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Abstract—A single-letter characterization is provided for (MACS), where partial channel state information (CSI)
the capacity region of finite-state multiple access channgl s provided to the encoders causally. What makes such
when the channel state process is an independent and iden-gay, 5 particularly interesting is the fact that the par-
tically distributed sequence, the transmitters have accesto tial CSI available to the two transmitters is in aeneral
partial (quantized) state information, and complete chanmel e ) 9 -
state information is available at the receiver. The partial asymmetrici.e., none of the transmitters’ CSI contains
channel state information is assumed to be asymmetric the CSI available to the other one. On the other hand,
at the encoders. As a main contribution, a tight converse e assume that the receiver has access to perfect state
coding theorem is presented. A simple proof of achievabiljt information.

is reported as well. The difficulties associated with the cas A sinale-lett h terizati f1h it .
when the channel state has memory are discussed and. /* SINgI€-IEUer characterization of the capacily region

connections to decentralized stochastic control theory ar S provided for the case of independent and identically
presented. distributed (i.i.d.) channel state sequences. As we shall
review shortly, results in the literature have already
provided achievability results for such problems. The
main contribution of this paper consists in providing a
Wireless communication channels and Internet typfyht converse theorem, in addition to a simple discussion
networks are examples of channels where the chaneglachievability of the capacity region. Our proof of the
characteristics are time-varying. In wireless channelgpnverse theorem involves showing that restricting to
the mobility of users and changes in landscape as wehcoders using only the quantized CSI on the current
as interference may lead to temporal variations in thgate does not cause any loss of optimality with respect
channel quality. In network applications, user demang the most general class of admissible encoders using all
and node failure may affect the channel reliability. Sucthe quantized CSI causally observed until a given time.
channel variation models may include fast fading and The problem at hand can be thought of as a decen-
slow fading; in fast fading, the channel state is assum@@lized stochastic control problem. We shall elaborate
to be changing for each use of the channel. On ths this connection in the concluding section, where we
other hand, in slow fading, the channel is assumed #pall also discuss in what our arguments fail when trying
be constant for each finite block length. to extend them to a proof of the converse theorem for
In such problems, the channel state can be transnfihite-state MACs with memory, and asymmetric CSI at
ted to the encoders either explicitly, or through outpyke transmitters.
feedback. Typically the feedback is not perfect, that is et us now present a brief literature review. Capacity
the encoder has only partial information regarding thgith partial channel state information at the transmitter
state or the output variables. The present paper studigselated to the problem of coding with unequal side
a particular case, finite-state multiple access chann@formation at the encoder and the decoder. The capacity
. o _ _ of memoryless channels, with various cases of state
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International Symposium on Modeling and Optimization in bile, information being available at neither, either or both the
Ad Hoc, and Wireless Networks (WiOpt) as part of the Contraéro  transmitter and receiver, has been studied in [16] and [8].
Coﬁf::fggggogn%hsggjs (gaigdc???tswﬂgkfggd% Sseou'v SouttekXo Reference [17] develops a stochastic control framework
; 2G. Comolis with thepﬁaboratory foF; Informa?io'n and Decision]cor the computation of the capacity of channels \,Nlth
Systems, Massachusetts Institute of Technology, 77 Mhssatts Ave, memory and complete noiseless output feedback via the
Cambridge, 02139, MA, USA. Email: giacomo@mitedu. properties of the directed mutual information. Reference
°S. Yuksel is with the Mathematics and Engineering Profg] considers fading channels with perfect channel state
gram, Department of Mathematics and Statistics, Queen's- U . . .
versity, Kingston, Ontario, Canada, K7L 3N6. Email: yuk-Information at the transmitter, and shows that with in-
sel@mast.queensu.ca. S. Yuksel's research is suppgrtéb INatural -~ stantaneous and perfect state information, the transmitte
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feedback, and [4], studying the case of MAC channels

W ¢Eaf(1;3de‘;a) where the encoders have access to coded non-causal state
‘ e Vy) information.

T The rest of the paper is organized as follows. In

Ve ‘X? Section 1l a formal statement of the problem and the

C‘hannel Y,.8, [Decoder | Wa main results are presented, consisting in a single-letter

P(Y;|S,, Xg, XP) V(S Vin) - . > characterization of the capacity region of finite-state
‘ Wy MACs with i.i.d. state. Section Ill contains the proof
VY| X? of achievability of the capacity region, while Section

‘ IV presents a proof of the converse coding theorem.

W, Elmoderb Finally, in Section V, we discuss the issues arising when

oW, Vigy) trying to generalize our arguments to the memory case,

and present some final remarks on the connections of
this problem with the decentralized stochastic control

) o ) ) literature.
Fig. 1: Finite-state multiple access channel with asym-

metric partial state information at the transmitters. Il. CAPACITY OF 11.D. FINITE-STATE MAC WITH

ASYMMETRIC PARTIAL CSI

maximize the average transmission rate. Viswanathan!" the following, we shall present some notation,
[19] relaxes this assumption of perfect instantaneo@§fore formally stating the problem. For a vectorand
state information, and studies the capacity of Markovigh POSitive integeri, v; will denote the:-th entry of v,
channels with delayed information. Reference [5] studié(_%h'le_ V) = (vi, .05 i) will denote the vector of the
the capacity of Markov channels with perfect causdiSt ¢ entries ofv. Following a common convention,
state information. The capacity of Markovian, finite-stat§2Pital letters will be used to denote random variables
channels with quantized state information available at tf{gV-S). @nd small letters denote particular realizations
transmitter is studied in [20]. We shaI_I use the standard notatidH - ), and I_(_-; )

The works most closely related to ours are [7] anffespectivelyH (- |-), andI(-; - |-)) for the (conditional)
[13]. In [7], the capacity of general finite-state MAC<ENtropy and ml_JtuaI information of r.v.s. With a s_llght
with different levels of causal CSI at the transmitter@PUse of notation, fo0 < z < 1, we shall write
is characterized in terms of non-single-letter formuladl(¢) for the entropy ofx. For a finite setA, P(A)
Moreover, single-letter characterizations are provided fWI|| d_enote the S|mple_x_ of probablllty distributions over
the capacity of finite-state MACs when the decoder ha& Finally, for a positive integern, we shall denote
perfect CSI and the encoders are restricted to use o AM =y o, A* the set of A-strings of length
a finite window of, possibly limited, CSI; the capacitySmaller tham. T_ o _
region without any such restriction is recovered in the We shall consider a finite-state MAC with two trans-
limit of large window size. Reference [13] developdhitters, indexed by < {a,b}, and one receiver. Trans-

a general framework for approximating, and possibl{pitter i aims at reliably communicating a message,
characterizing, the capacity of channels with causd|niformly distributed over some finite message)dgt to

and non-causal CSI: in particular, Theorem 4 thereffi® receiver. The two messagé$ andV, are assumed
provides a single-letter characterization of the capacit) P& mutually independent. We shall use the notation
region of a MAC with independent CSI at the trans?V := (Wa, W) for the vector of the two messages.
mitters. With respect to [7], [13], the present paper The channel state process is modeled b_y a sequence
considers the somewhat simpler case of a MAC witf = {S: : ¢ = 1,2,...} of independent, identically
i.i.d. state, where the encoders have causal, asymmetfstributed (i.i.d.) rv.s, taking values in some finite-
partial CSI, which is obtained through fixed quantizer&i@t® spacé, and independent frorii’; the probability
acting componentwise. In contrast to [7], a single-lettéfistribution of any S, is denoted byP(-) € P(S).
expression for the capacity region is obtained in thi_-Ehe two_ encoders haye access to causal, partial state
case without any finite window restriction on the Cs|nf?rmat|on: at each time¢ > 1, encoder: observes
available to the transmitters, while, differently from[13 V¢ =~ = ¢i(S:), whereg; : & — V) is a quantizer mod-

the CSl available to the transmitters is not assumed €§d the imperfection in the state information. We shall
be independent. Recent related work also includes [14gnote byV; := (v, V") the vector of quantized
providing an infinite-dimensional characterization for

. . . ... 1This includes the empty string, conventionally assumedetdhe
the capacity region for Multiple Access Channels witl Pty string y

nly element ofA°.



state observations, taking values¥h:= V, x V,. The whereS, X = (X,, X3), andY’, are r.v.s taking values
channel input of encoderat time¢, X", takes values in S, X, andY, respectively, and whose joint probability
in a finite setX;, and is assumed to(_)be a function oflistribution

the IocaII(y)aval(Ib?bIe informatiot;, V[t] ). The symbol (s, y) = P(S = 5, X = 2,Y =)

X = (X,;“, X;”) will be used for the vector of the two _
channel inputs at timg taking values in¥ := X, x A;,. factorizes as

The channel output at timg Y;, takes values in a finite V(s,2,y) = P(5)Ta(Talga(s))m (|q5(5)) P(yls, z) .

set); its conditional distribution satisfies (4)
P(Y, =y|W =w, Xy =z, Sy =si) = P(ye|se, x) We can now state the main result of the paper.
(1) Theorem 4:The achievable rate region is given by
where, for anys € S, andz € X, P(-|s,z) € P(Y) _
is an output probability distribution. Finally, the de- o (Uﬁ R(W)) ’

coder is assumed to have access to perfect causal stateclosure of the convex hull of the rate regions associ-

information (which may be known causally or nonated to all possible memoryless stationary team policies

causally); the estimated message pair will be denotedas in (2).

by W = (W, Wp). In Section 11l we shall prove the direct part of Theorem
We now present the class of transmission systems.4, namely that every rate paiR € @ (UxR(m)) is
Definition 1: For a rate paitz = (R4, R;), @ block-  achievable. In Section IV we shall prove the converse

lengthn > 1, and a target error probability > 0, part, i.e. that no rate paiR € R% \ @ (U-R(7)) is

an (R, n,¢)-coding scheme consists of two sequenceghievable.

of functions

i t
{(bl(f) Wi X VP = X <i<n s [1l. ACHIEVABILITY OF THE CAPACITY REGION

The result on achievability is known, and one could
derive it from the arguments in [7]. For convenience,
P: 8" XY = W, x Wy, we present a brief discussion, with a different approach.
Such an approach was suggested at the beginning of [13,
Sect. VI], and consists in considering an equivalent MAC

and a decoding function

such that, fori € {a,b}, 1 <t <mn:

. |V\(/;_')| > QZ;”i o having as input mappings form the CSI information
o Xpt =0 (Wi Vi) available at the transmitters to the original MAC’s input.
o W :=1(Sp, Yin)): Specifically, we shall consider an equivalent memory-
. p(W #W) <e. less MAC having output spacg := S x )Y coinciding
We now proceed with the characterization of th&ith the product of the state and output space of the

capacity region. original MAC, input space#(; := {u; : V; — X}, for
Definition 2: A rate pairR = (R,, Rs) is achievable ¢ € {a,b}, and transition probabilities

if, for all € > 0, there exists, for some& > 1, an Q(2|ta, up) == P(3)P(y|ta(ga(s)), us(g5(s)))

(R,n,e)-coding scheme. The capacity region of the .
finite-state MAC is the closure of the set of all achievabl@here z = (s,y). A coding scheme for such a MAC
rate pairs. consists of a pair of encoderg? : W; — U*, i €
We now introduce what we cathemoryless stationary {a, b}, and a decodeg : " x 8™ — W, x Wj,. To any
team policiesand their associated rate regions. such coding scheme it is natural to associate a coding
Definition 3: A memoryless stationary team policy isscheme for the original finite-state MAC, by defining the
a family encoders

7= {m(-|v) €ePA)ie{abl,veV} @ O WixVi—Xi, o (wi,vp) = [fO(w:)](v”)

of probability distributions on the two channel inpu@nd letting the decodep : V" x 8" — W, x W,
sets conditioned on the quantized observation of eaghincide withg. It is not hard to verify that the prob-
transmitter. For every memoryless stationary team pdbility measure induced on the product spasg x
icy =, R(r) will denote the region of all rate pairsW, x S™ x Y™ by the coding schemgf(®), f*)_ g) and
R = (R,, Ry) satisfying the memoryless MAQ) coincides with that induced by
the corresponding coding schemé“), Eb), ¥) and the

~—

< : - N
8 - }}%‘; i %E;:’ ;/lgb’ gg 3) finite-state MACP. Hence, in this way, to anyR, n, ¢)-
0 ; Re+ Ry, < I(X:Y[S), coding scheme on the memoryless MACIt is possible



to associate aifR,n,e)-coding scheme{¢§“), §b>,¢) IV. CONVERSE TO THE CODING THEOREM

on the original finite-state MACP. N In this section, we shall prove that no rate outside
Now, letyi, € P(Us), andu, € P(Us), be probability =5 R(r)) is achievable. Lemma 5 shows that any

dlstr|but|ons_, on the input spaces pf the new memorylegsnievable rate pair can be approximated by convex

MAC, and fix an arbitrary rate paik = (R, 1), such  combinations of (conditional) mutual information terms.

that For e € [0,1], define
R, < I(Uu; Z|Up) € H(e)
Ry < LUy Z|U.) n(e) = g loeVl+ ©
R.,+Ry, < I(U;2), (5) and observe that
whereU = (U,, U,) and Z are random variables whose lin% n(e)=0. (20)
E—

joint distribution factorizes as
P(Ua,Up, Z) = pa(Ua) io(Up)Q(Z|Uq, Up) . (6)

For a positive integern, let f,gn) Wi = yr, and

a !

£ W™ — up be random encoders, withVy"| = Clearly, , > 0, and

[exp(Ran)], W] = [exp(Ryn)], and 1
n n Qg = — P(S[t,l] = 0') =1. (12)
{fén)(wa),flf )(wb) P W € ngn)awb € ng )} ae%n) " 1271 aegfl

is a collection of independent r.v.s, wifii" (w;) taking ~ Leémma 5:For a rate pairR € R, a block-length
values in with product distributiony;® . ... @ y;, for 7 = 1, and a constant € (0,1/2), assume that there
eachi € {a,b} andw; € Wj. Then, it follows from the €XiSts a([, n,¢)-code. Then,
direct coding theorem for memoryless MACs [6, Th.3.2,R ) _
- o+ Ry < o L(X; Y| S, Sy =0) +
p. 272] that the average error probability of such a code b G%;n) o I(Xe; YelSi, S = o) +1(¢)
ensemble converges to zeroxagrows large. 7 (13)
Now, we apply the arguments above to the speci@ < Z Oy I(Xf“);Yt|Xt(b),5t,S[t_1] = o)+1(e).
class of probability distributiong,; € P(U;) = P(X) cesm
with the product structure » " (14)
Ry < o U(X, Y| XY Sy, Sy = .
pi(ug) = H miwi)lv), wiVi— X, (@) T %;ma (K5 XX B By = @) n(e)

v, EV; 7€ (15)
wherei € {a,b}, and~ is some memoryless stationary ~ Proof: By Fano’s inequality we have the following
team policy, as in (2). Observe that, for sychand,,, estimate of the residual uncertainty on the messages
to any triple of r.v.s(U,, Uy, Z), with joint distribution given the full decoder’s observation
as in (6), one can naturally associate random variables

HW|Y;Sm) < H log(|W,||Ws)) -
S, X, = Us(q.(5)), Xp := Up(qp(S)), andY, whose (W1¥{ny5 Si)) (€) + elog(Wal[Wel) .

Jomtbprobag!:lty d'?”gutﬂo? satisfies (4). Moreover, ItFor 1 < t < n, we consider the conditional mutual
can be readily verified tha information term

For everyt > 1, ando € S*~!, define

1
Qg 1= EP(S[t—l] =o0). (11)

[(Xa;Y|S, Xy) = 1(Ua; Z|Us)
(X:Y]8.X,) = Wi ZlUs) (&) Ao =13 Yo, S o, Sta)
I[(X;Y]s) = IU;2). and observe that
Hence, if a rate paiR = (R,, Ry) belongs to the rate > Ay = HWIS1) — HW|Sp11), Yin))

region R(w) associated to some memoryless stationary 1<t<»
team policyr (i.e. if it satisfies (3)), thaf? satisfies (5)
for the product probability distributiong,,, up defined . - o 17)

@ since the initial state5; is independent of the message

by (7). As observed above, the direct coding theore.mairW, and the final stats),;; is conditionally indepen-

for memoryless MACs implies that such a rate pair i . :
achievable on the MAQ). This in turn implies that the gent of W given (S, ¥). On the other hand, using

rate pair is achievable on the original finite-state MAC
P. The proof of achievability of the capacity region
co(UrR(m)) then follows from a standard time-sharing
principle (see, e.g., [6, Lemma 2.2, p.272]).

log(IWa /W) — H(WIS[n],Y[n])(,



the conditional independence &¥ from S:;.; given the conditioning does not decrease the entropy. Now, we

(S}, Yiy), one gets have
Ay = L(W;Yy, Sea|Yieay, Spy) A = I(Wa; Vi, Ses1|We, Yis-1), Spe)
= I(W;Yi|Yje—1), Sin) = I(Wa; YWy, Yz, Sy
= H(Yi|Yj_1), Spy) — HYZ|W, Yii_1}, Spy) = HXWs, Y1y, Spy) — HYV W, Y1y, Spyy)
< H(Yi|Sp) — HY|W, Sp) < HEYAWs, Siy) — HYW, Si)
= I(W;Yi|Sp), . = I(Wo; Yi[Ws, Sp) , -
where the above inequality follows from the facivhere the inequality above follows from the fact that

that H(Y;[Y};—1),Sp) < H(Yi|Sy), since removing H(Y;|Wh, Yi—1), Sy) < H(Yi| W5, Spyy) since removing

the conditioning does not decrease the entropy, whilge condmomng does not decrease the entropy, and that
H(Y,|W, Yii_1, Sp) = H(Y:|[W, Sp), asY; is condi- HY:W, Yj—1), Spy) = H(Y:|W, 5p) due to absence of

tionally independent from}, i, given (W, Spy), due output feedback Observe that, smc(e) conditioned@n

to the absence of output feedback Sir(@€, Sy,) — and Sy (hence, onx ("), W, — X{* — v, forms a

(X,,S;)—Y, forms a Markov chain, the data processmgflarkov chain, the data processing inequality implies that

inequality implies that

(W5 Yi|Sp) < 1(Xe; YilSpy) - (19)

By combining (16), (17), (18) and (19), we then get

1
Ro+Ry <+ log(IWal W)

1 1 H(e
1— E‘E I(Xt7}/:f|s[t]) + n(l(—)e)
1<t<n
< = Z (Xe; 2| S) + nle) .
l<t<n
(20)

Moreover, observe that

(X4 YilSp) = Z P(Sp—1) = 0)Xo
oeSt—1
= N Ao Xo
oeSt—1
where o := I(X¢; Y3|S;, Si—1) = o). Substituting into
(20) yields (13).

Analogously, let us focus on encoder by Fano’s
inequality, we have that

H(Wanf[n]v‘g[n]) < H(E) + ElOg(|Wa|) .
Fort¢ > 1, define

Al = T(Wa; Vi, Sia [Wi, Yii—11,51)

(21)

and observe that
> A = H(W,|S1, Wa)

_H(Walwbvs[nJrl]aYv[n])
1<i<n
> log |Wa| —

H(Wa| S, Yiny) »
(22)

where the last inequality follows from the mdependencea (s, i)
betweenW,, S;, and W, and the fact that removing and the probability dIStI’IbutIOI?T (

I(Wa; Yi|[ Wy, Spp) < I(Xt(a)yy;f|th)aS[t])-
(24)

By combining (21), (22), (23), and (24), one gets

1
a < _10g|Wa|
n
1
(1— £)

1<tz<n
= Z ag I(
oesSn)
which proves (14).
In the same way, by reversing the roles of encader
andb, one obtains (15). ]

Fort > 1, let us fix some stringr € S~ !, and focus
our attention on the conditional mutual information terms
I(Xy; Yi|St, Sp—1)=0), (X v X7, St, S—11=0),
and I(be);Yt|Xf“),St,S[t_1] = o), appearing in the
rightmost sides of (13), (14), and (15), respectively.
Clearly, the three of these quantities depend only on the
joint conditional distribution of current channel staig
input X, and outputY;, given the past state realization
Spi—1) = o. Hence, the key step now consists in showing
that

VU(SaIay) = P(St = SaXt = Ia}/t = y|S[t—1] = U)
(25)
factorizes as in (4). This is proved in Lemma 6 below.
For z; e X;, v; €V;, ando € St1, let us consider
the setY )(xl,vz) cwW;,

:{w-: ¢§i)(wi7%(01) B

> (X5 Y X" Sp) +

1<t<n
U«) }/t|X(b)

n(l—eg)

| A

St) +n(e)

Xta ;}/t|Xt(b),St, S[t—l] = 0') + 7’](5),

(J(Cft71),vi):$z}
[vi) € P(X;),
7 (@ilvi) = Wil =t

>

w €Y (wi,v4)



Lemma 6:For everyl <t <n, o € S, s € S, V. EXTENSIONS AND CONCLUDINGREMARKS

Lo € Xy, aNdxy € Xy, The present paper has dealt with the problem of
Vo (s, 2,y) = P(s)7D (20]qa(s)) 7D (2 $)P(yls, _reliable transmission over finite-state multiple access
( v) ()7 (@alga(s))mo” (@] (s)) (y|(26)) channels with asymmetric, partial channel state infor-

Proof: First, observe that mation at the encoders. A single-letter characterization
of the capacity region has been provided in the special
vo(s,x,y) = P(S; = s|Sy_1) = o)ve(x]s)P(yls,2) case when the channel state is a sequence of independent
= P(s)vg(z|s)P(y|s, x) and identically distributed random variables.
(27) It is worth commenting to which extent the results

wherev, (z]s) := P(X; = z|S) = (o,5)). The former above can be generalized to channels with memory. Let
of the equalities in (27) follows from (1), while theus consider the case when the channel state sequence
latter is implied by the assumption that the channel stafé; : ¢ = 1,2,...} forms a Markov chain with
sequence is i.i.d.. transition probabilitie®(S;11 = s1|S: = s) = P(s+]s)

Now, recall that, fori € {a,b}, the current input which are stationary and satisfy the strongly mixing
satisfies XV = ¢§”(Wi71/[§]i))_ For w € W, let condition P(sy|s) > 0 for all s,s; € S. Further,

€w i =P(X; = 2|S = (o,5), W = w). Then, assume that there is no inter-symbol interference, i.e.
{S:: t=1,2,...} is independent from the messadé
Ve (z|8) = Z EwP(W = w|Spy) = (o,5)) and that the state process is observed through quantized
b observationsl/'t(z) = ¢;(S:), as discussed earlier.
= Z Wal“HWh| ™ In general, for a multi-person optimization problem,
Y whenever a dynamic programming recursion with a fixed
= Z A Z Wo|~! complexity per time stage is possible via the construction
Wa €T (2a,qa(s)) Wy €TD) (24,05 (5)) of a Markov Chain with a fixed state space (see [21]

for a review of information structures in decentralized
(28) control), the information structure is said to have a

the second inequality above following from the mutudiuasi-classical pattern; thus, under such a structure, the

independence ofSy;, W,, and W,. The claim now optimization problem is computationally feasible and the
follows from (27) and (28). m problem is said to bé&ractable In a team decision theo-

_ ) retic approach, one may assume that there is a centralized
Let us now fix an achievable rate pdir= (R, ).  decision maker which designs an optimal team design
By choosing(R, n, ¢)-codes for arbitrarily smalt > 0,  statically, before the realization of the random variables
the inequalities (13), (14), and (15), together with (10nis approach is based on Witsenhausen’s equivalent
and (12), imply that(R,, R,) can be approximated by mqqel for discrete stochastic control [22].
convex combinations of rate pairs (indexeddy 5_(n)) In the case of finite-state multiple access channels with
satisfying (3) for joint state-input-output distribut®@as  jngependent and identically distributed state sequence,
in (25). Hence, any achievable rate pdirbelongs to py first showing that the past information is irrelevant,
co(UxR(m)). o we observed that we could limit the memory space on
Remark 1: For the validity of the arguments aboveyhich the optimization is performed. This is because, as
two critical steps were (27), where the hypothesis of i-i-%_bserved in Remark 1, in the rightmost side of (27) the
channel state sequence has been used, and (28), Whygt state realization affects only the controby (z|s),
only relies on the mutual independencel®df and Sy, put not the current state distributid®(S;). In contrast,
this being a consequence of the assumption of abseqggan the state sequence is a Markov chain, the past state
of inter-symbol interference. In particular, the key pointeglizations does affect both the control, (z|s) as well
@n (27) is the fact that the past state realizaoappears zs the current state distributiaP(S;|Sy_1 = o). It is
in vo only and not mP(St_)._ ¢ exactly such a joint dependence which prevents the proof
~ Remark 2: For the validity of the arguments abovepresented here to be generalized to the Markov case.
it is critical that the receiver observes the channel |y case there is only one transmitter, the conditional
state. More in general, it would suffice that the statgropability distribution of the state given the observatio
information available at the decoder contains the OfMistory, IT; (- ) := P(S; = - [Vj) € P(S), can be shown
available at the two transmitters. In this way, the decodgy pe a sufficient statistic, i.e. the optimal coding policy
does not need to estimate the coding policies used I8y pe shown to depend on it only. As a consequence,
decentralized time-sharing. ©  the optimization problem is tractable. Such a setting was
studied in [20], where the following single-letter char-
acterization was obtained for the capacity of finite-state

= 75 (@alga()7S (2] as(s))



single-user channels with quantized state observationaat equivalent state based on which to generate coding
the transmitter and full state observation at the receivgrolicies, the equivalent state needs to keep growing with
~ time: The discussion in [7] provides such a block-level

C /dP( ) sup ZI (X;Y]s, m)P(s|r) characterization and it seems we cannot go beyond this
Ps)  PXIMEPX) s due to the non-tractability of the optimization problem.
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