorem twice, one gets that, for
all τ ≥ 0,

Ψt(σ) =
1

τ

∫ t+τ

t

Ψs(σ)ds− τths∗t ,

for some τt ∈ [0, τ ] and s∗t ∈ [t, t + τt]. On the other hand,
observe that Assumption 2 implies that there exists some
positive constant M such that

||hs||1 =
∑
e∈E+v

∣∣∣∣dµedρe

dρe
dt

∣∣∣∣ ≤M , ∀s ≥ 0 .

For a given τ > 0, by choosing ς = Φτ (σ), and putting
κτ := τths∗t − τ0hs∗0 , one gets that

Ψt(σ) + κτ = Ψ0(σ) +
1

τ

∫ t+τ

t

Ψs(σ)ds− 1

τ

∫ τ

0

Ψs(σ)ds

= Ψ0(σ) +
1

τ

∫ t+τ

τ

Ψs(σ)ds− 1

τ

∫ t

0

Ψs(σ)ds

= Ψ0(σ) +
1

τ

∫ t

0

(
Ψs+τ (σ)−Ψs(σ)

)
ds

= Ψ0(σ) +
1

τ

∫ t

0

ξ(s)ds .

Since ξ(t) is integrable, the above shows that Ψt(σ) + κτ
is convergent as t grows large, for every τ > 0. Then,
arbitrariness of τ and the bound

||κτ ||1 ≤ τt||hs∗t ||1 + τ0||hs∗0 || ≤ 2τM

imply that Ψt(σ) converges to some limit flow f∗(λ, σ) ∈
cl(Fv). Moreover, using (22) again, one gets that

0 = lim
t→∞

1

t

∫ t

0

||Ψs(σ)−Ψs(ς)||1ds

= ||f∗(λ, σ)− f∗(λ, ς)||1 ,
for every σ, ς ∈ Rv , which shows that the limit flow does not
depend on the initial condition.

Now, let us define

λmax
v :=

∑
e∈E+v

fmax
e .

The following result characterizes the way the local limit flow
f∗(λ) depends on the local input λ. (Cf. Example 4 and Figure
5.)

Lemma 3 (Dependence of the limit flow on the input):
Let 0 ≤ v < n be a non-destination node, and λ a
nonnegative-real constant. Assume that Gv : Rv → Sv is
continuously differentiable and satisfies Properties (a) and (b)
of Definition 7. Let f∗(λ) ∈ cl(Fv) be the limit flow of the
local system (18) with constant input λ(t) ≡ λ. Then, for
every e ∈ E+v ,

(i) if λ < λmax
v , then

f∗e (λ) < fmax
e , λGve(µ

−1(f∗(λ))) = f∗e ;

(ii) if λ ≥ λmax
v , then f∗e (λ) = fmax

e .

Moreover, f∗(λ) is continuous as a map from R+ to cl(Fv),
and each component fe(λ) is nondecreasing in λ.

Proof: Let ρ∗ ∈ Rv be such that

ρ∗e :=

{
µ−1e (f∗e (λ)) if f∗e (λ) < fmax

e ,

+∞ if f∗e (λ) = fmax
e ,

for every e ∈ E+v . Now, by contradiction, assume that there
exists a nonempty proper subset J ⊂ E+v such that ρ∗j is finite
for every j ∈ J , and ρ∗k is infinite for every k ∈ K := E+v \J .
Thanks to Property (b) of Definition 7, one would have that,
for any initial condition ρ(0) ∈ R, the solution of (18) satisfies

lim
t→∞

∑
k∈K

(λGvk(ρv(t))− fk(t)) = −
∑
k∈K

fmax
k < 0 ,

so that there would exist some τ ≥ 0 such that∑
k∈K(λGvk(ρv(t)) − fk(t)) ≤ 0 for every t ≥ τ . Hence,

if ρK(t) :=
∑
k∈K ρk(t), then for every t ≥ τ one would

have

ρK(t) = ρK(τ) +

∫ t

τ

∑
k∈K

(λGvk(ρv(s))− fk(s))) ds

≤ ρK(τ)

< +∞ ,

which would contradict the assumption that ρ∗k = +∞ for
every k ∈ K. Therefore, either ρ∗e is finite for every e ∈ E+v ,
or ρ∗e is infinite for every e ∈ E+v .

In the first case, i.e., if ρ∗e is finite for every e ∈ E+v , then
ρ∗ is necessarily an equilibrium, being a finite limit point
of the autonomous dynamical system (18) with continuous
right-hand side, and so f∗(λ) is an equilibrium flow for the
local dynamical system (18). On the other hand, consider the
second case, i.e., when ρ∗e is infinite for every e ∈ E+v , so
that

∑
e∈E+v f

∗
e =

∑
e∈E+v f

max
e = λmax

v . Then, necessarily
λmax
v ≤ λ for otherwise d

dt

∑
e∈E+v ρe(t) < 0 for all t large

enough, thus contradicting the fact that
∑
e ρe(t) diverges as

t grows large.
Finally, it remains to prove continuity of f∗(λ) as a function

of λ. For this, consider the function H : (0,+∞)E
+
v ×

(0, λmax
v )→ RE+v defined by He(ρ

v, λ) := λGve(ρ
v)−µe(ρe).
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Clearly, H is differentiable and such that

∂

∂ρe
He(ρ

v, λ) = λ
∂

∂ρe
Gve(ρ

v)− µ′e(ρe)

= −
∑
j 6=e

λ
∂

∂ρe
Gvj (ρ

v)− µ′e(ρe)

< −
∑
j 6=e

∂

∂ρe
Hj(ρ

v, λ) ,

(23)

where the inequality follows from the strict monotonicity of
the flow function (see Assumption 2). Property (a) in Defini-
tion 7 implies that ∂Hj(ρ

v, λ)/∂ρe ≥ 0 for all j 6= e ∈ E+v .
Hence, from (23), we also have that ∂He(ρ

v, λ)/∂ρe < 0
for all e ∈ E+v . Therefore, for all ρv ∈ (0,+∞)E

+
v , and

λ ∈ (0, λmax
v ), one has that∣∣∣∣ ∂∂ρeHe(ρ

v, λ)

∣∣∣∣ = − ∂

∂ρe
He(ρ

v, λ)

>
∑
j 6=e

∂

∂ρe
Hj(ρ

v, λ)

=
∑
j 6=e

∣∣∣∣ ∂∂ρeHj(ρ
v, λ)

∣∣∣∣ ,
i.e., (the transpose of) the Jacobian matrix ∇ρvH(ρv, λ)
is strictly diagonally dominant, and hence invertible by a
standard application of the Gershgorin Circle Theorem, e.g.,
see [33, Theorem 6.1.10]. It then follows from the implicit
function theorem that ρ∗(λ), which is the unique zero of
H( · , λ), is continuous on the interval (0, λmax

v ). Hence,
also f∗(λ) = µ(ρ∗(λ)) is continuous on (0, λmax

v ), since it
is the composition of two continuous functions. Moreover,
since

∑
e∈E+v f

∗
e (λ) = λ for every λ ∈ (0, λmax

v ), and
0 ≤ f∗e (λ) ≤ fmax

e , one gets that limλ↓0 f∗e (λ) = 0 and
limλ↑λmax

v
f∗e (λ) = fmax

e . Now, one has that
∑
e f
∗
e (0) = 0,

so that limλ↓0 f∗e (λ) = f∗e (0) = 0 for all e ∈ E+v . Moreover,
as previously shown, f∗e (λ) = fmax

e = limλ↑λmax
v

f∗e (λ) for
λ ≥ λmax

v . This completes the proof of continuity of f∗(λ)
on [0,+∞). Monotonicity of each component fe(λ) follows in
turn from standard arguments in monotone dynamical systems,
see, e.g. [14, Remark V.2].

While Lemma 2 ensures existence of a unique limit point
for the local system (18) with constant input λ(t) ≡ λ, the
following lemma establishes that the output of the local system
(18) is convergent, provided that the input is convergent.

Lemma 4 (Attractivity of the local dynamical system):
Let 0 ≤ v < n be a nondestination node, Gv : Rv → Sv
a continuously differentiable map, satisfying Properties (a)
and (b) of Definition 7, and λ(t) a nonnegative-real-valued
Lipschitz continuous function such that

lim
t→∞

λ(t) = λ . (24)

Then, for every initial condition ρ(0) ∈ R, the solution of the
local dynamical system (18) satisfies

lim
t→∞

fe(t) = f∗e (λ) , ∀e ∈ E+v , (25)

where f∗(λ) is the limit flow of the local system (18) with
constant input λ(t) ≡ λ.

Proof: Lemma 2 guarantees that the local systems (18)
is endowed with the static input-output characteristic f∗(λ).
Then, the result follows immediately from [14, Proposition
V.8].

We are now ready to prove Theorem 1 by showing that, for
any initial condition ρ(0) ∈ R, the solution of the dynamical
network (6) satisfies

lim
t→∞

fe(t) = f∗e , (26)

for all e ∈ E . We shall prove this by showing via induction
on v = 0, 1, . . . , n − 1 that, for all e ∈ E+v , there exists
f∗e ∈ [0, fmax

e ] such that (26) holds true. First, observe that,
thanks to Lemma 2, this statement is true for v = 0, since the
total outflow at the origin is constant. Now, assume that the
statement is true for all 0 ≤ v < w, where w ∈ {1, . . . , n−2}
is some intermediate node. Then, since E−w ⊆ ∪w−1v=0 E+v , one
has that

lim
t→∞

λ−w(t) = lim
t→∞

∑
e∈E−w

fe(t) =
∑
e∈E−w

f∗e = λ∗w .

Then, Lemma 4 implies that, for all e ∈ E+w , (26) holds true
with f∗e = f∗e (λ∗w), thus proving the statement for v = w.
This proves the existence of a globally attractive limit flow
f∗. The proof of Theorem 1 is completed by Lemma 3.

V. PROOF OF THEOREM 2

This section is devoted to the proof of Theorem 2 on the
weak resilience of dynamical networks with locally responsive
distributed routing policies G.

To start with, let us recall that in this case Theorem 1 implies
the existence of a globally attractive limit flow f̃∗ ∈ cl(F) for
the perturbed dynamical network associated to any admissible
perturbation Ñ . Define λ̃∗0 := λ0, and λ̃∗v :=

∑
e∈E−v f̃

∗
e , for

0 < v ≤ n.

Lemma 5: Consider a dynamical network N satisfying As-
sumptions 1 and 2, with locally responsive distributed routing
policy G such that Gve(ρ

v) > 0 for all 0 ≤ v < n, e ∈ E+v , and
ρv ∈ Rv . Then, for every θ ≥ 1, there exists βθ ∈ (0, 1) such
that, if Ñ is an admissible perturbation of N with stretching
coefficient less than or equal to θ, and f̃∗ ∈ cl(F̃) is the limit
flow vector of the corresponding perturbed dynamical network
(10), then

f̃∗e ≥ βθλ̃∗v ,
for every non-destination node 0 ≤ v < n, and every link
e ∈ E+v for which f̃∗e ≤ f̃max

e /2.
Proof: First, observe that the claim is trivially true if f̃∗e >

f̃max
e /2 for all e ∈ E . Therefore, let us assume that there exists

some link e ∈ E for which f̃∗e ≤ f̃max
e /2. Define ρθ ∈ Rv

by ρθj = 0 for all j ∈ E+v , j 6= e, and ρθe = θρµe , where
recall that ρµe is the median density of the flow function µe.
Since the stretching coefficient of Ñ is less than or equal
to θ, one has that the median densities of the perturbed and
the unperturbed flow functions satisfy ρ̃µe ≤ θρµe . This and
the fact that f̃∗e ≤ f̃max

e /2 imply that ρ̃∗e ≤ ρ̃µe ≤ ρθe, while
clearly ρ̃∗j ≥ 0 = ρθj for all j ∈ E+v , j 6= e. Now, let βθ :=
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Gve(ρ
θ), and observe that, thanks to the assumption on the

strict positivity of Gve(ρ
v), one has βθ > 0. Then, from Lemma

1 one gets that

Gve(ρ̃
∗) =

1

2

(
Gve(ρ̃

∗) + 1−
∑

j 6=e
Gvj (ρ̃

∗)
)

≥ 1

2

(
Gve(ρ

θ) + 1−
∑

j 6=e
Gvj (ρ

θ)
)

= Gve(ρ
θ)

= βθ .

(27)

On the other hand, since f̃∗e ≤ f̃max
e /2 < f̃max

e , Lemma 2
implies that necessarily

λ̃∗vG
v
e(ρ̃
∗) = f̃∗e .

The claim now follows by combining this and (27).

As a consequence of Lemma 5, we now prove the following
result showing that the dynamical network is partially trans-
ferring and providing a lower bound on its weak resilience:

Lemma 6: Let N be a network satisfying Assumptions 1
and 2, λ0 ≥ 0 a constant inflow, and G a locally responsive
distributed routing policy such that Gve(ρ

v) > 0 for all 0 ≤
v < n, e ∈ E+v , and ρv ∈ Rv . Then, the associated dynamical
network is partially transferring, and, for every θ ≥ 1, and
α ∈ (0, βnθ ], its resilience satisfies

γα,θ(f
*,G) ≥ C(N )− 2|E|λ0β1−n

θ α ,

where βθ ∈ (0, 1) is as in Lemma 5.
Proof: Consider an arbitrary admissible perturbation Ñ

of magnitude

δ ≤ C(N )− 2|E|λ0β1−n
θ α , (28)

and stretching coefficient less than or equal to θ. We shall
iteratively select a sequence of nodes v0, v1, . . . , vk such that
v0 = 0, vk = n, and, for every 1 ≤ j ≤ k, there exists
i ∈ {0, . . . , j − 1} such that

(vi, vj) ∈ E , f̃∗(vi,vj) ≥ λ0αβ
j−n
θ . (29)

Since vk = n, and βk−nθ ≥ 1, the above with j = k ≤ n will
immediately imply that

lim
t→∞

λ̃n(t) = λ̃∗n =
∑
e∈E−n

f̃∗e ≥ αλ0βk−nθ ≥ αλ0 , (30)

so that the perturbed dynamical network is α-transferring.
Moreover, observe that the trivial perturbation Ñ = N
has magnitude δ = 0, hence it satisfies (28) for all α ∈
(0, C(N )βn−1θ /(2|E|λ0)]. Therefore, (30) will imply the par-
tial transferring property of the original dynamical network.
Moreover, the rest of the claim will then readily follow from
the arbitrariness of the considered admissible perturbation.

First, let us consider the case j = 1. Assume by contra-
diction that f̃∗e < λ0αβ

1−n
θ , for every link e ∈ E+0 . Since

α ≤ βnθ , this would imply that f̃∗e < βθλ0 and hence, by
Lemma 5, that f̃max

e < 2f̃∗e for all e ∈ E+0 , so that∑
e

f̃max
e < 2

∑
e

f̃∗e < 2α|E+0 |β1−n
θ λ0 ≤ 2α|E|β1−n

θ λ0 ,

where the summation index e runs over E+0 . Combining the
above with the inequality C(N ) ≤ ∑e∈E+0 f

max
e , one would

get

δ ≥
∑
e∈E+0

(
fmax
e − f̃max

e

)
> C(N )− 2α|E|β1−n

θ λ0 ,

thus contradicting the assumption (28). Hence, necessarily
there exists e ∈ E+0 such that f̃∗e ≥ λ0αβ

1−n
θ , and choosing

v1 ∈ V to be the head node of e, one sees that (29) holds true
with j = 1.

Now, fix some 1 < j∗ ≤ k, and assume that (29) holds true
for every 1 ≤ j < j∗. Then, by choosing i as in (29), one gets
that

λ̃∗vj =
∑
e∈E+vj

f̃∗e ≥ f̃∗(vi,vj) ≥ λ0αβ
j−n
θ ≥ λ0αβj

∗−1−n
θ ,

(31)
for every 1 ≤ j < j∗. Moreover,

λ̃∗v0 = λ0 ≥ λ0αβ−nθ ≥ λ0αβj
∗−1−n
θ . (32)

Let U := {v0, v1, . . . , vj∗−1} and E+U ⊆ E be the set of
links with tail node in U and head node in V \ U . Assume
by contradiction that f̃∗e < λ0αβ

j∗−n
θ for every e ∈ E+U .

Thanks to (31) and (32), this would imply that f̃∗e < βθλ̃
∗
vj ,

for every e ∈ E+vj ∩ E+U with 0 ≤ j < j∗. Then, since
E+U = ∪j

∗−1
j=0 (E+vj ∩ E+U ), Lemma 5 would imply that

f̃max
e < 2f̃∗e , ∀e ∈ E+U .

This would yield∑
e

f̃max
e <

∑
e

2f̃∗e < 2
∑
e

λ0αβ
j∗−n
θ ≤ 2|E|λ0αβ1−n

θ ,

where the summation index e runs over E+U . From the above
and the inequality C(N ) ≤∑e∈E+U

fmax
e , one would get

δ ≥
∑
e∈E+U

(
fmax
e − f̃max

e

)
> C(N )− 2α|E|β1−n

θ λ0 ,

thus contradicting the assumption (28). Hence, necessarily
there exists e ∈ E+U such that f̃∗e ≥ λ0αβ

j∗−n
θ , and choosing

vj∗ ∈ V \U to be the head node of e one sees that (29) holds
true with j = j∗. Iterating the argument above until vj∗ = n
yields the claim.

It is now easy to see that Lemma 6 implies that
limα↓0 γα,θ ≥ C(N ) for every θ ≥ 1, thus showing that
γ0(f◦,G) ≥ C(N ). Combined with Proposition 1, this shows
that γ0(f◦,G) = C(N ), thus completing the proof of Theorem
2.

VI. CONCLUSION

In this paper, we studied robustness properties of dynamical
networks, where the dynamics on every link is driven by the
difference between the inflow, which depends on the upstream
routing decisions, and the outflow, which depends on the
particle density, on that link. We proposed a class of locally
responsive distributed routing policies that rely only on local
information about the network’s current particle densities and
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yield the maximum weak resilience with respect to adversarial
disturbances that reduce the flow functions of the links of
the network. We also showed that the weak resilience of
the network in that case is equal to min-cut capacity of the
network, and that it is independent of the locality constraint on
the information available, as well as of the initial flow. Strong
resilience of dynamical networks is studied in the companion
paper [3].
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